
1

Searching Semi-Structured Data Using Landmarks
Andrew Davison

Dept. of Computer Engineering
Prince of Songkla University

Hat Yai, Songkhla 90112,Thailand
Tel: +66 74 287 379

E-mail: ad@fivedots.coe.psu.ac.th

ABSTRACT
This paper introduces landmark search operators for
extracting data from poorly formatted Web pages,
plain text files, and XML/SGML documents lacking
grammars. The emphasis is on ease of use, and a fast,
simple implementation, which can be readily ported to
a wide variety of host languages. There are two main
operators: one using unique textual landmarks to
divide text regions into smaller regions suitable for
further search, and an operator that searches for
XML/SGML tag pairs, and returns the matches as
regions. An iterator class allows a search to be carried
out repeatedly.

1. INTRODUCTION
Our aim is to create a simple, efficient set of methods
for document search and information extraction based
on finding landmarks in semi-structured data. Semi-
structured data includes: Web pages marked up with
(often incorrect) HTML, ASCII files, and XML
documents lacking schema.

Although grammars exist for HTML (e.g. XHTML
[7]), the sad reality is that most Web pages would fail
a parsing test. Nevertheless, pages returned from the
same service often exhibit similar formatting, (e.g.
book pages from Amazon, sale item pages from eBay,
departmental home pages). This is either because the
pages are generated dynamically by server-side scripts
using common templates, or because the host
organization requires certain information to appear in
certain places on a page. In other words, although the
pages may not be grammatically correct, they do
contain unique formatting information, such as titles,
section heading, and indenting.

An ASCII file is often treated as a stream of characters
(or bytes), as typified by UNIX tools. However, text
files also contain formatting elements, such as titles,
headings, and indenting. In common with Web pages,
ASCII files developed for a single site (e.g. a library's
book catalog, a school's class timetables) utilize
common layout rules.

The general point is that semi-structured data which
fails grammar or scheme validation, or even lacks a

grammar, can still be searched by using the data's
formatting elements. These elements may be recurring
strings (e.g. "Section" at the start of each section), or
patterns of white space (e.g. two newlines at the end of
each 'paragraph'). We call these elements landmarks.

Although landmark search is aimed at data extraction
from Web pages and text files, it's also useful for
XML/SGML files. The markup tags can be treated as
landmarks, allowing landmark search to be employed
instead of grammar-based techniques.

In section two, we introduce the basic landmark
operations. Section three contains examples showing
how landmark search can be applied to Web pages,
text files, and XML documents. Section four compares
our work with region algebras, regular expressions,
and XQuery. Section five draws some conclusions,
and indicates future research directions.

A prototype implementation of landmark search in
Java (together with examples) can be downloaded
from http://fivedots.coe.pau.ac.th/~ad/
landmarks.

2. LANDMARK SEARCH
OPERATIONS
The two basic search operations are match3() and
tagMatch4(). They both treat a document (be it a Web
page, text file, or XML document) as a region. match3
() utilizes landmarks patterns to search through the
region, extracting smaller regions delimited by the
matching landmarks. tagMatch4() performs a similar
kind of search but using XML-style tag pairs. A
support class, called RegionIterator (a Java iterator),
can employ match3() or tagMatch4() to search
repeatedly through a region for matches.

match3(), tagMatch4(), and RegionIterator are
described in more detail below.

2.1 The match3() Operation
match3() carries out a linear search from the start of a
region to find a landmark that matches the operation's
start landmark pattern. The search then switches over

2

to looking for a landmark that matches the operation’s
end landmark pattern. The result is a region separated
into three parts: the left, matching, and rest regions.
The matching region is usually of most interest since it
lies between the start and end landmarks.

The search result is shown graphically in Figure 1.

Figure 1. A Landmark Search using match3().

Landmark searches can be applied to the component
regions, to 'zoom in' on areas of interest. When the
information has been located, the region can be
converted into a string, and manipulated using
operations available in the host language.

match3() can be defined more formally:

pr.match3(slp, elp) returns {lr, mr, rr}

where
 pr is {a0..ai, sl0..slk, b0..bl, el0..elm, c0..cn},
 the parent region,

 slp matches sl0..slk, the start landmark,
 and does not match anything in a0..ai,
 slp is slp0..slpk, the start landmark pattern,

 elp matches el0..elm, the end landmark,
 and does not match anything in b0..bl,
 elp is elp0..elpm, the end landmark pattern,

 lr is {a0..ai, sl0..slk}, the left region,
 mr is {b0..bl}, the matching region,
 rr is {b0..bl, el0..elm, c0..cn}, the rest region

Otherwise pr.match3(slp, elp) returns null.

