
Java Prog. Techniques for Games. Kinect Chapter 2.4 KSnow Draft #1 (22nd April '12)

1 © Andrew Davison 2012

Kinect Chapter 2.4. Kinect Snow

In the previous chapter I showed how it was possible to use the OpenNI generator

nodes for imaging, depth data, and user IDs to replace the background of the camera

picture. The end result looks a bit like the blue screening used on TV, but the quality

is poorer, with jagged edges around the user's outline.

If changing the background was all this Kinect technique offers then there would be

little point to preferring it over blue screening, which can be implemented without

depth and user ID processing (although you need a colored backcloth). However, the

extra information supplied by the Kinect allows me to augment the visuals in interest

ways, which I'll discuss in this chapter and the next (chapter 2.5).

This chapter looks at having the user interact with the 'virtual' scene. Often this

requires skeletal information from the Kinect (e.g. the position of the user's hands or

head). I'll start utilizing skeletons in chapter 4, but there's plenty of interaction forms

that don't need that sort of detail.

The KinectSnow application places the user on a country road in a snowstorm (see

Figure 1).

Figure 1. The User in a Snow Storm.

The falling snow gradually piles up on top of the person, until he moves. As the

screenshots in Figure 2 show, the heaped snow briefly retains the outline of the user's

old position, and then starts dropping again.

Java Prog. Techniques for Games. Kinect Chapter 2.4 KSnow Draft #1 (22nd April '12)

2 © Andrew Davison 2012

Figure 2. The User Moves.

1. An Overview of the KinectSnow Application

KinectSnow builds upon the features of ChangeBG from chapter 2.3, as indicated by

the class diagrams for the application in Figure 3.

Figure 3. Class Diagrams for the KinectSnow Application.

The KinectSnow class implements the JFrame, which renders the scene in a panel

created with ViewerPanel. ViewerPanel performs the same operations as the same-

Java Prog. Techniques for Games. Kinect Chapter 2.4 KSnow Draft #1 (22nd April '12)

3 © Andrew Davison 2012

named class in the ChangeBG application, with additional code for making the snow

fall.

The updating and rendering of the snowstorm are handled by a SnowManager object,

which represents each snowflake by a Snowflake object.

2. Hiding the Background

A large part of ViewerPanel's work involves subtracting the background from the

Kinect camera image, leaving only the users visible. It does this in exactly the same

way as in the last chapter, so I won't repeat all the details again. Before continuing,

you should read chapter 2.3 (if you haven't already done so).

The current camera image is modified repeatedly by the ViewerPanel's run() method:

// globals

private volatile boolean isRunning;

private Context context;

// for snow animation

private SnowManager snowMan;

private volatile boolean moveSnow;

public void run()

{

 isRunning = true;

 while (isRunning) {

 try {

 context.waitAndUpdateAll();

 // wait for all nodes to have new data, then updates them

 }

 catch(StatusException e)

 { System.out.println(e);

 System.exit(1);

 }

 long startTime = System.currentTimeMillis();

 screenUsers();

 if (moveSnow) { // time to animate the snow

 moveSnow = false;

 snowMan.update();

 }

 totalTime += (System.currentTimeMillis() - startTime);

 repaint();

 }

 // close down

 try {

 context.stopGeneratingAll();

 }

 catch (StatusException e) {}

 context.release();

 System.exit(0);

} // end of run()

Java Prog. Techniques for Games. Kinect Chapter 2.4 KSnow Draft #1 (22nd April '12)

4 © Andrew Davison 2012

This code is almost identical to the run() method in the last chapter, with a few small

additions that I'll explain below. run() calls screenUsers() to remove the background

from the camera image:

// globals

private ImageGenerator imageGen;

private int[] cameraPixels;

private BufferedImage cameraImage;

private void screenUsers()

{

 // store the Kinect RGB image as a pixel array in cameraPixels

 try {

 ByteBuffer imageBB = imageGen.getImageMap().createByteBuffer();

 convertToPixels(imageBB, cameraPixels);

 }

 catch (GeneralException e) {

 System.out.println(e);

 }

 hideBackground(cameraPixels);

 // change the modified pixels into an image

 cameraImage.setRGB(0, 0, pWidth, pHeight, cameraPixels,

 0, pWidth);

 imageCount++;

} // end of screenUsers()

The camera image is maintained in two globals – the cameraPixels byte array and the

cameraImage BufferedImage. The hideBackground() method is unchanged from

before, assigning all the background pixels a transparent blue color stored in the

hideBGPixel integer:

private int hideBGPixel;

 /* the "hide the background" pixel: this could be any color

 so long as its alpha value is 0 */

// in the ViewerPanel constructor

hideBGPixel = new Color(0, 0, 255, 0).getRGB();

