
Java Prog. Techniques for Games. JOGL-ES Chapter 2. Loading OBJs Draft #1 (27th Apr. 07) 

1 © Andrew Davison 2007 

 

JOGL-ES Chapter 2. Loading OBJ Models 
 

A model can only be loaded into JOGL-ES once it’s been translated into its 
component coordinates arrays (for the shape’s vertices, normal, colors, and texture 
coordinates), and other variables for the materials and/or texture images. Generating 
these manually is impossible for any reasonably complicated shape.  

This chapter describes how to convert a Wavefront OBJ model into a JOGL-ES class 
which can load, position, scale, and render the model. This allows fairly complex 
models, involving textures and materials, to be utilized in JOGL-ES applications. The 
conversion process is illustrated in Figure 1.  

 
Figure 1. Converting a OBJ Model into a Class. 

 

The OBJ model is loaded and displayed by a Java 3D application called ObjView. 
More importantly, ObjView generates a text file (examObj.txt) of JOGL-ES arrays 
and variables which represent the shape. These data structures must be manually 
pasted into a JOGL-ES class called OBJShape, which can render the shape defined by 
the arrays and variables. 

ObjView is used solely to generate the arrays and other data. It plays no part in the 
JOGL-ES application, which only uses OBJShape to render the shape.  



Java Prog. Techniques for Games. JOGL-ES Chapter 2. Loading OBJs Draft #1 (27th Apr. 07) 

2 © Andrew Davison 2007 

The model rendering performed by OBJShape is shown in Figure 2, as utilized in the 
ViewerES JOGL-ES application. 

Figure 2. ViewerES with Penguin and Hand Models. 

 

The version of ViewerES in Figure 2 employs two versions of OBJShape, renamed as 
PenguinModel and HandModel. PenguinModel contains arrays and variables 
representing a penguin, while HandModel holds the data for the hand model. 

The 3D scene in the ViewerES application consists of a textured floor (first seen in 
the previous chapter), and one or more OBJ models. The camera can be moved 
around the scene via keyboard controls, utilizing the same technology as in the last 
chapter (i.e. the KeyCamera and Camera classes). 

By default when OBJShape loads a model into a scene, it’s centered at the origin and 
its longest dimension is 1 unit. However, it's possible to adjust the shape’s position 
and size, as shown in Figure 2. 

The manual pasting of the JOGL-ES arrays and variables into OBJShape is a bit low-
tech, but it’s a only single copy-and-paste. It’s also good practice to rename the 
resulting class (e.g. I renamed the copy of OBJShape containing penguin data to 
PenguinModel). 

 

 

 



Java Prog. Techniques for Games. JOGL-ES Chapter 2. Loading OBJs Draft #1 (27th Apr. 07) 

3 © Andrew Davison 2007 

1.  Creating an OBJ Model 

Almost every 3D graphics packages can import and export OBJ files. I’ve used 
Blender (http://www.blender.org/) and MilkShape 3D 
(http://chumbalum.swissquake.ch/) in the past: both are relatively easy to learn, are 
full of features, come with excellent tutorials, and are utilized by large communities 
of helpful users.  

The complete Wavefront OBJ file format offers many advanced elements, such as 
free-form curves and surfaces, rendering interpolation, and shadowing. However, 
most OBJ exporters and loaders (including the Java 3D loader used in ObjView) only 
support polygonal shapes. A polygon’s face is defined using vertices, with the 
optional inclusion of normals and texture coordinates. Color coordinates are not 
supported. Faces can be grouped together, and different groups can be assigned 
materials made from ambient, diffuse, and specular colors and textures. The material 
information is stored in a separate MTL text file. 

A list of OBJ features can be found at 
http://www.csit.fsu.edu/~burkardt/data/obj/obj.html, and examples of MTL are at 
http://www.csit.fsu.edu/~burkardt/data/mtl/mtl.html.  