A region is treated like a character sequence when
being searched. The ".." symbol denotes a
subsequence of characters.

The meaning of the "matches" operation will vary
depending on the implementation; our Java prototype
uses string equality: x..y matches s..t if the two
subsequences contain the same text.

As the definition suggests, match3() can use string
operations to perform a linear search over the parent
region. The algorithmic complexity depends on the
length of the sequence, and the cost of the "matches"
operation. In general, if the landmark patterns are
sufficiently small, then the algorithmic cost is on
average O(n), where n is the length of the parent
region.

Our implemented match3() operation is a little more
general than the one outlined here. It is possible to
specify that matching only succeeds when the mth

suitable start landmark is located in the parent region

(rather than just the first, as here). Also the chosen end
landmark can be set to be the nth one found, counting
from the start landmark's position.

2.2 The tagMatch4() Operation
tagMatch4() searches for tag pairs (e.g. <P> and
</P>). On the face of it, this operation seems
unnecessary since the tags could be represented by
landmarks, and so found using match3(). However,
there are two reasons for employing a separate
method.

The first is that a start tag (e.g. <title>) may contain
attributes, and we want to record them in an attribute
region. The other reason is that tags may be nested
(e.g. a list may appear as an item inside another
 list). The search ignores nesting, and finds the
end tag which is at the same 'level' as the start tag.

tagMatch4() carries out a linear search from the start
of a region to find a start tag that matches a supplied
tag pattern. If the start tag contains attributes, these are
stored in an attribute region. Then the search switches
over to looking for an end tag that matches the tag
pattern, with the proviso that the end tag must occur at
the same level as the start tag.

The result is a parent region separated into four
smaller regions: the left, matching, rest, and
(potentially empty) attribute region.

Figure 2 shows the search graphically.

Figure 2. A Tag Search using tagMatch4().

Any of the four regions can be searched further by
applying match3() or tagMatch4() to it.

tagMatch4() can be defined more formally:

pr.tagMatch4(tag) returns {lr, mr, ar, rr}

where
 pr is {a0..ai, st0..stk, b0..bl, et0..etm, c0..cn},
 the parent region,

 ("<"+tag+">" matches st0..stk, the start tag,
 and ar, the attribute region, is null) or
 ("<"+tag+" "+ ar0..arp +">" matches st0..stk,
 and ar is {ar0..arp}),
 tag is t0..tr, the tag pattern,
 the tag pattern does not match anything in a0..ai,
 counter = 0,

3

 startTag is "<"+tag+">" or "<"+tag+" " and
 endTag is "</"+tag+">",

 counter += count of startTag matches in b0..bl –
 count of endTag matches in b0..bl,

 endTag matches et0..etm, the end tag,
 and counter == 0

 lr is {a0..ai, sl0..slk}, the left region,
 mr is {b0..bl}, the matching region,
 rr is {b0..bl, el0..elm, c0..cn}, the rest region

Otherwise pr.tagMatch3(tag) returns null.

As in match3(), "matches" uses simple character
comparisons between the tag pattern and the start and
end tags.

The notion of level is captured with a counter which
records the number of start and end tags encountered
between the matching start tag and its corresponding
end tag. The counter is incremented when another
matching start tag is identified, and decremented when
an end tag is encountered. The matching end tag is at
the same level as the original start tag when the
counter returns to 0.

The complexity of tagMatch4() depends on the length
of the sequence, and the cost of the "matches"
operation. The tag patterns are sufficiently small that
the algorithmic cost is on average O(n), where n is the
length of the parent region.

Our implemented tagMatch3() operation is more
general than the one outlined here. It is possible to
specify that successful tag matching only occurs when
the mth suitable starting tag is located in the parent
region.

2.3 The Sequence Class
The implementation of the regions utilizes a Sequence
class to reduce network and memory load.

The top-level region for the entire document is filled
with text via a Sequence object which manages the
downloading of the Web page or the reading of the
local file. The Sequence object reads the text from the
Web or local file a line at a time, and only reads a line
when prompted by the region. This 'lazy' behaviour
means that only as much of the Web page or file is
loaded as is necessary to perform a search.

2.4 The RegionIterator Class
The landmarks operations are not intended to be a
complete notation or language for text extraction. The
host language is expected to have the usual control
structures for looping, switching, and recursion, and
(rudimentary) support for strings.

