
COMPARING M3G AND JSR-239
FOR 3D GAMES PROGRAMMING

Andrew Davison and Sophie Radenahmud

Dept. of Computer Engineering
Prince of Songkla University

Hat Yai, Songkhla 90112, Thailand

E-mail: ad@fivedots.coe.psu.ac.th

KEYWORDS

M3G, JSR-239, OpenGL-ES, Java, 3D, games,
comparison

ABSTRACT

We compare two graphics APIs for
programming 3D games in Java on mobile
devices: M3G (Mobile 3D Graphics API for
Java, JSR-184) and JSR-239 (a Java binding
for OpenGL ES 1.x). We have developed a
series of casual games (a puzzle game, a
simple FPS, a strategy game, and others) using
the versions of M3G and JSR-239 available in
Sun's Wireless Toolkit 2.5.1, and use them to
compare the APIs in three areas: suitability for
casual games programming, ease of
performance tweaking, and API and Java
integration.

INTRODUCTION

Mobile gaming is in the midst of a minor
revolution, driven by advances in graphics
processing (FPUs, GPUs), new interfaces
(high definition video, touch, spatial sensors),
and improved networking (GPS, faster
wireless). These improvements are
encouraging new forms of gaming to appear,
relying on persistent network connectivity,
mobility, parameters derived from the physical
environment, and the episodic nature of
communication. 3D graphics are closely linked
to these themes as a means of representing and
enhancing the user's interface to the 3D world.

But there are problems: device fragmentation
is accelerating, with an ever widening range of
CPU speeds, memory sizes, screen resolutions,
color depths, power consumption, non-
standard user interfaces, audio and video types,
and variations in hardware support for floating
point numbers and advanced graphic
processing (such as shaders).

The demands placed on a 3D graphics API are
substantial: one major issue is abstraction
versus control – how much of the growing
hardware and software complexity should be
exposed to the programmer? Another question
is how the API should deal with device
variety: should it attempt to fall back on (slow)
software emulation when necessary hardware
is absent, or should it simply refuse to work?

Java ME is currently the most popular
programming language for mobiles (it has
been estimated that 1200 million phones were
running Java in 2006 (Evans et al. 2006)), so
how should a 3D API be integrated with Java,
and with its myriad extensions, especially
those related to graphics?

We consider three broad API issues in this
paper: suitability for casual games
programming, ease of performance tweaking,
and how the API and Java are combined. We
do this by referring to our experience in
developing a range of casual games using
M3G (Mobile 3D Graphics API for Java, JSR-
184) and JSR-239 (a Java binding for OpenGL
ES 1.x) in Sun's Wireless Toolkit 2.5.1. We
also discuss what the future holds for M3G and
JSR-239 (i.e. in M3G 2.0 and OpenGL ES
2.0).

CASUAL GAMES

Casual gaming is ideally suited to mobile
devices: simple gameplay, action in short
bursts, no long-term time commitment or
special skills required, and comparatively
cheap game production. Casual gaming is also
appealing to people outside the usual gamer
demographic, a potentially massive audience.

Our examples include a puzzle game
(CubeFinder), a simple FPS involving
penguins, a strategy game (Tic-Tac-Toe),
written in both M3G 1.1 and JSR-239. We
have also implemented a number of smaller
MIDlets to test different aspects of the APIs: a
model viewer, an animated scene, a particles

demo, and examples using skinning and
morphing. Figure 1 shows screenshots from
some of the games and demos.

Figure 1. Casual Games and Demos

These M3G and JSR-239 examples can be
found at the first author’s websites:
http://fivedots.coe.psu.ac.th/~ad/jg/ and
http://fivedots.coe.psu.ac.th/~ad/jg2/.

These applications were developed by a
programmer new to M3G and JSR-239, and
our comments here are based on his logbook
notes. Our intention was to gain the
perspective of a programmer new to these
APIs, albeit one with several semesters
experience of Java and desktop OpenGL
programming.

AN OVERVIEW OF JSR-239

JSR-239 is a Java binding around OpenGL ES
(OpenGL for Embedded Systems) which is
itself a subset of OpenGL aimed at smaller
devices such as mobile phones, PDAs, and
games consoles (see
http://jcp.org/en/jsr/detail?id=239 and
http://www.khronos.org/opengles/). It is small
(around 50 KB), and yet its capabilities are
very similar to OpenGL’s.