OBJShape’s design, and its use in Java ME,  requires that a OBJ model consist of a 
single, relatively simple shape which utilizes a single material and/or texture. If the 
model’s vertex count reaches the mid-thousands, then there's a good chance that 
OBJShape will fail, by exceeding Java ME's memory limit for array sizes. 

The shape should have its y-axis vertically aligned, so it will appear upright in the 
Java 3D and JOGL-ES applications; some modeling packages orientate the y-axis to 
point out of the screen. Depending on the package, it may also be necessary to specify 
that the model’s material settings be saved in a separate MTL file. 

 

 

2.  Using ObjView 
Before ObjView can be called, Java 3D must be installed  – it's an extension to Java 
SE, available from https://java3d.dev.java.net/.  

Don't be (too) concerned if you don't know Java 3D. ObjView is a utility to generate 
the necessary JOGL-ES data structures, so there's no real need to understand how it 
works. However, if you are interested in Java 3D, then consider my website, “Killer 
Game Programming in Java” at http://fivedots.coe.psu.ac.th/~ad/jg/. ObjView is 
derived from an example in Chapter 16, “Loading and Manipulating External 
Models”. 

ObjView is started by supplying it with a OBJ filename: 
java ObjView cube.obj 

cube.obj and its MTL file, should be in the subdirectory “Models/” below the 
directory holding ObjView.java.  



Java Prog. Techniques for Games. JOGL-ES Chapter 2. Loading OBJs Draft #1 (27th Apr. 07) 

4 © Andrew Davison 2007 

The OBJ file will be displayed on screen as shown in Figure 3. 

 
Figure 3. Cube.obj in ObjView 

 

The user's viewpoint can be moved via combinations of mouse drags and control 
keys. Dragging while pressing the main mouse button rotates the viewpoint. Dragging 
while pressing the second mouse button (or the ALT key and the main mouse button) 
zooms the viewpoint in or out. The third mouse button (or the shift key and the main 
mouse button) translates the view. 

ObjView relies on the Java 3D library class ObjectFile to load the model. ObjectFile 
understands a small (but useful) subset of the OBJ and MTL formats (as detailed in 
ObjectFile’s class documentation). ObjView will raise an exception if supplied with a 
file using OBJ commands unknown to ObjectFile. For example: 
 
> java ObjView cube.obj 
Loading OBJ model from Models/cube.obj 
Could not parse the contents of Models/cube.obj 
com.sun.j3d.loaders.ParsingErrorException: Unrecognized token, line 4 
> 
 
Such errors can be fixed by editing the OBJ file (cube.obj in this case). Line 4 of that 
file is: 
o Cube_Cube 

“o” is an OBJ command for specifying a shape’s name that ObjectFile doesn’t 
recognize. The solution is to comment away the line: 
# o Cube_Cube 

Now ObjView will happily process cube.obj. 

 

2.1.  How ObjView Works 

ObjView converts each model found in the OBJ file into a Java 3D Shape3D node. 
Below that node are Java 3D Geometry and Appearance nodes. The loading process 
triangulates and stripifies the model, so the Geometry node will be a Java 3D 
TriangleStripArray instance.  



Java Prog. Techniques for Games. JOGL-ES Chapter 2. Loading OBJs Draft #1 (27th Apr. 07) 

5 © Andrew Davison 2007 

A triangle strip is a series of triangles that share vertices: a triangle is built using two 
vertices from the previous triangle, plus one new vertex. Figure 4 shows the general 
idea. 

Figure 4. A Triangle Strip. 

 

Triangle 1 (tri 1) is defined using the points (0,1,2), and triangle 2 (tri 2) reuses points 
1 and 2, only requiring a new vertex for point 3. The triangle strip is collectively the 
points {0,1,2,3,4,5}. In general, a strip of n vertices defines n-2 triangles. This is a big 
improvement over the usual encoding of three points per triangle, which only allows 
n/3 triangles to be specified. 

