
Notes on a JOGL Active Rendering Framework
Andrew Davison

Department of Computer Engineering
Prince of Songkla University

Hat Yai, Songkhla 90112, Thailand

ad@fivedots.coe.psu.ac.th

ABSTRACT

These notes describe an active rendering framework for JOGL
which updates and renders a game (or any animated application)
at a reliable, near constant, framerate. It also allows greater
control over the application’s execution behavior, such as how it
pauses, resumes, and deals with resizing.

These notes form part of a tutorial held at CyberGames 2007. The
main aim is to introduce JOGL and OpenGL to an audience
unfamiliar with 3D graphics through the means of a simple 3D
game. The tutorial includes pointers to numerous sources of
further information.

Categories and Subject Descriptors
I.3.6 [Computer Graphics]: Methodology and Techniques –
graphics data structures and data type, interaction techniques,
languages.

General Terms
Algorithms, Performance, Design, Languages.

Keywords
JOGL, OpenGL, active rendering, animation, framework.

1. INTRODUCTION
JOGL is an open-source technology initiated by the Game
Technology Group at Sun Microsystems in 2003
(https://jogl.dev.java.net/). JOGL provides full access to the APIs
in the OpenGL 2.0 specification (http://www.opengl.org/), as well
as vendor extensions, and can be combined with Java’s AWT and
Swing GUI components. It supports both the main shader
languages, GLSL and NVIDIA’s Cg.
JOGL has the same focus as OpenGL, on 2D and 3D rendering. It
doesn’t include support for gaming elements such as sound or
input devices, which are dealt with by other Java APIs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CyberGames 2007, September 10–11, 2007, Manchester, UK.
Copyright 2007 ??…$??.

The active rendering framework described here utilizes JOGL
features for accessing the application’s drawing surface and
context (OpenGL’s internal state) [2]. The surface is typically a
subclass of AWT’s Canvas, and is manipulated with a dedicated
rendering thread, as illustrated by Figure 1.

Figure 1. An active rendering application.

The rendering thread’s pseudocode:

initialize rendering;
while game isRunning {
 update game state;
 render scene;
 put the scene onto the canvas;

 sleep a while;
 maybe do game updates without rendering them;
}
discard the rendering context;
exit;

The tricky aspect of this code is that OpenGL must be
manipulated from within the rendering thread only. Any mouse,
key, or window events must be processed there, rather than in
separate listeners.
The principal advantage of the active rendering approach is that it
allows the programmer to more directly control the application’s
execution. For example, it’s straightforward to add code that
suspends updates when the application is iconified or deactivated
(i.e., when it’s not the topmost window). Also, access to the
timing code inside the animation loop permits a separation of
frame rate processing from application updates.

2. AN ACTIVE RENDERING EXAMPLE
A simple application using the active rendering framework is
shown in Figure 2. The program, called CubeGL, rotates a multi-
colored cube around its x-, y-, and z- axes.

Figure 2. The CubeGL application.

The class diagrams for CubeGL are given in Figure 3.

Figure 3. Class diagrams for CubeGL with active rendering.

CubeGL creates the GUI, embedding the threaded canvas,
CubeCanvasGL, inside a JPanel. It also captures window events
and component resizes and calls methods in CubeCanvasGL to
deal with them.

2.1 Thread Rendering
The run() method in CubeCanvasGL is based on the pseudocode
given earlier:

public void run()
{ initRender();
 renderLoop(); // start frame generation

 // discard the rendering context and exit
 context.destroy();
 System.exit(0);
} // end of run()

2.2 Rendering Initialization
The initRender() method initializes the OpenGL link, which
includes its context, access to the OpenGL APIs, and setting up
the viewport.

// globals
private GL gl; // to access OpenGL and
private GLU glu; // OpenGL’s utility libraries

private void initRender()
{
 makeContentCurrent();

 gl = context.getGL();
 glu = new GLU();

 resizeView();

 gl.glClearColor(0.17f, 0.65f, 0.92f, 0.0f);
 // sky color background

 // z- (depth) buffer for hidden surface removal
 gl.glEnable(GL.GL_DEPTH_TEST);

 // create a display list for drawing the cube
 cubeDList = gl.glGenLists(1);
 gl.glNewList(cubeDList, GL.GL_COMPILE);
 drawColourCube(gl);
 gl.glEndList();

 context.release();
} // end of initRender()

