
Java Prog. Techniques for Games. Kinect Chapter 2.1 Depth Charting Draft #1 (28th Sept. 12)

1 © Andrew Davison 2012

Kinect Chapter 2.1. Charting the Depth Map

This chapter revisits the depth map example of Chapter 2 to illustrate a more

numerical way of viewing the information. The first two versions of the ViewerPanel

class in Chapter 2 convert the depth measurements into grayscale images. It's quite

easy to insert a few lines of code to also display the bar chart shown in Figure 1.

Figure 1. Bar Chart of Depths.

The graph's x-axis show the Kinect's depth measurements, which typically range from

500 to 3500 mm. The y-axis is for the number of measurements returned for a

particular depth.

The corresponding grayscale depth image is shown in Figure 2. Recall that darker

means further away, although black also means "too close" for a depth value to be

calculated, or that no depth data was returned (e.g. for the edges of the user's arm).

Java Prog. Techniques for Games. Kinect Chapter 2.1 Depth Charting Draft #1 (28th Sept. 12)

2 © Andrew Davison 2012

Figure 2. The Depth Image Corresponding to Figure 1.

Figure 1 contains three main peaks, one at around 540 mm, another at 900 mm, and a

wide spread of depths starting from 1900 mm and extending out to 3400 mm. A look

at Figure 2 shows that the first peak is my raised hand and the spread is the back wall

of my office.

The XY bar chart in Figure 1 is created using the JFreeChart library

(http://www.jfree.org/jfreechart/), which allows the user to zoom-in (and out) on a

chart. For instance, I used the mouse to select a region around the first peak, and the

chart was redrawn as in Figure 3.

Figure 3. A Closer Look at the Left of Figure 1.

Java Prog. Techniques for Games. Kinect Chapter 2.1 Depth Charting Draft #1 (28th Sept. 12)

3 © Andrew Davison 2012

The necessary modifications to the ViewerPanel class to add this chart are quite

modest since JFreeChart handles the complex details of chart updating and rendering.

One issue I had was chart update frequency: chart rendering takes over 0.5 seconds,

and slows down OpenNIViewer by too much if done for every Kinect update. Instead,

ViewerPanel imposes a 2 second delay between chart updates so the application isn't

affected too often.

Before I describe the charting version of ViewerPanel, I'll briefly introduce

JFreeChart with two short examples for drawing a 3D pie chart and a XY bar chart.

1. JFreeChart

JFreeChart (http://www.jfree.org/jfreechart/) can generate an enormous range of

charts, including standard ones such as pie, bar, line, and Gantt charts, many

variations and combinations of those charts, and many less standard graphs such as

spider and vector plots. Every chart includes useful features such as tool tips,

zooming, and automatic redrawing of dynamically changing data.

Despite this diversity, the API offers a fairly standard and simple approach to creating

a chart, which I'll illustrate with two examples.

A limited number of chart screenshots can be found at the JFreeChart site (at

http://www.jfree.org/jfreechart/samples.html), but the best collection of samples is in

the demo JAR (jfreechart-1.0.14-demo.jar) which comes as part of the JFreeChart

installation.

I downloaded jfreechart-1.0.14.zip, and unzipped the contents to a new location. The

two important libraries, jfreechart-1.0.14.jar and jcommon-1.0.17.jar can be found in

jfreechart-1.0.14\lib\, and must be added to the classpath when code is being compiled

and run. The demo application, jfreechart-1.0.14-demo.jar, is in jfreechart-1.0.14\

Double-clicking on jfreechart-1.0.14-demo.jar starts the application shown in Figure

4.

Java Prog. Techniques for Games. Kinect Chapter 2.1 Depth Charting Draft #1 (28th Sept. 12)

4 © Andrew Davison 2012

Figure 4. The JFreeChart Demo.

Selecting a chart from the tree on the left, triggers it's display on the right.