The most obvious loss of functionality is
probably the OpenGL glBegin()/glEnd()

technique for grouping instructions for shape
creation. In OpenGL ES, the programmer
defines arrays for a shape’s vertices, normals,
colors, and texture coordinates (Astle and
Durnil 2004).

Another significant loss are the GLU and
GLUT utility libraries. GLU includes
convenience functions for such tasks as
positioning the camera, setting up the viewing
volume, generating basic shapes, and texture
mipmapping. GLUT is mainly utilized in
OpenGL applications for its I/O support; in
JSR-239 that is handled by Java ME’s
GameCanvas.

OpenGL ES differs from OpenGL in its
support for fixed-point numbers in addition to
floats, to better match the limited hardware of
smaller devices. Its 16.16 fixed-point data type
utilizes the first 16 bits for a signed two’s
compliment integer, and the other 16 bits for a
fractional part. A shape defined using fixed-
point vertices should render much more
quickly than one employing floats.

OpenGL ES only has primitives for creating
shapes out of points, lines, or triangles;
polygons and quadrilaterals (quads) primitives
are missing.

OpenGL ES is a ‘moving’ specification, with
three incarnations at the moment. OpenGL ES
1.0 is based upon OpenGL 1.3, OpenGL ES
1.1 is defined relative to OpenGL 1.5, and
OpenGL ES 2.0 is derived from the OpenGL
2.0 specification.

OpenGL ES 1.1 includes support for multi-
texturing, mipmap generation, and greater
control over point rendering (useful for particle
systems). OpenGL ES 2.0 is a more radical
departure, employing a programmable
rendering model based around shaders, with
only floating point operations. The motivation
behind this design is the belief that mobile
devices will very shortly have the rendering
power of today’s desktop and laptop machines
(Munshi et al. 2008).

The GLBenchmark site
(http://www.glbenchmark.com/result.jsp)
includes a long list of OpenGL ES devices
(including Symbian devices, the PlayStation 3,
Nintendo's GameBoy DS, and the iPhone), and
their results against its benchmarking software.
As of August 2008, only a few high-end Sony
Ericsson phones support JSR-239 (Hellman
2008).

AN OVERVIEW OF M3G

M3G (the Mobile 3D Graphics API) was
developed as JSR 184
(http://www.jcp.org/en/jsr/detail?id=184), and
is currently at version 1.1. Version 2.0 is in
development as JSR 297, with the aim of
adding programmable shaders and other
advanced features
(http://jcp.org/en/jsr/detail?id=297).

M3G provides two ways for developers to
draw 3D graphics: immediate mode and
retained mode. In immediate mode, commands
are issued directly into the graphics pipeline in
a similar way to OpenGL ES. However, it’s
most common for programmers to utilize
retained mode which employs a scene graph to
link the geometric objects in the 3D world into
a tree structure, and specify the camera, lights,
and background (Höfele 2007).

At the lowest level, M3G deals with concepts
similar to those in OpenGL ES, but the scene
graph combines and hides these features inside
higher-level graph nodes. For example, vertex
and index buffers are combined into Mesh
objects; textures, materials, and other
rendering parameters form Appearance
objects, and Group nodes hierarchically
combine transformations.

M3G offers keyframe animation that can be
attached to almost any property of any object.
It also supports vertex deformation through
morphing and skinning. There is a compact,
binary M3G file format that can store anything
from complete 3D animations and scene
graphs down to individual objects or their
components.

M3G can be implemented on top of OpenGL
ES (although this is not a requirement), and the
resulting relationship between M3G, OpenGL
ES, and Java ME is represented in Figure 2.

Figure 2. The Java ME 3D Programming

Layers.

The JBenchmark site
(http://www.jbenchmark.com) contains a long
list of M3G compatible mobile devices, and
performance data.

SUITABILITY FOR CASUAL GAMES
PROGRAMMING

M3G’s scene graph makes programming much
easier for novices (and even for experienced
programmers) because it emphasizes scene
design rather than rendering, by hiding the
underlying graphics pipeline. A scene graph
naturally supports complex graphical elements
such as 3D geometries, the camera, and
lighting.