For example, repeated search through a parent region,
looking for every matching region, can be coded using

a while-loop and match3() (or tagMatch4()). A
fragment of pseudo-code illustrates the idea:

Region r = /* region to be searched */
String slp, elp =
 /* start and end landmark patterns */

while (r.match3(slp, elp) ==
 {left, matching, attribute, rest}) {
 // use matching region...
 r = rest; // examine rest of region
}

However, searching for all the regions that match
landmark (or tag) patterns is such a common task, that
we have packaged it up inside a RegionIterator class.
Several examples of its use appear in the next section.

3. SEARCH EXAMPLES
This section contains three Java examples using the
landmark operations: details are displayed about a
specified Amazon.com book, price information is
extracted from a text file of airline fares, and statistics
are collected from an XML version of Macbeth.

The complete code for all these examples, and some
others, can be downloaded from
http://fivedots.coe.pau.ac.th/~ad/
landmarks.

3.1 Extracting Amazon Book Details
Given a book's ISBN number, details about its title,
prices, reviews, and sales ranking are extracted from
the Amazon.com page for the book, and printed to
standard output. Typical output is:

Retrieving Amazon's page for 0596007302
Accessing URL:http://www.amazon.com/exec/
obidos/tg/detail/-/0596007302
Title: Amazon.com: Books: Killer Game
Programming in Java
List Price: $44.95; Amazon Price: $29.67
Star Rating: 4-5; No. of Reviews: 3
Sales Rank: 6,236

The top-level region for the book's Web page is
created, then searched in various ways:

String AMAZON_URL =
 "http://www.amazon.com/exec/obidos/tg
 /detail/-/";

System.out.println("Retrieving
 Amazon's page for " + isbn);
Region topR =
 new Region(AMAZON_URL + isbn);

System.out.println("Title: " +
 topR.tagMatch("title"));
showPrices(topR);

4

showReviewInfo(topR); // see below
showRank(topR);

The title is obtained by searching for the tag pattern
"title". This was determined by looking at the source
code for several Amazon book pages, and noting that
their titles were always wrapped in a "title" tag pair.

The version of tagMatch() used here only returns the
matching region, which is cast to a string in println()
by Region’s toString() method.

Amazon summarizes review details with a star rating
(out of 5), and the number of reviews. This part of a
book's Web page has the format:

<img src="http://.../common/customer-
reviews/stars-4-5.gif"
height="12" border="0" width="64" />
based on 3 reviews.

The long URL always ends with "common/customer-
reviews/" and a GIF file for the stars image. The
surrounding text contains many tables, links,
comments, fragments of JavaScript, and white space.
The search can ignore all of this by focussing only on
the unique landmarks in the source fragment:

private void showReviewInfo(Region r)
{
 Region reviewsRegion =
 r.match("common/customer-reviews/",
 "review");
 Region starsRegion =
 reviewsRegion.match("stars-",".gif");
 Region numReviewsRegion =
 reviewsRegion.match("based on "," ");

 System.out.println("Star Rating: " +
 starsRegion + "; No. of Reviews:" +
 numReviewsRegion);
}

reviewsRegion is created with match(), which returns
the matching region between the two landmark
patterns. For the example above, reviewsRegion will
be:

{stars-4-5.gif"
height="12" border="0" width="64" />
based on 3 }

There is a space after the '3' at the end of the region.

starsRegion gets {4.5} from reviewsRegion, while
numReviewsRegion extracts {3}.

The approach used by showReviewInfo() is quite
common: first get fairly close to the required
information with a region that cuts away most of the
irrelevant data. This region should utilize landmarks
which are unique across the entire document. The data
is obtained in the second stage, using local landmarks

next to the information, which only have to be unique
within the region (e.g. in reviewsRegion).

3.2 Looking for Airfares
We want to retrieve the cost of a roundtrip flight
between two cities from "airfares.txt". The information
for a city is formatted like the following example:

Roundtrip Fares Departing From BOSTON, MA
To

$209 INDIANAPOLIS, IN
$189 PITTSBURGH, PA

The collection of roundtrip fares for a city start with
the "Roundtrip Fares" heading, a dotted line, then
multiple price lines. The lines end with two newlines
before the next city collection.