Unfortunately, JFreeChart doesn't include the source code for these examples,

although its quite easy to decompile the JAR with a tool such as jd-gui

(http://java.decompiler.free.fr/?q=jdgui).

Another excellent source of JFreeChart examples is the java2s site

(http://www.java2s.com/Code/Java/Chart/CatalogChart.htm), which lists over 70

chart categories, usually with multiple examples for each type. Most employ

JFreeChart, but a few utilize other charting libraries.

1.1. Creating a Chart

There are three main stages in creating a JFreeChart chart:

1. create a data set

2. create a chart using the data set

3. add the chart to a panel for rendering with Swing

The data set is managed by a subclass of the Dataset class, chosen to match the chart

type that you'll create in stage 2 using a method from the ChartFactory class. The API

documentation for these classes is at http://www.jfree.org/jfreechart/api/javadoc/.

JFreeChart includes a subclass of JPanel, called ChartPanel, for holding the chart.

ChartPanel extends JPanel with useful zooming and property features, accessible via

the right mouse button.

1.2. A Pie Chart

The following example, called SimplePie.java, creates a 3D pie chart containing three

pieces of data, which is displayed in an application window (see Figure 5).

Java Prog. Techniques for Games. Kinect Chapter 2.1 Depth Charting Draft #1 (28th Sept. 12)

5 © Andrew Davison 2012

Figure 5. Creating a 3D Pie Chart.

The SimplePie class is:

public class SimplePie extends JFrame

{

 public SimplePie()

 {

 super("Simple Pie Chart");

 // (1) create the data set

 DefaultPieDataset dataset = new DefaultPieDataset();

 dataset.setValue("John", 30);

 dataset.setValue("Andrew", 30);

 dataset.setValue("Supatra",40);

 // (2) put the data into a chart

 JFreeChart chart = ChartFactory.createPieChart3D(

 "Family Pie Chart", dataset, true, true, false);

 //legend?, tips?, urls?

 // (3) add the chart to a panel

 ChartPanel chartPanel = new ChartPanel(chart);

 chartPanel.setPreferredSize(new Dimension(500, 270));

 // add the panel to the window

 setContentPane(chartPanel);

 pack();

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setVisible(true);

 } // end of SimplePie()

The DefaultPieDataset is filled with three data items, and then passed to the

ChartFactory.createPieChart3D() call. The resulting chart is added to a ChartPanel

object which is placed inside the application's JFrame.

1.3. A XY Bar Chart

The same three stages are used by my SimpleXYSeries class for creating the XY bar

chart shown in Figure 6 .

Java Prog. Techniques for Games. Kinect Chapter 2.1 Depth Charting Draft #1 (28th Sept. 12)

6 © Andrew Davison 2012

Figure 6. A XY Series Bar Chart.

The SimpleXYSeries constructor is defined as:

public SimpleXYSeries()

{

 super("Simple XY Series");

 XYSeriesCollection dataset = createDataset(); // stage (1)

 // (2) put the data into a chart

 JFreeChart chart = ChartFactory.createXYBarChart(

 "Simple XY Series", "Time (secs)", false,

 // is x a date axis?

 "Hz", dataset, PlotOrientation.VERTICAL,

 true, true, false);

 // legend?, tooltips?, urls?

 // (3) add the chart to a panel

 ChartPanel chartPanel = new ChartPanel(chart);

 chartPanel.setPreferredSize(new Dimension(500, 270));

 // add the panel to the window

 setContentPane(chartPanel);

 pack();

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setVisible(true);

} // end of SimpleXYSeries()

The data set is sufficiently complex that I've moved it's creation to a createDataset()

method:

private XYSeriesCollection createDataset()

{

 // a sequence of (x,y) data items

 XYSeries series = new XYSeries("Frequency Burst Times");

 series.add(1.0, 400.2);

 series.add(5.0, 294.1);

 series.add(4.0, 100.0);

 series.add(12.5, 734.4);