The points in a model represent multiple triangle strips, requiring a strips index, 
stating where a given strip begins and ends in the points data. The strips index is 
implemented by storing the lengths of consecutive strips in an array. 

Point data in Java 3D’s TriangleStripArray is interleaved, with each ‘point’ 
represented by a group of values specifying its textures coordinates, color coordinates, 
normals, and vertices.  However, since the OBJ file format doesn't support color 
coordinates, that information is absent from ObjView's data. 

The contents of the points data is affected by the model's design. For instance, if the 
model doesn't use texturing, then there will be no texture coordinates in the data set. If 
the model only uses material colors (e.g. ambient and diffuse colors), that information 
will be present in the shape's Appearance node. 

 

2.2.  The Generated JOGL-ES Data 

ObjView extracts the points data and material information from the shape, and writes 
them to examObj.txt, in the form of several arrays and variables.  

The data structures falls into three groups: model transformations, model coordinates, 
and material settings. 

The model transformations data: 

• private static final float xCenter, yCenter, zCenter;  
These three variables store the center point of the model, which is used by 
OBJShape to move the model to the origin at render time. 

• private static final float scaleFactor; 
This variable is used by OBJShape to scale the model so its longest dimension is 1 
unit in length. 

The data related to the model’s coordinates: 



Java Prog. Techniques for Games. JOGL-ES Chapter 2. Loading OBJs Draft #1 (27th Apr. 07) 

6 © Andrew Davison 2007 

• private static final byte[] verts; 
This array stores the vertices for the model, with each x, y, and z value scaled to 
be between -128 and 127 so it will fit into a byte. This saves space, but with some 
loss of positional accuracy. The vertices will form triangle strips when rendered. 

• private static final boolean hasNormals; 
This boolean will be true or false depending on if the model uses normals. 

• private static final byte[] normals; 
This array contains the normal values for the model, scaled to be between -128 
and 127 so each one will fit into a byte. The array may be empty, meaning that the 
model doesn't have normals. In that case, hasNormals will be false. 

• private static final boolean hasTexture; 
This boolean will be true or false depending on if the model uses texture 
coordinates. 

• private static final float[] texCoords; 
This array holds the model’s texture coordinates, in the form of floats between 0 
and 1. This array may have no values, which means the model doesn't use 
texturing. In that case, hasTexture will be false. 

• private static final int[] strips; 
This array contains the number of vertices in each triangle strip. 

The data related to material settings: 

• private static final String TEX_FNM; 
This string is assigned the name of the file containing the texture image. ObjView 
‘guesses’ the name, since the Shape3D node for a model doesn’t include filename 
information. The guess is the name of the OBJ file, with a ".png" extension.  

• private static final float[] ambientMat, emissiveMat, diffuseMat, 
specularMat; 
These four arrays hold the RGBA values for the ambient, emissive, diffuse, and 
specular properties of the shape’s material. 

• private static final float shininess; 
This variable contains the material’s shininess value, which can range from 0 to 
128. 

 

2.3.  Data Structures for the Cube 

The data output by ObjView for cube.obj is shown below. The cube utilizes normals, 
a green material, and no texture coordinates. 
 
// position and scaling info  
private static final float xCenter = -0.5f; 
private static final float yCenter = -0.5f; 
private static final float zCenter = -0.5f; 
private static final float scaleFactor = 0.003921569f; 
 
// verts coords [72 values/3 = 24 points]  
private static final byte[] verts = { 
  -128,-128,-128,  -128,127,-128,  127,-128,-128,  127,127,-128, 
   127,-128,-128,   127,127,-128,  127,-128,127,   127,127,127, 



Java Prog. Techniques for Games. JOGL-ES Chapter 2. Loading OBJs Draft #1 (27th Apr. 07) 

