
Improving Response Time in a Client/Server
3D Mobile Game

Prapat Lonapalawong
Dept. of Computer Engineering

Prince of Songkla University
Hat Yai, Songkhla, 90110, Thailand

prapatz@yahoo.com

Andrew Davison

Dept. of Computer Engineering
Prince of Songkla University

Hat Yai, Songkhla, 90110, Thailand
ad@fivedots.coe.psu.ac.th

ABSTRACT
A series of experiments were carried out on a client/server 3D
mobile first-person shooter (FPS) to determine the best techniques
for improving client-side response times in the presence of severe
network unreliability. We utilized three measures of response
time, which closely parallel the different types of communication
employed between the clients. The response time techniques were
grouped into three categories: general, game-specific, packet-
based. A combination of the best three – dead reckoning and
smoothing, avatar blinking, and duplicate/triplicate packet
sending – produce mean response times that are 20% to 90% less
than the mean response time for the game with no techniques
enabled.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems – client/server.

General Terms
Measurement, Performance, Design, Reliability.

Keywords
Client/server, 3D, mobile game, response time measurement, dead
reckoning and smoothing, avatar blinking, duplicate/triplicate
packet sending.

1. INTRODUCTION
Interest in multiplayer 3D gaming has never been higher, and is
starting to gain traction on mobile devices, with the success of
games such as Robot Alliance and Need for Speed: Carbon.
However, underlying networking issues (e.g. high latency, limited
bandwidth, and lossy/reordered packet delivery) make it difficult
to implement FPS-type games that offer rapid player interaction
[1, 2, 6]. As a result, many multiplayer mobile games are turn-
based, and use the network primarily for messaging and accessing
server-side databases.

This paper describes experiments carried out upon a client/server
3D mobile FPS. The game executes on a LAN, but the server can
simulate varying degrees of communication reliability, thereby
emulating WAN/Internet conditions. A range of techniques for
improving the game’s response time were tested, which fall into
three broad groups: general (applicable across a wide-range of
FPS games), game-specific (tailored to our game), and packet-
based. The success (or otherwise) of the techniques was judged by
gathering statistics related to three different measures of response
time.

2. GAME ARCHITECTURE
Our game’s client/server architecture is quite typical of many
multiplayer mobile games. The Java ME
(http://java.sun.com/j2me/, [5]) game clients each render a
world of competing penguins; the goals of a player’s penguin are
to find “life spots”, gather bullets, and shoot other penguins. The
game’s architecture is summarized in Figure 1.

Figure 1. The client/server 3D mobile game.

The local player has a first-person view of a world, while the
other penguins are remote avatars representing the other players.
In Figure 1, the game currently has three users, so each player can
see at most two other penguins (and its own penguin’s red beak).

The rules of the game ensure that player behavior is fairly
complicated, making it hard to predict a player’s actions and the
pattern of network activity. All the game’s 3D assets (e.g. the
penguins, the floor) are stored locally on the clients; no 3D
models are transmitted via the network.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CyberGames 2007, September 10–11, 2007, Manchester, UK.
Copyright 2007 ??…$??.

Game entry, inter-client communication, and game departure are
controlled through a Java SE (http://java.sun.com/j2se/)
server which manages the delivery of data in the form of UDP
packets. The server can be configured to delay packet delivery,
and to lose a given percentage of datagrams, in order to test the
game’s responsiveness at different levels of network reliability.
The system was run across a LAN, so real-world latency,
bandwidth restrictions, and packet loss were not issues.

Various levels of reliability were investigated, including 75%
reliability, which means that there was a 25% chance of a packet
being delayed (i.e. one chance in four), and a 25% chance that it
would be lost. 90% reliability means that there is a 10% chance of
packet delay, and 10% chance of packet loss. A packet can be
delayed between 30 ms and 2 seconds.

2.1 Measuring Response Time
A more accurate reflection of a game’s responsiveness can be
gained by measuring three slightly different forms of response
time: one-way response time for single packet actions, one-way
response time for multiple packet actions, and two-way response
time.
One-way response time for an action is the time that a packet
representing the action takes to travel from a remote player to the
local player, and includes the time to update the remote player’s
avatar on the local device.

Some complicated types of action require multiple packets to be
transmitted, typically for updating avatar position and orientation.
However, most actions can be represented by single packets, such
as when the player loses a life point or picks up a bullet. This
distinction between multiple and single packets is important since
it highlights the effectiveness of techniques which group, delete,
or duplicate packets.