At the implementation level, the scene graph
can be employed to group shapes with
common properties, carry out frustum culling,
scene management, level of detail selection,
execution culling, and batching of graphics
operations – all optimizations which must be
coded directly by the programmer in OpenGL
ES. However, it is unclear whether different
phone manufacturer’s M3G implementations
actually support these optimizations (Pulli et
al. 2005).

A very common coding requirement in current
3D games is to mix-and-match 3D and 2D,
utilizing 2D images for overlays, backgrounds,
and game characters. The switching between
modes that this entails can slow down
rendering by as much as three times (Pulli et
al. 2007a), and so it’s necessary to structure
code so that mode switching is minimized. In
M3G, the Appearance node possesses a layers
mechanism for ordering rendering. For
instance, it’s easy to specify that overlays are
drawn first, followed by objects further back in
the scene. M3G’s 3D rendering is based on a
bind-render-release sequence, which makes it
clear when 3D rendering begins and ends, and
so makes it much harder to inadvertently mix
2D and 3D processing.

The M3G bind-render-release mechanism will
also be useful for integrating 3D rendering
with other types of 2D processing, such as
GUIs, vector graphics, and streaming media
(e.g. LWUIT, JavaFX mobile, OpenVG,
OpenMAX) (Petroshinko et al. 2007).

M3G also provides OpenGL ES-like
immediate mode rendering, suited for special
effects or when the application needs more
control over the rendering process. The same
data objects are used for both retained and
immediate mode rendering, so the two can be
interleaved.

OpenGL ES ‘s low-level nature means that a
programmer must write much more ‘boiler-
plate’ code, and reinvent common library
functionality before getting things to work.
This includes the implementation of a mobile

camera, animation, skinning, morphing – all
features offered directly in M3G.

One of M3G’s design principles is the ease of
content creation: the M3G file format is simple
to decode, offers compression, matches the
API directly, and can be employed to load
objects or even entire, animated, scenes. The
format is supported by all the main modeling
tools, including 3d Studio Max, Maya, and
Blender. Also, each object in an M3G file can
be given a unique ID number for easy access
by the MIDlet. Additional user-specific data
can be associated with each object (Aarnio et
al. 2007). The OpenGL ES specification does
not support any model format.

The initialization of a scene in M3G is a matter
of graph building, while a state machine (the
EGL) must be configured in OpenGL. This
often requires a knowledge of the underlying
device hardware in order to get the settings
correct.

The next iterations of M3G and OpenGL ES
will significantly effect programming: M3G
2.0 will continue to support the fixed function
graphics pipeline but add programmable
shaders as optional extras. OpenGL ES 2.0
will break with the past and only offer shaders,
requiring existing applications that use the
fixed graphics pipeline to be modified to
employ shaders to perform transformations,
lighting, texture blending, alpha testing, bump
mapping, coloring, and fog. OpenGL ES 2.0
will not offer a software fallback if the
platform’s hardware is insufficient (Ginsburg
2006). M3G, by contrast, makes a point of not
mandating any hardware features, but at the
expense of having 20% more classes than a
pure shader version of the API (Pulli et al.
2007b).

PERFORMANCE TWEAKING

Since M3G can be viewed as a high-level
abstraction over OpenGL ES (see Figure 2),
many of the well-known performance tweaks,
tips, and tricks recommended for OpenGL ES
can also be applied to M3G.

Complex models should be simplified due to
the small screen size and lower resolution of
mobile devices. Scaling involving floating
point calculations should be avoided: instead
the model should be correctly sized before
being imported into the game (Leal 2008).

Floating point operations should not be utilized
on devices without FPU support; OpenGL
ES’s fixed point notation is an effective
substitute for many tasks, and it’s a shame that

this type is missing from M3G. However, Java
ME fixed point libraries are available (e.g.
FPLib,
http://www.geocities.com/andre_leiradella/#fpl
ib), and FPComp translates fixed point library
calls into inline code, producing drastic
speedups (de Leiradella 2004).

Special effects, such as particle systems and
background elements, should be curtailed.

Unless lighting is very simple (i.e. a single
directional light), it may be better to replace it
with light maps or bump mapping. At the very
least, expensive lighting effects, such as
specular illumination and distance attenuation,
should be turned off. Simplified lighting may
produce performance boosts of 50% (Wright
2006).