The first step is to iterate through the city information
until we find the desired 'from' city:

Region topR = new Region("airfares.txt");
showTripPrice(topR, "PHILADELPHIA",
 "PITTSBURGH");

private void showTripPrice(Region topR,
 String from, String to)
// show price of flight from-->to
{
 RegionIterator tripRegions =
 new RegionIterator(topR,
 "Roundtrip", "\n\n");
 // iterate through the trip regions
 while (tripRegions.hasNext()) {
 Region tripRegion =
 (Region) tripRegions.next();
 Region fromRegion =
 tripRegion.match("From ", ", ");
 if (fromRegion.contains(from)) {
 // this trip is about <from>
 showToPrice(tripRegion, from, to);
 return;
 }
 }
 System.out.println("No fares found
 from " + from);
} // end of showTripPrice()

The RegionIterator repeatedly searches for the
landmarks "Roundtrip" and "\n\n" which delimit the
collection of roundtrip fares for a city. Each call to
next() returns the next collection, storing it in
tripRegion. The 'from' city is extracted by pulling the
region between "From " and ", " from tripRegion,.
This corresponds to {BOSTON} in the example
above. If this is the desired city then showToPrice()
looks at each price line to find the city we are
interested in. This requires another RegionIterator:

5

RegionIterator priceRegions =
 new RegionIterator(tripRegion,
 "$", ", ");

This iterator extracts the price and 'to' city information
from each price line. For the fares table above,
toRegions will deliver {209 INDIANAPOLIS} and
{189 PITTSBURGH}.

This example shows the utility of the RegionIterator
for repeatedly applying a landmark pattern.

3.3 How Worried is Macbeth?
The "Cafe con Leche XML News and Resources"
Web site (http://www.ibiblio.org/xml/)
includes many plays by Shakespeare, formatted by Jon
Bosak. We chose to examine Macbeth to discover just
how many times Macbeth talks about "Birnam" and
"Dunsinane" before his well-deserved end. This is
admittedly rather silly, but it illustrates the ease of
searching over a large XML file with complicated
formatting, without employing a grammar/schema.

Landmark search means that most of the XML
formatting can be ignored. The relevant parts for this
task are the SPEECH tag pairs which wrap up
speeches. A SPEECH block starts with a SPEAKER
tag pair and one or more LINE tag pairs. For example:

<SPEECH>
<SPEAKER>MACBETH</SPEAKER>
<LINE>That will never be</LINE>
<LINE>Who can impress the forest,
 bid the tree</LINE>
 :
<LINE>Of Birnam rise, and our
 high-placed Macbeth</LINE>
 :
<LINE>Reign in this kingdom?</LINE>
</SPEECH>

The code iterates through each speech block, and, if
the speaker is Macbeth, records the number of
occurrences of the words "Birnam" and "Dunsinane":

Region topR = new Region("macbeth.xml");
Region speechRegion, speakerRegion;
String speechStr;
int numWords = 0;

RegionIterator speechIter = new
 RegionIterator(topR, "SPEECH");
while (speechIter.hasNext()) {
 // iterate through the SPEECH blocks
 speechRegion =
 (Region) speechIter.next();
 speakerRegion =
 speechRegion.tagMatch("SPEAKER");
 if (speakerRegion.contains("MACBETH")){
 // is the speaker Macbeth?
 speechStr = speechRegion.toString();
 numWords +=
 countString(speechStr, "Birnam") +
 countString(speechStr,"Dunsinane");

 }
}
System.out.println("No. words: " +
 numWords);

The RegionIterator uses a "SPEECH" tag pattern to
iterate through the speeches. The "SPEAKER" text is
pulled from the speech and if it contains
"MACBETH", then the number of times that "Birnam"
and "Dunsinane" appear in the rest of the speech are
counted. Incidentally, the count for the play is 10.

countString() is a simple method (written by us) that
uses String.indexOf() to search over the supplied
string and count the number of times a given substring
is found.

4. COMPARISONS WITH OTHER
APPROACHES
In this section we compare landmark search with
region algebras, regular expressions, and the XQuery
language.

4.1 Region Algebras
Region algebras include PAT expressions [6],
overlapped lists [2], and nested region algebras
[4]. They treat a region as a contiguous portion of text,
delimited by landmarks (also called anchors and match
points). The algebras typically allow relationships to
be expressed between regions, including 'precedes',
'follows', and 'contains', and support operations for
creating region sets using union, intersection, and
exclusion.

Landmark search employs a similar underlying model,
but without sets and most of the region operators; this
simplifies the model considerably. Also, tag-based
landmarks are singled out for extra support, due to
their importance.

WebL is a Web page manipulation language, with
region algebras underpinning its text search
capabilities [5]. Its tag-based matching is similar to the
version of tagMatch() that returns only a matching
region. WebL employs regular expressions for
matching against unstructured text.

4.2 Regular Expressions
Regular expressions have problems searching over
structured text, the foremost being their default use of
leftmost longest match [1]. That search mechanism is
a good choice when the text is being tokenized into
numbers or words, but consumes too much data when
applied to repeating text patterns. Regular expressions
are also unable to count, making it impossible for
them to deal with arbitrarily nested elements such as
tags.