 // transparent blue

Rendering the scene involves drawing the snowy road, then the partly transparent

cameraImage, and the falling snow:

// globals

private BufferedImage backIm, cameraImage;

 // the background image and final camera image

private SnowManager snowMan;

public void paintComponent(Graphics g)

// draw background, the camera image, and the snow

{

 super.paintComponent(g);

 Graphics2D g2 = (Graphics2D) g;

Java Prog. Techniques for Games. Kinect Chapter 2.4 KSnow Draft #1 (22nd April '12)

5 © Andrew Davison 2012

 g2.drawImage(backIm, 0, 0, this);

 g2.drawImage(cameraImage, 0, 0, this);

 snowMan.draw(g2);

 writeStats(g2);

} // end of paintComponent()

The new element is the call to SnowManager.draw().

3. Adding Snow Fall

The simplest way to animate the snow is inside the loop in run(), but there's a slight

hitch. The loop executes as quickly as possible, waiting only long enough for the

OpenNI generator nodes to be refreshed. In practice this means that each iteration

takes about 30-50 ms (I know this from the statistics printed at the bottom left of the

panel). This is too fast an update rate for snow that's meant to be drifting downwards.

My solution is to use a timer and a boolean flag to animate the snow at a slower rate.

The timer and flag are set up in the ViewerPanel constructor:

// globals

private javax.swing.Timer animatorTimer;

private volatile boolean moveSnow;

 // used to flag that it's time for a snow update

// in the ViewerPanel constructor

 :

// create a timer for animating the falling snow

moveSnow = false;

animatorTimer = new javax.swing.Timer(75, this); // refresh rate

animatorTimer.setInitialDelay(500); // wait time before start

animatorTimer.setCoalesce(true);

animatorTimer.start(); // start the timer

The timer fires roughly every 75ms, triggering a call to the actionPerformed() method

defined in ViewerPanel:

public void actionPerformed(ActionEvent e)

{ moveSnow = true; }

The moveSnow variable is now set to true, which affects the execution of the next

iteration of the run()'s loop:

// inside run()

 :

while (isRunning) {

 // some code not shown...

 if (moveSnow) { // time to animate the snow

Java Prog. Techniques for Games. Kinect Chapter 2.4 KSnow Draft #1 (22nd April '12)

6 © Andrew Davison 2012

 moveSnow = false;

 snowMan.update();

 }

 // some code not shown...

 }

 :

Inside the if-block, the moveSnow flag is toggled back to false, and the SnowManager

object updates the snow.

This approach means that although the run() loop executes very speedily, the updating

of the snow occurs less frequently.

4. User Collision Detection

An important feature of a Snowflake object is its ability to detect a collision with the

top of a user, and stop moving. This relies on a ViewerPanel.onUser() method which

tests if a given (x, y) coordinate is a pixel that's used to draw a user:

// globals

private int[] cameraPixels;

 // holds the pixels that fill the cameraImage image

private int hideBGPixel; // the "hide the background" pixel

private int pWidth, pHeight; // of Kinect panel

public boolean onUser(int x, int y)

// is the pixel at (x,y) used to draw a user?

{

 if ((x < 0) || (x >= pWidth) ||

 (y < 0) || (y >= pHeight))

 return false;

 int pixel = cameraPixels[(pWidth*y) + x];

 return (pixel != hideBGPixel);

} // end of onUser()

The trick is to convert the (x, y) coordinate into an index into the cameraPixels[]

array, and then test if that location contains the transparent color. If it doesn't then the

pixel must be part of the user image, and so the method returns true.

The coding of onUser() assumes that the rendering panel is a fixed size whose width

and height are stored in the pWidth and pHeight globals.

5. Managing the Snow

The SnowManager object maintains an array of Snowflake objects, which it updates

and draws. The array is initialized in the SnowManager constructor:

// globals

Java Prog. Techniques for Games. Kinect Chapter 2.4 KSnow Draft #1 (22nd April '12)

7 © Andrew Davison 2012

private static final int NUM_FLAKES = 3000;

 // total number of flakes

private Snowflake[] snow;

private Random rand;

public SnowManager(int pWidth, int pHeight, ViewerPanel vp)

{

 rand = new Random();

 snow = new Snowflake[NUM_FLAKES]; // create all snow flakes

 for(int i=0; i < NUM_FLAKES; i++)

 snow[i] = new Snowflake(rand, pWidth, pHeight, vp);

} // end of SnowManager()

Updating the snow simply involves calling the update() method for each Snowflake

object in the array. However, it's complicated by a need to make the snow fall look

random, and to reuse Snowflake objects which have dropped below the bottom edge

of the panel. These complications are dealt with by the startSomeFlakes() method at

the beginning of update():

public void update()

{

 startSomeFlakes();

 for(int i=0; i < NUM_FLAKES; i++)

 snow[i].update();

} // end of update()

Initially every Snowflake() object is positioned above the top-edge of the panel, and

so is invisible. Similarly, any flakes that have dropped off the bottom of the panel will

also be invisible. All the flakes' visibility are checked by startSomeFlakes(), and a

randomly selected group are made visible at the top of the panel.