7 © Andrew Davison 2007 

   127,127,127,     127,127,-128, -128,127,127,   -128,127,-128, 
  -128,-128,127,   -128,127,127,  -128,-128,-128, -128,127,-128, 
  -128,-128,127,   -128,-128,-128, 127,-128,127,   127,-128,-128, 
   127,-128,127,    127,127,127,  -128,-128,127,  -128,127,127   
};  // end of verts[] 
 
private static final boolean hasNormals = true; 
 
// normals coords [72 values/3 = 24 points]  
private static final byte[] normals = { 
  0,0,-128,  0,0,-128,  0,0,-128,  0,0,-128, 
  127,0,0,   127,0,0,   127,0,0,   127,0,0, 
  0,127,0,   0,127,0,   0,127,0,   0,127,0, 
 -128,0,0,  -128,0,0,  -128,0,0,  -128,0,0, 
  0,-128,0,  0,-128,0,  0,-128,0,  0,-128,0, 
  0,0,127,   0,0,127,   0,0,127,   0,0,127 
};  // end of normals[] 
 
private static final boolean hasTexture = false; 
private static final float[] texCoords = {};   // not used 
 
// an array holding triangle strip lengths 
private static final int[] strips = { 
    4, 4, 4, 4, 4, 4 
};  // (24 points) 
 
 
// materials  
private static final String TEX_FNM = "";  // not used 
 
private static final float[] ambientMat = {0.3f, 0.3f, 0.3f, 1.0f}; 
private static final float[] emissiveMat = {0.0f, 0.0f, 0.0f, 1.0f}; 
private static final float[] diffuseMat = {0.0f, 1.0f, 0.0f, 1.0f}; 
private static final float[] specularMat = {0.5f, 0.5f, 0.5f, 1.0f}; 
private static final float shininess = 96.0f; 
 

The original cube has sides of 1 unit, and is centered on the origin.  

The generated vertices in verts[] are scaled to be between -128 and 127, which 
introduces some inaccuracy into the cube’s position. This is shown by the values for 
the cube’s center, (-0.5, -0.5, -0.5). The scale factor, 0.003921569f, will reduce the 
longest dimension of the cube (255 units) to 1 unit at render time, which will adjust 
the center point to be very close to the origin. 

The strips[] array indicates that the 24 vertices in verts[] are combined into six faces, 
with each face drawn using a triangle strip of four points. This is the same encoding 
technique that I used in the previous chapter, except that the faces here are specified 
in a different order. For example, the first four coordinates in verts[] define the 
triangle strip for the back face of the cube, and the next four are for the right face. 

The normals[] array is organized into faces as well, with the same normal applied to 
the four points of each face. The first four normals specify a negative z-axis direction 
for the back face, and the next four point along the positive x-axis for the right face. 

The important material variables in this example are ambientMat and diffuseMat, 
which sets the cube’s ambient color to be dark grey and its diffuse color to be green.  

 



Java Prog. Techniques for Games. JOGL-ES Chapter 2. Loading OBJs Draft #1 (27th Apr. 07) 

8 © Andrew Davison 2007 

3. The OBJShape class 

The basic OBJShape class isn’t functioning code since it doesn’t contain the data 
structures for the shape it’s supposed to render. These need to be manually copied into 
it from examObj.txt before OBJShape will compile and run. 

OBJShape is very similar to the TexCube class from the previous chapter since it 
performs much the same duties. The OBJShape constructor uses the pasted-in 
coordinates arrays (verts[], normals[], etc) to create the buffers employed by JOGL-
ES. The public draw() method renders those buffers. 

 

3.1. Building the Shape 

The constructor stores the position and scaling information used to move the shape 
from the origin and changes its default size. It also creates buffers for the shape’s 
vertices, normals, and texture coordinates.  
 
