
Supporting the SBR Style of Web Usage

Boworn Leemakul, Panyapon Saeliw, and Andrew Davison
Department of Computer Engineering

Prince of Songkla University
Hat Yai, Songkhla 90112, Thailand

Abstract
The Search-Browse-Repeat (SBR) mode of Web
usage is becoming increasingly important as
the size of the Web increases and the coverage
of search engines expands. However, Web
browsers do little to support SBR, with
consequences for search success rates. We
characterise the main features of SBR, suggest
criteria that would help alleviate the problems
associated with it, and outline a prototype
browser we are building which embody these
ideas.

Keywords: web-based computing,
browser navigation, visualisation

1. Introduction
The current size of the Web is probably
between 3 and 4 billion pages [2], and so it
is hardly surprising that search engines are
so popular: Google
(http://www.google.com) alone
estimates that it receives about 130 million
queries per day [13]. Unfortunately, search
engines are not keeping up with Web
expansion: Google indexes about 1.5
billion pages, with the other popular
engines far behind [12]. This may partly
explain why the failure rate for searches is
estimated at nearly 20% [11], and why
users find that receiving a search engine’s
results page is only the beginning of their
search.

In section 2, we describe the
Search-Browse-Repeat (SBR) mode of
Web search, which characterises a user’s
experience when searching for a page from
the starting point of a search engine query.
Many of the problems that arise during

SBR are poorly handled by today’s Web
browsers. In section 3, we outline our
criteria for improved browser support of
SBR, and in section 4 we describe a
prototype that follows these guidelines.
Section 5 discusses some of the unresolved
issues raised by our work.

2. Characterising SBR
The description of SBR in this section is
based on anecdotal evidence: observations
made during several training courses
teaching novices how to use the Web, and
on our own experiences.

SBR is a search activity that begins
with the user sending a query to a search
engine. There are other forms of search,
such as a search of a large organisation’s
Web site by browsing from their home
page (perhaps with the help of their site
map), or a search of a portal site such as
Yahoo. These kinds of search are different
from SBR in that the search domain (i.e.
Web site, portal) has been organised into a
coherent form with the Web equivalent of
maps and signposts. SBR lacks this
structuring, which is the underlying cause
of user problems.

The search engine query which
begins SBR returns a Web page of
matching results, often numbering in the
many 1000’s. There is rarely any apparent
ordering to the results, and the sheer
number can easily cause the ‘right’ link to
be missed.

A sophisticated user will try to
reformulate the query to reduce the number
of hits, but novices do not have the skills to

do this. Instead, they resort to manually
investigating each link, which usually
means a very rapid visit to the page
(perhaps spending only a few seconds
there) before hitting the back button.
Novices are unwilling to read the text
fragments that accompany the links
returned by the search engine.

A typical link will lead to a page
deep inside an organisation’s site, at some
distance from a table of contents or site
map. Also, pages written by individuals
frequently contain little navigational
support. The searcher must employ
browsing to move from the link page to a
page holding the information they need.
This information is usually located at the
same site, often just 1-2 links away.

Browsing, often without much
contextual information apart from anchor
text, leads to inadvertent jumps to distant
pages, and a growing sense of
disorientation as the page trail increases.
For example, novice users will frequently
click on banner ads or miss links embedded
inside image maps. They can even forget
the aim of their original search, as they
become more distracted. Browsing
behaviours of this kind mean that long
trails do not have a single logical meaning
(e.g. ‘find a page about subject ‘X’).

The back button becomes very
important in order for the user to ‘get out’
of useless pages. However, its stack-based
nature means that trails (both good and
bad) are lost as the user backtracks [7].
Other browser navigation aids (e.g. the
history list, bookmarks) are rarely used.

A problem unique to our students
is that English is not their first language,
which compounds their problems when
rapidly scanning Web pages and reading
anchors.

Many users will simply ‘start over’
after a certain amount of time, and send
exactly the same query to the search engine
again. There is some small evolution of the
user’s search strategy (e.g. new keywords),
but most users admit to have becoming so
confused during the previous search as to
be unsure how to refine their query.

3. Improving SBR Support in
Browsers

We now describe broad criteria for
improving SBR support in Web browsers.
Our discussion follows the categories
outlined in [5].

A visualisation of the search space
would be of enormous benefit to the user.
Due to the nature of SBR, it must be
generated dynamically and be a partial
view of the space. There are two principle
‘schools’ of Web visualisation: trails of
jumps between pages and maps based on
the organisation of a site.

As mentioned above, a long trail
begins to lose meaning as the user get
distracted or changes their search aims.
Over time, the amount of nonrelevant
pages and links will swamp the useful
information. More complex heuristics to
determine a meaningful trail might help,
such as dwell time and referrer consistency
as used in the Footprints system [15].

Site maps (e.g. contents lists,
tables, frames) are usually statically
created, and applied to a single coherent
Web entity (e.g. a business’ site) [1].