An OpenGL display list acts as a storage space for rendering and
state commands. The commands are compiled into an optimized
form, which allows them to be executed more quickly. The
benefit of a display list is that it can be called multiple times
without OpenGL having to recompile the commands, thereby
saving processing time.
The cubeDList display list created in initRender() groups the
commands that draw the cube. This part of initRender() will vary
from application to application.
makeContentCurrent() connects OpenGL’s graphic context to the
thread:

private void makeContentCurrent()
// make rendering context current for thread
{
 try {
 while (context.makeCurrent() ==
 GLContext.CONTEXT_NOT_CURRENT) {
 System.out.println("Context not current..");
 Thread.sleep(100);
 }
 }
 catch (InterruptedException e)
 { e.printStackTrace(); }
} // end of makeContentCurrent()

makeCurrentContext() calls GLContext.makeCurrent(), which
should immediately succeed, since no other thread is using the
context. The while-loop around the call is extra protection, since
the application will crash if OpenGL commands are called
without the thread holding the current context.
resizeView() sets the OpenGL camera viewport dimensions, and
specifies a perspective view into the scene:

// globals
private int panelWidth, panelHeight;
 // dimensions of the JPanel

private void resizeView()
{
 gl.glViewport(0, 0, panelWidth, panelHeight);
 // set drawing area size

 gl.glMatrixMode(GL.GL_PROJECTION);
 gl.glLoadIdentity();
 glu.gluPerspective(45.0,
 (float)panelWidth/(float)panelHeight,
 1, 100);
 /* FOV, aspect ratio,
 near & far clipping planes */
} // end of resizeView()

The GL.glViewport() call defines the size of 3D drawing window
(viewport) in terms of a lower-left corner (x, y), width, and
height.
The matrix mode is switched to PROJECTION (OpenGL’s
projection matrix) so the mapping from the 3D scene to the 2D
screen can be specified. GL.glLoadIdentity() resets the matrix,
and GLU.gluPerspective() creates a mapping with perspective
effects (which mirrors what happens in a real-world camera).
FOV is the camera’s viewing angle.

2.3 The Rendering Loop
renderLoop() implements the while-loop in the active rendering
pseudocode:

while game isRunning {
 update game state;
 render scene;
 put the scene onto the canvas;

 sleep a while;
 maybe do game updates without rendering them;
}

The loop is complicated by having to calculate the amount of time
it takes to do the update-render pair. The sleep time that follows
must be adjusted so the time to complete the iteration is as close
to the desired frame rate as possible.
If an update-render takes too long, it may be necessary to carry
out some game updates without rendering their changes. The
result is a game that runs close to the requested frame rate, by
skipping the time-consuming rendering of the updates.
The timing code distinguishes between two rates: the actual frame
rate that measures the number of renders/second (FPS for short),
and the update rate that measures the number of updates/second
(UPS).
FPS and UPS aren’t the same. It’s quite possible for a slow
platform to limit the FPS value, but the program performs
additional updates (without rendering) so that its UPS number is
close to the requested frame rate.
This separation of FPS and UPS makes the animation loop more
complicated, but it’s one of the standard ways to create reliable
animations. It’s especially good for games where the hardware is
unable to render at the requested frame rate.

The following is the code for renderLoop():

// constants
private static final int NO_DELAYS_PER_YIELD = 16;
 /* Number of iterations with a sleep delay
 of 0 ms before the animation thread
 yields to other running threads. */

private static int MAX_RENDER_SKIPS = 5;
 /* no. of renders that can be skipped in
 any one animation loop; i.e. the games
 state is updated but not rendered. */

// globals
private long prevStatsTime;
private long gameStartTime;
private long rendersSkipped = 0L;

private long period;
 // period between drawing in nanosecs
private volatile boolean isRunning = false;
 // used to stop the animation thread

private void renderLoop()
{
 // timing-related variables
 long beforeTime, afterTime, timeDiff, sleepTime;
 long overSleepTime = 0L;
 int noDelays = 0;
 long excess = 0L;

 gameStartTime = System.nanoTime();
 prevStatsTime = gameStartTime;
 beforeTime = gameStartTime;

 isRunning = true;

 while(isRunning) {
 makeContentCurrent();

 gameUpdate();
 renderScene();
 drawable.swapBuffers();
 // put scene onto the canvas
 /* swap front and back buffers,
 making the rendering visible */

 afterTime = System.nanoTime();
 timeDiff = afterTime - beforeTime;
 sleepTime = (period-timeDiff) - overSleepTime;

 if (sleepTime > 0) { // time left in cycle
 try {
 Thread.sleep(sleepTime/1000000L);//nano->ms
 }
 catch(InterruptedException ex){}
 overSleepTime = (System.nanoTime()-afterTime)
 - sleepTime;
 }
 else { // sleepTime <= 0;
 // this cycle took longer than period
 excess -= sleepTime;
 // store excess time value
 overSleepTime = 0L;

 if (++noDelays >= NO_DELAYS_PER_YIELD) {
 Thread.yield();
 // give another thread a chance to run
 noDelays = 0;
 }
 }

 beforeTime = System.nanoTime();