// globals 
private GL10 gl; 
 
// buffers for the model data arrays 
private ByteBuffer vertsBuf;   // vertices 
private ByteBuffer normsBuf;   // normal coords 
private FloatBuffer tcsBuf;    // tex coords (as floats) 
 
private int texNames[];   // for the texture name 
private float xPos, yPos, zPos;  // position of model's center 
private float scale; 
 
 
public OBJShape(GL10 gl, float x, float y, float z, float sc) 
// (x,y,z) is the model's position, and sc the scaling factor 
{ 
  this.gl = gl; 
  xPos = x; yPos = y; zPos = z; 
  scale = sc; 
 
  // create vertices buffer 
  vertsBuf = ByteBuffer.allocateDirect(verts.length); 
  vertsBuf.put(verts).rewind(); 
 
  if (hasNormals) {   // create normals buffer 
    normsBuf = ByteBuffer.allocateDirect(normals.length); 
    normsBuf.put(normals).rewind(); 
  } 
    
  if (hasTexture) {  // create texture data 
    ByteBuffer bb = ByteBuffer.allocateDirect(texCoords.length * 4); 
    tcsBuf = bb.asFloatBuffer(); 
    tcsBuf.put(texCoords).rewind(); 
 
    loadTexture(TEX_FNM); 
 
    // generate a texture name 
    texNames = new int[1]; 
    gl.glGenTextures(1, texNames, 0);  
  } 



Java Prog. Techniques for Games. JOGL-ES Chapter 2. Loading OBJs Draft #1 (27th Apr. 07) 

9 © Andrew Davison 2007 

}  // end of OBJShape() 
 

The code related to the normal and texture coordinates buffers is only executed if the 
shape has normals and texture coordinates. 

The vertices and normals are stored in ByteBuffers, which is made possible by storing 
the original float values as integers between -128 and 127. However, there’s no 
similar mapping possible for texture coordinates (which are floats between 0 and 1). 
Therefore, a FloatBuffer is employed to store the texture coordinates, created by 
mapping a float format over a ByteBuffer: 
 
ByteBuffer bb = ByteBuffer.allocateDirect(texCoords.length * 4); 
tcsBuf = bb.asFloatBuffer(); 
 

This approach ensures that the buffer is direct, which is required by the 
GL10.glDrawArrays() method. A direct buffer can be manipulated directly by the 
Java runtime system, without the use of buffer copying. ByteBuffer.allocateDirect() 
creates the direct byte buffer, and ByteBuffer.asFloatBuffer() retains this mode, while 
letting the buffer be treated as a container for floats. 

The drawback of using a float buffer is its size – 4 bytes are needed for each value. 
There is one case when texture coordinates can be stored as bytes, which is employed 
by the cube in the previous chapter: if all the texture coordinate values are either 0 or 
1, then they can be stored as integers in the byte buffer. 

The loadTexture() method called from the constructor is unchanged from the last 
chapter. The texture is loaded as an Image object, and each pixel is stored as three 
bytes in a global ByteBuffer called texBuf. 

 

3.2.  Drawing the Shape 

The draw() method begins by enabling the vertices, normals, and texture coordinates 
buffers, and setting the texture and material parameters. GL10.glDrawArrays() draws 
the shape, and the method finished by disabling the buffer capabilities and texturing. 
 
public void draw() 
{ 
  gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); 
  gl.glVertexPointer(3, GL10.GL_BYTE, 0, vertsBuf);  // use verts 
 
  if (hasNormals) {  // use normals 
    gl.glEnableClientState(GL10.GL_NORMAL_ARRAY); 
    gl.glNormalPointer(GL10.GL_BYTE, 0, normsBuf);  
  } 
 
  if (hasTexture) {  // use texturing 
    gl.glEnable(GL10.GL_TEXTURE_2D);  
    gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);  
    gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, tcsBuf); 
    setTexture(); 
  } 
 
  setMaterial(); 
 
  gl.glPushMatrix(); 



Java Prog. Techniques for Games. JOGL-ES Chapter 2. Loading OBJs Draft #1 (27th Apr. 07) 