A computational viable dynamic
map cannot survey an entire site: it must
display partial information. Also, it is
generally impossible to analyse the logical
relationships between pages, but a
hierarchy based on URL structure is simple
to create. This results in a sites tree, where
the path of a URL becomes nested ‘folders’
which ultimately contain a node
representing the URL filename. URLs
located at different sites create distinct
branches at the top-level of the tree.

The advantage of this view is its
great familiarity to novice users from
applications like Windows Explorer. The
disadvantage is that the hierarchy is
geographical rather than relational.
However, for SBR a geographical display
is very helpful: often the user will only
want to navigate to other pages within the
same site in order to find relevant
information. Also, an Explorer-like
interface is suited to displaying 100’s of

nodes, and has a view mechanism based on
expanding and closing folders.

Another criteria is whether to
employ 2D or 3D visualisation. 2D visuals
are cheap to create, update, and rearrange
for a reasonable number of nodes. 3D is
generally expensive, and there are concerns
about problems such as occlusion and its
suitability for displaying large amounts of
text [6].

Should the Web be represented by
a graph or a tree? While a graph is the
more natural model for Web
interconnectivity, as a visualisation model
it soon becomes cluttered, hard to
understand and navigate. Complex graphs
can be costly to generate and redraw when
the user’s point of view moves. A tree is
simpler to construct, but has less flexible
relationships. However, it is a good choice
for our sites tree, which is overridingly
hierarchical.

Filtering of the visualisation is essential so
that extraneous detail can be hidden. The
tree model has a familiar visual filtering

model based on folder opening and
closing. Further semantic filtering is
necessary, perhaps based on the content of
pages or link meaning. Utilising
information based only on titles can cause
problems due to missing/wrong titles or
poorly named pages [3]. Also, we wish to
avoid query languages for filtering since
they seem too complex for novices.

There should be a predictive
element to the visualisation, to guide
browsing from the current page location. It
must be simple for novices to understand,
and not be prohibitive to calculate
dynamically.

4. A SBR Browser Prototype
Figure 1 shows our prototype SBR
Browser in operation. The top row contains
a field for downloading a URL, and a
search button which sends a query to
Google. The central part of the browser is
divided into three columns: the left column
is the sites tree display, the middle area
shows the Web page, and the right-hand

Figure 1. The SBR Browser Prototype.

column holds a pop-down list of links, a
page summary window, and a score area.
The browser is coded in Java.

The prototype is best explained by
considering its contribution to the three
phases of SBR.

The Search Phase. A search query is sent
to Google, and the results page is shown
back in the browser. The links in the
results page are automatically extracted
and their Web pages downloaded in the
background (i.e. they are not displayed).
As a page arrives, it is summarised, and
scored. The summary is derived from the
words on the page, excluding stop words
and HTML tag labels. Scoring is a simple
calculation which judges how similar the
summary words are to the search query
keywords. The URLs of the retrieved
pages are added to the sites tree.

Each URL is represented by a
series of nested folders corresponding to its
path, with a file node for the URL
filename. The node shows the name of the
URL and its score. Right clicking on the
node displays the page title and the
summary words. Scores are propagated up
through the folders to the top level of the
tree. If two URLs share a common path,
then the higher of the two scores are passed
upwards.

The sites tree closes all of its
folders apart from the path to the node with
the highest score, and the path to the
current page in the display window.

In the right hand area, the pop-
down list contains the URLs of the links
and their scores. The list is sorted into
decreasing order by score.

The Browsing Phase. The scores in the
sites tree guide the user towards the most
promising page to examine. A page can be
downloaded and shown either by clicking
on a node in the sites tree, the pop-down
list, or a link in the current Web page.

The newly retrieved page’s links
are displayed in the pop-down list, and a
summary of the page appears in the “Page
Summary” window. This window can
either be set to show a summary of the

entire page, or summaries by section. The
score for the page also appears.

If the page is considered relevant
then the user can click on the “Summarize
Links” button. This causes all the pages
linked to the current page to be
downloaded in the background,
summarised, and scored. This information
is added to the sites tree as new nodes. If
the highest scoring node changes, then the
folders leading to the new node are opened.

The user-controlled “Summarize
Links” button is a compromise for
efficiency. The retrieval of all the links is a
costly activity, and so we chose not to
automate it.

The Repeat Phase. The user can refine a
search in two ways. The keywords can be
adjusted in the search keywords field, and
the current nodes in the sites tree can be
rescored. This involves no network
communication, so it a fast operation. The
choice of keywords is assisted by
examining the page summaries. The other
approach is to send a new query to Google,
which will cause the old sites tree to be
discarded, and a new one initiated.

5. Discussion
Search-Browse-Repeat (SBR) is
characterised by a search engine query
returning numerous links to disparate
pages, followed by substantial browsing
activity to find information. The browsing
is typified by a lack of contextual
information, long trails, large numbers of
choice points in the search, extensive
backtracking, and the problems of
distraction and inadvertent jumps to distant
points. Browsing often ends with a repeat
phase where the user searches again,
sometimes with a refined query.