Two-way response time is the time for a packet to be sent from
the local player to a remote device to be processed, and for a
response packet to arrive back at the local player and update his
game state. An example of two-way response time in our game is
when a player shoots at a penguin. This requires that a message be
sent to the remote client represented by the penguin, and for the
local client to wait until the shot’s outcome (e.g. penguin death) is
returned.

3. TECHNIQUES FOR IMPROVING
RESPONSE TIMES
We experimented with a large number of techniques to improve
the game’s response times. We classify these techniques into
three groups:

1. General techniques, which can be applied to any networked
FPS. They include dead reckoning and smoothing, and selective
visual field updating [3].

2. Game-specific techniques, which include avatar blinking and
avatar dying (i.e. painting a translucent skull over a penguin to
indicate its probable death).

3. Packets-based techniques, which include duplicate and
triplicate packet sending, and packet grouping.

Due to space constraints in this paper, we will only discuss the
best performing technique from each of these groups: dead
reckoning and smoothing, avatar blinking, and duplicate/triplicate
packet sending.

3.1 Dead Reckoning and Smoothing
Dead reckoning (DR) is used to ‘guess’ a penguin’s translation or
rotation when the packets holding that information have failed to
arrive at the client [4]. We choose to activate DR after one
movement packet is lost, and to keep it switched on for at most
ten screen updates.

This approach requires packets to be time-stamped, and for a
client to estimate how long to wait before a packet is deemed to
be lost. The code must also deal with a ‘lost’ packet turning up
after a lengthy delay.

DR is switched on promptly, after only one packet has been lost,
so a penguin will keep moving rather than appear unresponsive.
DR is switched off after at most ten updates (500 ms in our
game), since it becomes very difficult to predict movement
accurately after multiple updates.

It is essential to pair DR with smoothing. When a movement
packet eventually arrives, smoothing gradually adjusts the
penguin’s position to relocate and reorientate it to the correct spot.
Smoothing is carried out over several screen updates, so a
penguin doesn’t ‘jump’ from one position to another.

3.2 Avatar Blinking
Avatar blinking is game-specific: it is triggered when the local
player shoots at a penguin, and the client has to wait for the
shooting outcome from the remote player. The uncertainty about a
penguin’s future is denoted by making it blink. This offers
immediate feedback to the player, which is more reassuring than
have nothing change on screen for perhaps several seconds.

After usability tests, we determined that players find blinking to
be helpful for at most a few seconds, after which time it becomes
rather irritating. Consequently, a penguin can blink for at most
three seconds, which is enough time for a shooting response to
arrive when the network is performing at 75% reliability.

3.3 Duplicate/Triplicate Packet Sending
Duplicate/triplicate packet sending makes a client transmit the
same packet two or three times to reduce the chance of it being
lost en route. One drawback is that the receiver must be able to
detect and ignore multiple packet copies. Also, indiscriminate
multiple packet sending is a serious consumer of bandwidth.
Consequently, we use the technique sparingly, only for important
information whose loss would seriously impact the game. Such
packets tend to be related to important avatar state changes, such
as when a penguin loses life points, or shoots at another penguin.
It also helps to correlate the amount of resending to the
unreliability of the network.

4. RESULTS
The game was run many times with three clients, and results
gathered over several minutes of typical gameplay in each game,
and averaged. The tests reported here were carried out with the
network set to be 75% reliable.

Three response times measurements were performed: one-way
response time for multiple packet actions, one-way response time
for single packet actions, and two-way response time.

The mean response times were calculated when no techniques
were applied, and again when each of the techniques was
switched on individually (i.e. DR and smoothing, avatar blinking,
and duplicate/triplicate packets). Finally, all three techniques
were switched on together.

The mean response times for the techniques were compared with
the mean time when no techniques were enabled, using a standard
one-tailed z-test with a 95% level of significance [7]. In the
figures below, only the techniques that produced a significant
reduction in the mean response time are reported.

4.1 One-way Response Time, Multiple Packet
Action
Figure 2 displays mean response times as percentages of the mean
response time when no techniques are enabled (shown as the “No
Techniques” bar). Consequently, a technique that reduces the time
will have a percentage less than 100%. Data for the other
response time measures in sections 4.2 and 4.3 are reported in a
similar way (see Figures 3 and 4).

Figure 2. One-way response time, multiple packets.