10 © Andrew Davison 2007 

 
    // scale the model and move it using the user's settings 
    gl.glTranslatef(xPos, yPos, zPos);   // move to (x,y,z) pos 
    if (scale != 1.0f) 
      gl.glScalef(scale, scale, scale);  // uniform scaling 
 
    // center and scale the model 
    gl.glScalef(scaleFactor, scaleFactor, scaleFactor);  
    gl.glTranslatef(-xCenter, -yCenter, -zCenter);  // move to origin 
 
    int pos = 0; 
    int stripLen; 
    for (int i = 0; i < strips.length; i++) {  // draw each strip 
      gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, pos, strips[i]);   
                // vertices, (normals,) (tex coords) for the strip 
      pos += strips[i]; 
    } 
 
  gl.glPopMatrix(); 
 
  gl.glDisableClientState(GL10.GL_VERTEX_ARRAY); 
  gl.glDisableClientState(GL10.GL_NORMAL_ARRAY); 
  gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);  
 
  gl.glDisable(GL10.GL_TEXTURE_2D); 
}  // end of draw() 
 

The call to GL10.glTexCoordPointer() uses the data type GL10.GL_FLOAT since the 
buffer is being manipulated as a sequence of floats. 

The GL10.glDrawArrays() calls are preceded by two groups of translations and 
scalings. The first applies the values supplied in the constructor, while the second 
group places the shape at the origin and scales it to be at most 1 unit long in its 
longest dimension. The ordering of these calls is important.  

Conceptually, the user sees the shape transformations (translations, rotations, and 
scalings) in reverse order to their execution ordering in the code. From the user’s 
point-of-view, first the shape is moved to the origin and given unit length, then scaled 
to the desired size and moved to the user-supplied position (at (xPos, yPos, zPos)). 
The latter scaling is applied when the object is centered at the origin, so doesn’t affect 
the user-specified translation which is applied relative to the object’s center. 

The transformations are nested between calls to GL10.glPushMatrix() and 
GL10.glPopMatrix() so they only apply to the shape. 

 

Textures and Materials 
The setTexture() method is unchanged from previously:  
 
private void setTexture() 
{ 
  gl.glBindTexture(GL10.GL_TEXTURE_2D, texNames[0]);  // use tex name 
 
  // specify the texture for the currently bound tex name 
  gl.glTexImage2D(GL10.GL_TEXTURE_2D, 0, GL10.GL_RGB,  
                  imWidth, imHeight, 0,  
                  GL10.GL_RGB, GL10.GL_UNSIGNED_BYTE, texBuf); 



Java Prog. Techniques for Games. JOGL-ES Chapter 2. Loading OBJs Draft #1 (27th Apr. 07) 

11 © Andrew Davison 2007 

 
  // set the minification/magnification techniques 
  gl.glTexParameterx(GL10.GL_TEXTURE_2D,  
               GL10.GL_TEXTURE_MIN_FILTER, GL10.GL_LINEAR); 
  gl.glTexParameterx(GL10.GL_TEXTURE_2D,  
               GL10.GL_TEXTURE_MAG_FILTER, GL10.GL_LINEAR); 
} // end of setTexture() 
 

It binds the shape’s texture ID to the GL10 state, then links the shape’s texture buffer 
to that ID. This means that the texture will be used when the shape’s texture 
coordinates are processed by GL10.glDrawArrays(). 

setMaterial() applies the material property arrays generated by ObjView for ambient, 
diffuse, specular, and emissive lighting, and sets the shininess value. 
 
private void setMaterial() 
{ 
  gl.glMaterialfv(GL10.GL_FRONT_AND_BACK,  
                          GL10.GL_AMBIENT, ambientMat, 0); 
  gl.glMaterialfv(GL10.GL_FRONT_AND_BACK,  
                          GL10.GL_DIFFUSE, diffuseMat, 0); 
  gl.glMaterialfv(GL10.GL_FRONT_AND_BACK,  
                          GL10.GL_SPECULAR, specularMat, 0); 
  gl.glMaterialf(GL10.GL_FRONT_AND_BACK,  
                          GL10.GL_SHININESS, shininess); 
  gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, 
                          GL10.GL_EMISSION, emissiveMat, 0); 
}  // end of setMaterial() 
 