Our criteria for supporting SBR in
Web browsers are to utilise dynamic
visualisation of partial maps of the search
sites, represented as a 2D sites tree. The
top-level branches of the tree are distinct
Web sites, and the branches below
represent the URL paths. Filtering utilises
a mixture of standard visual tree
techniques, and semantic notions based

around page summaries and scores. The
scores are used as a predictive element to
guide browsing.

Preliminary tests of the prototype
show that training time is necessary for
users to understand the SBR approach.
Once this has been mastered, results can
sometimes be found very quickly.
However, this is heavily dependent on the
scoring function which has proved to be
unreliable. The summaries are helpful in
query refinement, but are frequently too
simplistic.

A fundamental question about
SBR is whether it really is as pervasive as
we believe. Our views on SBR are based
on a sample size of about 50 people who
were novice Web users, and attending a
course aimed at learning search techniques
(amongst other things). We are unaware of
any study on this matter apart from [14],
which reported that the submission of
forms data (e.g. for search engine queries)
accounted for only 4% of a user’s
navigation activities. However, search
engine capabilities have changed
enormously since 1996-1997, and a new
study of usage patterns should be
undertaken.

Our prototype shows that
summarising and scoring operations are
crucial. We are in the process of replacing
our original code with better indexing,
Porter stemming [10], and scoring (based
on the Lucene package [9]).

A stubborn problem is the network
load caused by the analysis of all the pages
linked to the current page. Our code only
downloads the text of these pages, but this
is still quite slow (especially with the
bandwidth available to us). The number of
links is the crucial variable; our tests have
uncovered pages with 50+ links.

An interesting visualisation
technique we are currently considering is
interaction histories [8], where annotations
are used to signal the paths already
investigated. This could be something as
simple as changing the colour of nodes
which have already been examined. Also
of interest is the interface in Webview for

representing cross-site navigational links as
arrows [4].

References
[1] Brunk, B. 1999. “Overview and

Preview Tools for Navigating the
World-Wide Web”, SILS Technical
Report TR-1999-03, DoCS, Univ. of
North Carolina at Chapel Hill, July.

[2] Client Help Desk. 2000. "Web
Statistics: Size, the Average Page",
Available at
http://www.clienthelpdesk.co
m/statistics_research/
web_statistics.html, July.

[3] Cockburn, A. and Greenberg, S.
1999. “Issues of Page Representation
and Organization in Web Browser’s
Revisitation Tools”, Proc. OzCHI’99,
Wagga Wagga, Australia, pp.7-14,
November.

[4] Cockburn, A., Greenberg, S.,
McKenzie, B., Smith, M., and
Kaasten, S. 1999. “Webview: A
Graphical Aid for Revisting Web
Pages”, Proc. OzCHI’99, Wagga
Wagga, Australia, pp.15-22,
November.

[5] Cockburn, A. and Jones, 1997.
“Design Issues for World Wide Web
Navigation Visualisation Tools”,
Proc. of RIAO’97, Montreal, Canada,
p.55-74, June.

[6] Cockburn, A. and McKenzie, B.
2000. “An Evaluation of Cone Trees”,
In People and Computers XV (Proc.
of the 2000 British Computer Society
Conf. on Human-Computer
Interaction), Sunderland, UK, pp.425-
436.

[7] Greenberg, S. and Cockburn, A.
1999. “Getting Back to Back:
Alternate Behaviours for a Web
Browser’s Back Button”, Proc. of the
5th Annual Human Factors and the
Web Conf., Gaithersburg, Maryland,
USA, June.

[8] Hill, W. C., Hollan, J. D.,
Wroblewski, D., and McCandless, T.
1992. “Edit Wear and Read Wear”,

Proc. of CHI’92 Conf. on Human
Factors in Computing Systems,
pp.3-9.

[9] Jakarta Lucene. 2002. “Lucene”,
Apache Jakarta Project. Available at
http://jakarta.apache.org/lu
cene/docs/index.html

[10] Porter, M.F., 1980, “An Algorithm for
Suffix Stripping”, Program, 14(3),
pp.130-137. Code available at
http://www.tartarus.org/~mar
tin/PorterStemmer/

[11] Search Engine Watch 2000. “NPD
Search and Portal Site Study”, Search
Engine Watch, Available at
http://searchenginewatch.com
/reports/npd.html, July.

[12] Search Engine Watch 2002a. “Search
Engine Sizes”, Search Engine Watch,
Available at
http://searchenginewatch.com
/reports/sizes.html, January.

[13] Search Engine Watch 2002b.
“Searches Per Day”, Search Engine
Watch, Available at
http://searchenginewatch.com
/reports/perday.html, February.

[14] Tauscher, L. and Greenberg, S. 1997.
“How People Revisit Web Pages:
Empirical Findings and Implications
for the Design of History Systems”,
Int. Journal of Human Computer
Studies, Special Issue on World Wide
Web Usability, 47(1), pp.97-138.

[15] Wexelblat, A. and Maes, P. 1999.
“Footprints: History-Rich Tools for
Information Foraging”, Proc. of
CHI’99, Pittsburgh, USA, pp.270-
277, May.