One-way response times for multiple packet actions are mostly
concerned with the processing of avatar movement (translations
and rotations). This explains why DR and smoothing reduce the
mean response time by a tad over 25% in Figure 2, since that
technique compensates for the loss of translation and rotation
packets.

Also of interest is that avatar blinking and duplicate/triplicate
packets sending (the other two techniques tested here) have no
significant effect on this type of responsiveness, and so aren’t
listed in Figure 2.

4.2 One-way Response Time, Single Packet
Action

One-way response times for single packet actions cover the
majority of the packets sent in the game, where an action can be
codified as a single datagram.

Figure 3. One-way response time, single packets.

Duplicate and triplicate packet sending reduces the response time
drastically: by over 80% for triplication which sends the same
packet three times (see Figure 3). This reflects the impact that
poor network reliability has on game play – at 75% reliability, the
“No Techniques” version of the game is almost unplayable.

As the network becomes more reliable (e.g. moving from 75% to
90%), triplicate packet sending becomes slower, and duplicate
packets becomes the better performer. The slowdown is caused by
the cost of processing and ignoring so many multiple packets.

For this form of response time measurement, DR and smoothing
and avatar blinking have no significant effect, so are not shown in
Figure 3.

4.3 Two-way Response Time Measurements
In our game, the most important two-way response time
measurement is for a player shooting a penguin and waiting for
the outcome. Figure 4 shows that avatar blinking is very
important for maintaining a good response time, with
duplicate/triplicate packet sending also playing a role.

Figure 4: Two-way response time.

Two-way response time is very susceptible to packet loss or delay
since it depends on request and response packets both being
successfully delivered. The loss of one or both of these packets
will mean that the associated action cannot be completed.

Avatar blinking does a great job of disguising the delay, which
under 75% network reliability conditions may be as much as 2-3
seconds. Duplicate/triplicate packet sending is necessary to ensure
that copies of the lost datagrams eventually arrive.

As with the one-way response times for single packet actions in
section 4.2, if the network’s reliability is increased, then the
overhead of triplicate packet sending becomes excessive, and
duplicate packet sending becomes the better choice.

5. CONCLUSIONS
Our experiments with a client/server 3D mobile game highlight
several issues related to improving client-side response times.

Response time must be measured in multiple ways for a good
understanding of how it is affected by varying network reliability
and different techniques. One-way response time for single packet
actions reflects how simple datagram transfer is affected by the
network. One-way response time for multiple packet actions
focuses on more complex data delivery. Two-way response time
deals with communication that employs a query/response form.

We have classified the techniques for improving response time
into three categories: general, game-specific, and packet-based. A
mix of techniques from all these categories gives the best across-
the-board improvements. Figures 2, 3, and 4 show that
“Combined Techniques” (i.e. dead reckoning and smoothing,
avatar blinking, and duplicate/triplicate packet sending) produce
mean response times that are 20% to 90% less than the mean
response time for the game with no techniques enabled.

Some response time techniques can be politely termed ‘tricks’,
since their aim is to distract the user from the delays inherit in
networks with high latency, limited bandwidth, and unreliable
packet delivery. Avatar blinking is a good example, but is
nevertheless a valuable approach.

6. ACKNOWLEDGMENTS
Our thanks to the Department of Computer Engineering, Faculty
of Engineering, at Prince of Songkla University for generously
supporting this research.

7. REFERENCES
[1] Fujimoto, R.M. 2000, Parallel and Distributed Simulation

Systems, John Wiley.
[2] Singhal, S. 1999, Networked Virtual Environments, Design

and Implementation, Addison-Wesley.
[3] Singhal, S.K. 1996, Effective Remote Modeling in Large

Scale Distributed Simulation and Visualization
Environments, PhD thesis, Dept. of Computer Science,
Stanford University.

[4] Pantel, L., Wolf, L.C. 2002, “On the Suitability of Dead
Reckoning Schemes for Games”, Proc. of the 1st Workshop
on Network and System Support for Games, 79-84.

[5] Li, S. and Knudsen, J. 2005, Beginning J2ME: From Novice
to Expert, 3rd Ed., Apress.

[6] Kurose, J.F. and Ross, K.W. 2003, Computer Networking: A
Top-Down Approach Featuring the Internet, 2nd Ed.,
Pearson Education.

[7] Mario, F.T. 1998, Elementary Statistics, 7th Ed., Addison-
Wesley .