 



Java Prog. Techniques for Games. JOGL-ES Chapter 2. Loading OBJs Draft #1 (27th Apr. 07) 

12 © Andrew Davison 2007 

4.  The ViewerES Application 

ViewerES shows how OBJShape variants can be used in a JOGL-ES application to 
load, position, scale, and display OBJ models. Figure 1 shows a single model loaded 
into ViewerES, and Figure 2 has two models (a penguin and a hand), More models 
can be easily added to ViewerES (at the price of slower rendering times). 

The class diagrams for the version of ViewerES with a penguin and hand are given in 
Figure 5. Only the public methods are shown. 

 
Figure 5. ViewerES Class Diagrams 

 

The ViewerES MIDlet starts the ViewerGameCanvas thread and places it on-screen. 
ViewerGameCanvas employs the same animation algorithm as the RotBoxES 
example from the last chapter. It also reuses KeyCamera and Camera, and a very 
slightly modified version of the Floor class. 

HandModel and PenguinModel are renamed copies of the OBJShape class. ObjView 
was run twice to generate the data for these classes, once with a hand model, and then 
with a penguin. The data structures output to examObj.txt were pasted into renamed 
copies of OBJShape. 

 

 



Java Prog. Techniques for Games. JOGL-ES Chapter 2. Loading OBJs Draft #1 (27th Apr. 07) 

13 © Andrew Davison 2007 

4.1. Animating the Scene 

The run() method in ViewerGameCanvas is unchanged from the previous chapter: 
 
public void run() 
/* Contains three stages: initialization, animation loop, shutdown. 
   The animation loop has three parts: update, draw, maybe sleep. 
*/ 
{ 
  if (!initGraphics()) 
    return;   // give up if there's an error during initialization 
 
  initScene(); 
 
  long startTime; 
  while (isRunning) { 
    startTime = System.currentTimeMillis(); 
 
    keyCamera.update( getKeyStates() ); 
    drawScene(); 
 
    frameDuration = System.currentTimeMillis() - startTime; 
    try { // sleep a bit maybe, so one iteration takes PERIOD ms 
      if (frameDuration < PERIOD) 
        Thread.sleep(PERIOD - (int)frameDuration);  
    } 
    catch (InterruptedException e){} 
  } 
 
  shutdown(); 
} // end of run() 
 

The changes required to display the models are located deep inside initScene() and 
drawScene().  

 

4.2.  Scene Initialization 

The creation of the hand and penguin shape instances is carried out in createScenery() 
(which is called from initScene()).  
 
// globals 
private Floor floor; 
private PenguinModel penguin;   // the penguin model 
private HandModel hand;         // the hand model 
 
 
private void createScenery() 
// create the floor and the OBJ models 
{ 
  floor = new Floor(gl, "/bigGrid.png", 8);   // 8 by 8 size 
 
  hand = new HandModel(gl, 1.0f, 1.5f, -1.0f, 3.0f);  
                          // (x, y, z) and scale 
  penguin = new PenguinModel(gl, -1.0f, 0.5f, 1.0f, 1.0f); 
} // end of createScenery() 
 



Java Prog. Techniques for Games. JOGL-ES Chapter 2. Loading OBJs Draft #1 (27th Apr. 07) 

14 © Andrew Davison 2007 

HandModel and PenguinModel are renamed versions of OBJShape after I had added 
the data structures for the hand and penguin model to them.  

HandModel’s input arguments specify that it be positioned at (1, 1.5, -1) and enlarged 
by a factor of three, while the penguin is moved to (-1, 0.5, 1) and not scaled. The 
models’ (X, Z) positions can be confirmed by looking at the floor grid in Figure 2. 
The y-axis values were arrived at by a process of trial-and-error so the base of the 
models would appear to be resting on the floor’s surface. 