 /* If the rendering is taking too long, then
 update the game state without rendering
 it, to get the UPS nearer to the
 required frame rate. */
 int skips = 0;
 while((excess > period) &&
 (skips < MAX_RENDER_SKIPS)) {
 excess -= period;
 gameUpdate();
 // update state but don’t render
 skips++;
 }
 rendersSkipped += skips;

 context.release();
 }
} // end of renderLoop()

The “sleep a while” code in the loop is complicated by
dealing with inaccuracies in Thread.sleep(). sleep()’s execution
time is measured, and the error (stored in overSleepTime) adjusts
the sleeping period in the next iteration.
The if-test involves Thread.yield():

if (++noDelays >= NO_DELAYS_PER_YIELD) {
 Thread.yield();
 noDelays = 0;
}

It ensures that other threads get a chance to execute if the
animation loop hasn’t slept for a while.
renderLoop calls makeContentCurrent() and GLContext.release()
at the start and end of each rendering iteration. This allows the
JRE some time to process AWT events.
gameUpdate() contains any calculations that affect gameplay,
which for CubeGL are only the x-, y-, and z- rotations used by the
cube.

2.4 Rendering the Scene
Scene generation is carried out by renderScene():

// global
private boolean isResized = false;
 // for window resizing

private void renderScene()
{
 if (context.getCurrent() == null) {
 System.out.println("Context is null");
 System.exit(0);
 }

 if (isResized) { // resize drawable if necessary
 resizeView();
 isResized = false;
 }

 // clear color and depth buffers
 gl.glClear(GL.GL_COLOR_BUFFER_BIT |
 GL.GL_DEPTH_BUFFER_BIT);

 gl.glMatrixMode(GL.GL_MODELVIEW);
 gl.glLoadIdentity();

 glu.gluLookAt(0,0,Z_DIST, 0,0,0, 0,1,0);
 // position camera

 // apply rotations to the x,y,z axes
 gl.glRotatef(rotX, 1.0f, 0.0f, 0.0f);
 gl.glRotatef(rotY, 0.0f, 1.0f, 0.0f);
 gl.glRotatef(rotZ, 0.0f, 0.0f, 1.0f);
 gl.glCallList(cubeDList);
 // execute display list for drawing cube

 if (gameOver) //report that the game is over
 System.out.println("Game Over");
} // end of renderScene()

renderScene() checks that the thread still has the current context;
if it doesn’t, the application exits. A more robust response would
be to try to regain the context by calling
GLContext.makeCurrent() again, reinitializing the scene, and
restarting the animation loop.
renderScene() calls resizeView() to update the OpenGL view if
the window has been resized (i.e. when isResized is true).
The matrix mode is switched to MODELVIEW so OpenGL’s
model-view matrix can be utilized. It defines the scene’s
coordinate system, used when positioning or moving 3D objects.
After the new rotations have been applied to the world
coordinates, the cube is drawn via its display list. This part of
renderScene() will vary from application to application.
The method finishes by checking the gameOver boolean, and
printing a simple message. In a real game, the output would be
more complicated.

3. MORE INFORMATION
The principal source for JOGL help is its forum site at
http://www.javagaming.org/forums/index.php?board=25.0.
The NeHe site (http://nehe.gamedev.net/) is an excellent place to
start learning OpenGL. It contains an extensive collection of
tutorials, articles, examples, and other programming materials.
There are a growing number of textbooks on OpenGL (e.g. [1, 3,
4], with a comprehensive list available at
http://www.opengl.org/documentation/books.html.

4. REFERENCES
[1] Angel, E. OpenGL: A Primer, Pearson, 2005, 2nd ed.,

http://www.cs.unm.edu/~angel/
[2] Davison, A. Pro Java 6 3D Game Development, Apress,

2007, http://fivedots.coe.psu.ac.th/~ad/jg2/
[3] Hawkins, K., and Astle, D. Beginning OpenGL Game

Programming, Course Technology, 2004,
http://glbook.gamedev.net/

[4] The OpenGL Architecture Review Board, OpenGL
Programming Guide: The Official Guide to Learning
OpenGL Version 2, Addison-Wesley, 2005,
http://www.opengl.org/documentation/red_book/