Mipmaps always help performance, and are
created automatically in OpenGL ES 1.1 and
M3G. Multi-texturing is better than multipass
rendering, and texture resolution should be
reduced on small devices.

Dynamic geometry is very expensive, but
M3G offers cheaper alternatives via skinning
and morphing.

More advanced optimizations tend to require a
good knowledge of the underlying hardware,
and produce varying results across different
platforms. For example, it is almost certainly
better to use fixed point numbers to define
vertices, but the performance gain over floats
should be measured. On some platforms,
fixed-point values are converted to floats
before processing, and so may actually be
slower than using floats directly (Wright.
2006).

Another performance trick is to replace large
meshes by multiple smaller meshes, which
may allow them to be culled when out of sight,
but it may also increase the rendering time
costs.

It may be better to combine textures (i.e.
replace four 128x128 textures by a single
256x256 image) to take advantage of texture
compression and to avoid switching between
textures at render time. However, the frame
rate must be examined to determine the real
benefit.

API AND JAVA INTEGRATION

One of M3G’s key design principles is to
avoid the use of Java for any critical graphical
operations – all graphics processing is passed
to native code, including morphing, skinning,
and keyframe animation. In addition, all

vertices and indices data is stored outside of
Java. This is in response to speed
measurements of Java virtual machines on
mobiles against assembly code. Native code is
usually 10-20x faster than the KVM, the most
common VM on mobile phones (Pulli et al.
2007b). Hardware accelerators, such as Jazelle
from ARM and the HotSpot VM from Sun are
better performers, but native code is still 3-4
times faster.

These problems mean that JSR-239 code must
utilize some rather advanced OpenGL ES
features to avoid Java’s slowness. For
example, data should be stored in VBOs
(Vertex Buffer Objects) so that the data is
passed over to video memory, thereby
bypassing Java and reducing bandwidth
requirements. However, this strategy requires
careful testing in larger games since it’s quite
possible to overload GPU memory with too
much data. Another approach is to render into
textures using PBuffers (Pixel Buffers) to
ensure that rendering is done natively.
PBuffers also are useful for special effects
such as motion blur, light blooms, and fluid
visuals.

Both M3G and JSR-239 use a simple
rendering loop in Java, something like:
initialize the graphics engines;
initialize the 3D scene;
while (isRunning) {
 process any user input;
 update the application state;
 draw the scene (3D and 2D);
 perhaps sleep a while to
 maintain the frame rate;
}
shutdown the 3D graphics engine;

M3G offers a few variations on this approach,
using either a MIDP 1.0 Canvas or a MIDP 2.0
GameCanvas as a rendering surface. It’s also
possible to trigger redraws using a Timer.

The JSR-239 code for the initialization steps is
considerably longer than the M3G version due
to the need to configure the graphics state
machine. Also, some care must be taken to
carry out all graphics state operations inside a
single thread (a subtlety that also catches out
JOGL programmers using OpenGL).

CONCLUSIONS

Our experience with using M3G and JSR-239
for 3D games programming has highlighted
numerous differences between them, which
can be grouped under three headings:
suitability for casual games programming, ease

of performance tweaking, and API and Java
integration.

M3G is much better suited to casual gaming
than JSR-239 because of its retained mode
(scene graph) mechanism, which hides a great
deal of low-level graphics detail, while
performing optimizations such as frustum
culling and batch processing. If necessary,
M3G’s immediate mode can be used to ‘peer
behind the curtain’.

This two-tier approach will continue in M3G
2.0, which will offer both a fixed function
pipeline and programmable shaders. This
contrasts with JSR-239’s design principles
(actually OpenGL ES’s principles) which aim
for full programmable access to the graphics
pipeline, with no fallback to software
emulation. This position makes sense in the
long term, but for the next few years there will
be many phones utilizing only a fixed graphics
pipeline.

A great deal of simple performance tweaking
can be achieved in M3G and OpenGL ES by
reducing model complexity, texture resolution,
lighting effects, and utilizing multi-texturing.
More complex optimizations are possible in
OpenGL ES, but they require careful profiling
of their effectiveness, and a good
understanding of the underlying hardware.