// globals

private static final int NUM_FLAKES = 3000; //total no. of flakes

private static final int START_BATCH = 20;

 // number of flakes in a batch

private Snowflake[] snow;

private Random rand;

private void startSomeFlakes()

{

 int numStarted = 0;

 int i = 0;

 while ((numStarted < START_BATCH) && (i < NUM_FLAKES)) {

 if (!snow[i].isVisible()) { // if flake invisible

 if (rand.nextBoolean() == true) { // maybe

 snow[i].setPosition();

 // position at top of panel (so becomes visible)

 numStarted++;

 }

 }

 i++;

 }

} // end of startSomeFlakes()

Java Prog. Techniques for Games. Kinect Chapter 2.4 KSnow Draft #1 (22nd April '12)

8 © Andrew Davison 2012

The call to Snowflake.setPosition() gives a flake a visible position in the panel. Now

that it's visible, the flake will start moving downwards when Snowflake.update() is

called back in SnowManager.update().

SnowManager draws all the snowflakes by calling Snowflake.draw() for each one. A

flake will only be rendered if it is visible in the panel.

public void draw(Graphics2D g2)

{ for(int i=0; i < NUM_FLAKES; i++)

 snow[i].draw(g2);

}

6. Creating a Snowflake

A Snowflake object maintains a (x, y) coordinate for a flake. If this lies off the top or

bottom edges of the panel then the flake is deemed invisible, and so neither updated or

drawn. However, if it is visible on the panel's surface, then Snowflake.update() will

move it down and Snowflake.draw() will render it as a small white circle.

The unusual aspect of update() is that it must determine if the flake is touching the top

of a user and then stop it from moving.

// globals

private static final int Y_DROP = 10; // max down step

private static final int X_DRIFT = 6; // max side-to-side step

private Random rand;

private int x, y; // position of flake

public void update()

{

 if (isVisible()) {

 if (isOnTopEdgeOfUser())

 return; // do not update (i.e. stop moving)

 else {

 x += rand.nextInt(X_DRIFT) - X_DRIFT/2;

 // small sideways movement

 y += rand.nextInt(Y_DROP); // move down

 }

 }

} // end of update()

The random number-based calculations in update() modify the flake's (x, y)

coordinate so it moves downwards with a small drift to the left or right. However, if

the flake is invisible (not on the panel) or touching the top-edge of a user, then the

update is skipped, and the flake will not move.

Note, that if the user moves, the top-edge touching condition may no longer be true

when the flake is next updated, and so it will resume falling.

The isVisible() method uses the fact that the panel is a fixed size to determine if the

flake is visible or not:

Java Prog. Techniques for Games. Kinect Chapter 2.4 KSnow Draft #1 (22nd April '12)

9 © Andrew Davison 2012

public boolean isVisible()

// a flake is visible if within the panel's boundaries

{

 if ((x < 0) || (x >= pWidth) ||

 (y < 0) || (y >= pHeight))

 return false;

 return true;

} // end of isVisible()

isOnTopEdgeOfUser() utilizes a simple test based on calling ViewerPanel.onUser()

twice. The current location of the flake is tested, and a location a small distance

higher up the panel (see Figure 4).

Figure 4. Testing for the Top-edge Condition.

A flake is deemed to be touching the top-edge of the user if it is currently on a user

but the coordinate a short distance higher (the dotted circle in Figure 4) is not on the

user:

// globals

private static final int SIZE = 6; // of the flake

private int x, y; // position of flake

private ViewerPanel vp;

private boolean isOnTopEdgeOfUser()

// test if the flake is on the top edge of a user

{

 if (vp.onUser(x,y) && !vp.onUser(x,y-SIZE*2))

 return true;

 return false;

} // end of isOnTopEdgeOfUser()

The SIZE constant is also used when rendering the flake, and corresponds to the

flake's diameter.

The isOnTopEdgeOfUser() test is simple and fast to carry out, but may also fail. For

example, if the flake is moving very quickly, then it may travel too far into the user's

space in a single update. Then the "short distance higher" offset used by

isOnTopEdgeOfUser() will be on the user, and so the edge test will fail In fact, this

Java Prog. Techniques for Games. Kinect Chapter 2.4 KSnow Draft #1 (22nd April '12)

10 © Andrew Davison 2012

does occasionally happen, with a few flakes passing over the user without stopping.

However, this looks like snow dropping in front of the user, so is easy to ignore.

