Class TDiv_CF03
java.lang.Object
de.tilman_neumann.jml.factor.cfrac.tdiv.TDiv_CF03
- All Implemented Interfaces:
TDiv_CF
public class TDiv_CF03 extends java.lang.Object implements TDiv_CF
Auxiliary factor algorithm to find smooth decompositions of Q's.
Version 03:
Uses divideAndRemainder() only instead of mod() followed by divideAndRemainder().
This makes sense only since the speed improvement of divideAndRemainder() achieved 2020-12-05.
-
Constructor Summary
Constructors Constructor Description TDiv_CF03()
-
Method Summary
Modifier and Type Method Description java.lang.String
getName()
void
initialize(java.math.BigInteger N, double smoothBound)
Initialize for a new N.void
initialize(java.math.BigInteger kN, int primeBaseSize, int[] primesArray)
Initialize this factorizer for a new k; in particular set the prime base to be used for trial division.AQPair
test(java.math.BigInteger A, java.math.BigInteger Q)
Check if Q is smooth (factors completely over the prime base) or "sufficiently smooth" (factors almost over the prime base).Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
TDiv_CF03
public TDiv_CF03()
-
-
Method Details
-
getName
public java.lang.String getName() -
initialize
public void initialize(java.math.BigInteger N, double smoothBound)Description copied from interface:TDiv_CF
Initialize for a new N.- Specified by:
initialize
in interfaceTDiv_CF
-
initialize
public void initialize(java.math.BigInteger kN, int primeBaseSize, int[] primesArray)Description copied from interface:TDiv_CF
Initialize this factorizer for a new k; in particular set the prime base to be used for trial division.- Specified by:
initialize
in interfaceTDiv_CF
primeBaseSize
- the true prime base size (the arrays are preallocated with a bigger length)primesArray
- prime base in ints
-
test
Description copied from interface:TDiv_CF
Check if Q is smooth (factors completely over the prime base) or "sufficiently smooth" (factors almost over the prime base).
-