M3G and OpenGL ES offer a similar interface
to Java based on an update-render-wait loop.
However, the coding details for M3G are
simpler since the manipulation is of a scene
graph rather than a state machine. Also,
M3G’s bind-render-release sequence for 3D
processing and layered Appearance nodes
makes it much easier to integrate 3D with 2D
and other graphics APIs.

REFERENCES

Aarnio, T., K.Roimela, and K.Pulli. 2007.
"M3G: Bringing 3D Graphics to Mobile Java",
Power Management, Vol. 5, No. 7,
November/December.

Astle, D. and D.Durnil. 2004 OpenGL ES
Game Development, Course Technology, PTR.

de Leiradella, A. 2004. “Optimizing Fixed
Point (FP) Math with J2ME”,
http://www.devx.com/Java/Article/21850, Last
accessed September 3rd 2008.

Evans, J., N.Ramani, and A.Bhanushali. 2006.
“Developing Java Platform, Micro Edition
Graphical Applications to Take Advantage of
Hardware Acceleration”, JavaOne Conference,
TS-3024,

http://gceclub.sun.com.cn/java_one_online/20
06/TS-3024/TS-3024.pdf

Hellman, E. 2008. “New Gaming Experiences
with OpenGL ES and the Mobile Sensor API”,
Sun Development Network, April,
http://developers.sun.com/mobility/apis/article
s/opengles_mobilesensor/

Höfele, C. 2007. Mobile 3D Graphics:
Learning 3D Graphics with the Java Micro
Edition, Course Technology PTR.

Ginsburg, D. 2006. “OpenGL ES 2.0: Shaders
Go Mobile”, Game Developers Conference,
San Diego, USA,
http://ati.amd.com/developer/gdc/2006/GDCM
obile2006-Ginsburg-OpenGLES2.0.pdf

Leal, M. 2008. “Tips and Tricks for 3D
Interfaces on Mobile Devices”, JavaOne
Conference, TS-6258,
http://developers.sun.com/learning/javaoneonli
ne/2008/pdf/TS-6258.pdf

Munshi, A., D.Ginsburg, D.Shreiner. 2008.
OpenGL ES 2.0 Programming Guide,
Addison-Wesley.

Petroshenko, P., A.Bhanushali, J.Evans,
N.Ramani. 2007. “Whiz-Bang Graphics and
Media Performance for Java Platform, Micro
Edition”, JavaOne Conference, TS-5585,
http://developers.sun.com/learning/javaoneonli
ne/2007/pdf/TS-5585.pdf

Pulli, K., T.Aarnio, K.Roimela, and J.Vaarala.
2005. “Designing Graphics Programming
Interfaces for Mobile Devices”, IEEE
Computer Graphics and Applications, Vol. 25,
No 8.

Pulli, K., T.Aarnio, V.Miettinen, K.Roimela,
and J.Vaarala. 2007a. Mobile 3D Graphics
with OpenGL ES and M3G, Morgan
Kaufmann.

Pulli, K., J.Vaarala, V.Miettinen, R.Simpson,
T.Aarnio, and M.Callow. 2007b. “The Mobile
3D Ecosystem”, One day course at
SIGGRAPH 2007, San Diego, USA, August,
http://people.csail.mit.edu/kapu/siggraph_2007
/, Last accessed September 3rd 2008.

Wright, Jr., R.S. 2006. “OpenGL & Mobile
Devices”, Dr. Dobb's Journal, May,
http://www.ddj.com/mobile/187203532/, Last
accessed September 3rd 2008.

BIBLIOGRAPHY

ANDREW DAVISON received his Ph.D. from
Imperial College in London in 1989. He was a
lecturer at the University of Melbourne for six
years before moving to Prince of Songkla
University in Thailand in 1996. He has also
taught in Bangkok, Khon Kaen, and Hanoi.

His research interests include scripting
languages, logic programming, visualization,
and teaching methodologies. This latter topic
led to an interest in teaching games
programming in 1999.

His O'Reilly book, Killer Game Programming
in Java, was published in 2005, and his Apress
text, Pro Java 6 3D Game Development, in
2007.

SOPHIE RADENAHMUD recently completed
his studies in Computer Engineering at Prince
of Songkla University.