Java Prog. Techniques for Games. Kinect Chapter 2.1 Depth Charting Draft #1 (28th Sept. 12)

7 © Andrew Davison 2012

 series.add(17.3, 453.2);

 series.add(21.2, 500.2);

 series.add(21.9, null); // null means missing value

 series.add(25.6, 734.4);

 series.add(30.0, 453.2);

 XYSeriesCollection dataset = new XYSeriesCollection(series);

 return dataset;

} // end of createDataset()

The XYSeries object represents a sequence of zero or more (x, y) data items. By

default, items in the series are sorted into ascending order by x-value, and duplicate x-

values are permitted. The series is converted into a data set by being stored in an

XYSeriesCollection object.

Back in the constructor, a different ChartFactory() creation method is called --

ChartFactory.createXYBarChart() – which includes arguments for the x- and y- axis

labels and the plot orientation.

We'll shortly revisit these JFreeChart methods in my Kinect code since the depth chart

shown in Figure 1 is also a XY bar chart.

2. Adding a Chart to the Depth Viewer

The OpenNIViewer application which displays the depth image in Figure 2 was

described in the last chapter (primarily in section 7). Its classes are shown in Figure 7.

Figure 7. Class Diagrams for OpenNIViewer.

The charting code is added to ViewerPanel since it must access the depth data stored

in the histogram[] array when the depth map is read from the Kinect.

The majority of the new code is located in two methods: initChart() which creates the

bar chart and renders it in its own JFrame, and updateChart() which uses the current

depths stored in histogram[] to update the chart's dataset.

Java Prog. Techniques for Games. Kinect Chapter 2.1 Depth Charting Draft #1 (28th Sept. 12)

8 © Andrew Davison 2012

2.1. Initializing the Chart

Since I'm using an XY bar chart again, initChart() looks a lot like the SimpleXYChart

constructor from section 1.3. As before, there are three main stages: the creation of

the data set (a collection of zero depths initially), the initialization of the chart, and its

addition to a panel in a window. The initChart() method:

// globals

private static final int CHART_MAX_DEPTH = 3700;

 // used for the chart's x-axis

private XYSeries series;

private void initChart()

{

 // create an initial data set

 series = new XYSeries("Depth Histogram");

 for (int i = 0; i <= CHART_MAX_DEPTH; i++)

 series.add(i,0); // depth with zero count

 XYSeriesCollection dataset = new XYSeriesCollection(series);

 // put the data into a chart

 JFreeChart chart = ChartFactory.createXYBarChart(

 "Depth Histogram", "Depth (mm)", false, "Pixel Count",

 dataset, PlotOrientation.VERTICAL,

 false, true, false); // legend, tooltips, urls

 // modify the chart's axes

 XYPlot plot = (XYPlot) chart.getPlot();

 NumberAxis domainAxis = (NumberAxis) plot.getDomainAxis();// x-axis

 domainAxis.setVerticalTickLabels(true);

 domainAxis.setRange(0, CHART_MAX_DEPTH);

 domainAxis.setTickUnit(new NumberTickUnit(100));

 ValueAxis rangeAxis = plot.getRangeAxis(); // y-axis

 rangeAxis.setRange(0,15000); // a bit of a guess

 // add the chart to a panel

 ChartPanel chartPanel = new ChartPanel(chart);

 chartPanel.setPreferredSize(new Dimension(1000, 500));

 // add the panel to a window

 JFrame chartFrame = new JFrame("Depth Histogram");

 chartFrame.setContentPane(chartPanel);

 chartFrame.pack();

 chartFrame.setVisible(true);

} // end of initChart()

initChart() shows another new JFreeChart feature – the accessing of the chart's plot

data so that its x- and y- axes can be adjusted. The x-axis and y-axis ranges are set to

be 0-CHART_MAX_DEPTH and 0-15000 respectively. CHART_MAX_DEPTH is

a reasonable upper bound for the maximum depth (3700 mm), although we'll see later

that it's still necessary for the update code to test for larger depths. The y-axis

maximum is more of a guess, but if the graph proves to be too small at run time, the

y-axis view can be zoomed out.