 

4.3.  Scene Rendering 

Only the 3D drawing code needs adjusting inside drawSceneGL() (which is called 
from drawScene()). 
 
private void drawSceneGL() 
// draw the scene (the camera, the light source, floor, the models) 
{ 
  // wait until OpenGL ES is available before starting to draw 
  egl.eglWaitNative(EGL10.EGL_CORE_NATIVE_ENGINE, g2d); 
 
  // clear color and depth buffers 
  gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT); 
 
  // set modeling and viewing transformations 
  gl.glMatrixMode(GL10.GL_MODELVIEW); 
  gl.glLoadIdentity(); 
 
  keyCamera.position();   // position the camera 
 
  // set light direction 
  gl.glLightfv(GL10.GL_LIGHT0, GL10.GL_POSITION, LIGHT_DIR, 0); 
 
  floor.draw(); 
  hand.draw(); 
  penguin.draw(); 
 
  // wait until all Open GL ES tasks are finished 
  gl.glFinish();   
  egl.eglWaitGL(); 
  } // end of drawSceneGL() 
 

The only change is to call draw() for the HandModel and PenguinModel instances: 
  hand.draw(); 
  penguin.draw(); 

The draw() method for Floor has been changed slightly. The method now starts by 
disabling the scene’s light, and switches it back on at the end: 
 
public void draw()  // for Floor 
{ 
  gl.glDisable(GL10.GL_LIGHTING);    // disable lighting 
 
  // draw the floor... 
 
  gl.glEnable(GL10.GL_LIGHTING);      // switch lighting back on 



Java Prog. Techniques for Games. JOGL-ES Chapter 2. Loading OBJs Draft #1 (27th Apr. 07) 

15 © Andrew Davison 2007 

}  // end of draw() 
 

When the floor isn’t affected by the lighting, its texture is rendered more clearly. The 
absence of light also means that the floor’s data structures don’t need to include 
normal values. 

 

5.  Displaying Multiple Shapes 

When ObjView detects multiple shapes in a single OBJ file, each one is converted to 
a separate Shape3D node with its own Geometry and Appearance nodes. Several 
copies of the JOGL-ES data structures are output, one set for each shape.  

OBJShape is designed to only process the data structures for one shape. This means 
that multiple shapes output by ObjView require multiple copies of OBJShape, one for 
each shape. The issues of scaling and positioning must also be considered.  

The vertices of every shape are scaled to between -128 and 127. This means that 
shapes which are different sizes in the OBJ file will be rendered at about the same size 
in ViewerES. To overcome this, the user must supply suitable scaling factors when 
the shape’s constructor is called from ViewerES. 

The other problem is that the relative positions of the shapes will be wrong in 
ViewerES. This is due to each OBJShape instance placing its shape at the origin by 
default. This can be fixed by supplying position coordinates when the OBJShape 
versions are created in ViewerES. 

 

6.  Large Models 

A serious concern is that the ObjView generates very long arrays when supplied with 
medium-to-large models. For example, I had hoped to load a human figure into 
ViewerES (Figure 6 shows it displayed by ObjView).  

Figure 6. A Figure in ObjView. 

 

When supplied with the model, ObjView generates verts[] and normals[] arrays 
holding 9600 integers. These arrays are too big for the WTK, which reports a “code 
too large” error message when it tries to compile verts[]. Unfortunately, the emulator 
only allows an array to be at most 32 KB large.  



Java Prog. Techniques for Games. JOGL-ES Chapter 2. Loading OBJs Draft #1 (27th Apr. 07) 

16 © Andrew Davison 2007 

Currently, when ObjView outputs an array with 4000 elements or more, it prints a 
warning message to the screen, and inserts a comment next to the offending array 
written into examObj.txt. 

 