6

Regex libraries, as found in Perl 5 and java.util.regex,
have introduced lazy quantifiers [3], which can
simulate simple forms of landmark search. However,
the formulation also needs to employ other extensions
such as a multiline mode, back references, word
boundaries for repeated search, and numerical
quantifiers. Even with these additions, regexs are still
unable to correctly handle searches involving nested
tags.

4.3 XQuery
XQuery is an extremely powerful SQL-like language
for finding and extracting elements and attributes from
XML documents [9]. XQuery utilizes XPath path
expressions, which represent the XML document as a
tree of nodes of various types, and offers a large
number of operations for manipulating nodes and node
sets [8].

Most XQuery queries are FLWOR expressions, such
as the following one for printing a title of a book when
its cover price is more than $30:

for $x in doc("books.xml")/bookstore/book
where $x/price > 30
return $x/title

The landmark version of this query is surprisingly
similar, and not too much longer:

Region topR = new Region("books.xml");
RegionIterator ri =
 new RegionIterator(topR, "book");
while (ri.hasNext()) {
 // iterate through the books
 Region bookRegion = (Region) ri.next();
 Region priceRegion =
 bookRegion.tagMatch("price");
 double price = 0.0;
 try { //convert price string to double
 price = Double.parseDouble(
 priceRegion);
 }
 catch(NumberFormatException e){}
 if (price > 30.00)
 System.out.println(
 bookRegion.tagMatch("title"));
}

Landmark search is not meant to be a complete query
language. It is restricted to data extraction, and relies
on its host language for other features (such as parsing
numbers).

5. CONCLUSIONS AND FUTURE
WORK
Landmark search consists of two basic operations,
match3() and tagMatch4(). match3() utilizes landmark
patterns to identify regions within a parent region,

while tagMatch4() uses tag pairs to find regions.
Repeated application of these operations can be
carried out using a RegionIterator class.

Although landmark search only employs a few
operators, it is capable of extracting information from
poorly formatted Web pages, plain text files, and XML
documents lacking grammars or schemas.

The underlying aim of this work was to develop a
small set of operations, that could be easily
understood, readily added to a host language, and
efficiently implemented. This contrasts with feature-
rich alternatives, such as region algebras, regex
packages, and XQuery.

The landmark operators currently pattern match via
text comparison. It would be useful to add a (limited)
set of regular expression capabilities. For example,
case insensitivity, and meta-characters that match with
the start and end of a region (i.e. the '^' and '$' symbols
found in some regexs).

Supporting more regular expression power, perhaps
multiplicity ('*') and selection ('|'), would allow
landmark patterns to match against arbitrary numbers
and words. However, this generality may not be
required since landmarks and tag patterns tend to be
unique strings.

A prototype Java implementation of the landmark
operators (together with examples) can be downloaded
from http://fivedots.coe.pau.ac.th/~ad/
landmarks.

6. REFERENCES
[1] Clarke, C.L.A. and Cormack, G.V. On the use of

regular expressions for searching text, ACM
Transactions on Programming Languages and
Systems, 19, 3, 413–426, May, 1997.

[2] Clarke, C.L.A., Cormack, G.V., Burkowski, F.J.
An algebra for structured text search and a
framework for its implementation, The Computer
Journal, 38, 1, 43-56, 1995.

[3] Friedl, J.E.F. Mastering Regular Expressions:
Powerful Techniques for Perl and Other Tools,
O'Reilly and Associates, 2nd ed., 2002.

[4] Jaakkola, J. and Kilpeläinen, P. Using sgrep for
Querying Structured Text, Department of
Computer Science, University of Helsinki, Report
C-1996-83, November, 1996.

[5] Kistler, T. and Marais, H. WebL - a programming
language for the Web, In Computer Networks and
ISDN Systems, Proceedings of the WWW7
Conference, 30, 259-270, April, 1998.

[6] Salminen, A. and Tompa, F.W. PAT expressions:
an algebra for text search, Acta Linguistica
Hungarica, 41, 1–4, 277–306, 1992.

7

[7] XHTML 1.0 The Extensible HyperText Markup
Language (Second Edition), W3C,
http://www.w3.org/TR/xhtml1/, August,
2005

[8] XPath: XML Path Language 2.0, W3C Working
Draft, http://www.w3.org/TR/xpath20/,
April, 2005

[9] XQuery 1.0: An XML Query Language, W3C
Working Draft,
http://www.w3.org/TR/xquery/, April, 2005