Java Prog. Techniques for Games. Kinect Chapter 2.1 Depth Charting Draft #1 (28th Sept. 12)

9 © Andrew Davison 2012

Also, the x-axis tick labels are modified to be drawn vertically (to make them easier to

read), and the tick interval is set to 100 (i.e. to steps of 100mm).

An example of the chart window created by initChart() is shown in Figure 1.

2.2. Updating the Chart

The ViewerPanel thread repeatedly iterates through a wait/update/render loop. Each

update starts by building a histogram array of 8-bit depth values extracted from

OpenNI's current depth map, such that histogram[i] holds the total number of i

millimeter depths detected in the scene. For instance, if histogram[800] == 100 then it

means that a hundred 800mm depths have been recorded by the Kinect.

histogram[] is subsequently converted into a cumulative count of the depths such that

histogram[i] contains the number of depths detected at i millimeters or less. However,

before this transformation is carried out, the array is passed to updateChart() which

updates the chart's data set (stored in the series global).

// globals

private static final int CHART_MAX_DEPTH = 3700;

private XYSeries series;

private void updateChart(float histogram[], int maxDepth)

{

 if (maxDepth > CHART_MAX_DEPTH)

 System.out.println("Maximum depth (" + maxDepth +

 ") exceeds chart max depth");

 for (int i = 1; i <= CHART_MAX_DEPTH; i++) {

 // skipping histogram[0] which is for unknown depths

 try {

 series.update(((Number)Integer.valueOf(i)), histogram[i]);

 }

 catch(SeriesException e) {

 System.out.println("Problem updating (" + i + ", " +

 histogram[i] + ")");

 }

 }

} // end of updateChart()

It's necessary to check that the depth data doesn't exceed the x-axis maximum

(CHART_MAX_DEPTH), which happens occasionally when the Kinect

miscalculates a depth. This can occur if the infrared beam is reflected in a mirror or

glass so it appears to be displaced over a larger distance.

Another aspect of the code is that the XYSeries.update() loop starts at 1 rather than 0.

This discards the depth counts stored in histogram[0] which record the number of

missing reflections of the infrared light pattern.

One thing that updateChart() doesn't need to do is to force a repaint of the chart's

JPanel (e.g. by calling repaint()) – the redrawing is managed by the JFreeChart API.

A drawback of this update approach is the length of time that updateChart() requires

to modify all the chart data (typically nearly a second on my slow test machine). This

Java Prog. Techniques for Games. Kinect Chapter 2.1 Depth Charting Draft #1 (28th Sept. 12)

10 © Andrew Davison 2012

slows each iteration of the ViewerPanel loop to a crawl. I coded around this problem

with a timer, stored in the chartTime global, that reduces the call frequency of

updateChart().

The method that calls updateChart() checks the current chartTime value, and only

calls it if the time has exceeded CHART_DELAY (2 seconds). When the update has

been completed, the timer is reset to 0:

// globals

private static final int CHART_DELAY = 2000;

 // ms time between chart updates

private int chartTime = CHART_DELAY;

 // so no delay before first update

// code fragment in calcHistogram()

if (chartTime > CHART_DELAY) {

 updateChart(histogram, maxDepth);

 chartTime = 0;

}

The chartTime value is increased each time the update loop iterates in run(), using the

duration of that iteration:

// code fragment in run()

long startTime = System.currentTimeMillis();

updateDepthImage();

 :

chartTime += (System.currentTimeMillis() - startTime);

The effect is that the rendering of the grayscale depth image is normally fast, but

slows down roughly every 2 seconds (the CHART_DELAY value) when the depth

chart is updated.

