
Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

1 © Andrew Davison 2007 

 

JOGL 3 (N17). Picking on the Models 
 

This chapter continues using the 3D world of chapter 16, but as a setting to 
demonstrate four new coding techniques: 

• the loading and positioning of 3D models created using the Wavefront OBJ 
file format; 

• the selection (picking) of objects in the scene by clicking on them with the 
mouse; 

• 3D sound, in this case the chirping of a penguin, which varies as the user 
moves around the scene (nearer and further from a penguin model). It’s 
implemented using JOAL and my JOALSoundMan class introduced in 
chapters 13 and 14 ??; 

• fog shrouding the scene, making it harder to find the models. 

Figures 1 and 2 show the TourModelsGL application without the fog, and with it. The 
four OBJ models are a penguin (a mesh wrapped in a single texture), a couch 
(employing a single red material), a rose in a vase with several different colors, and a 
racing car decorated with several colors and textures. 

 
Figure 1. TourModelsGL with a Clear Blue Sky. 

 
Figure 2. TourModelsGL after the Fog has Descended. 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

2 © Andrew Davison 2007 

 

TourModelsGL reuses the checkerboard floor from the previous chapter, but I’ve 
removed the skybox, billboard trees, the rotating sphere, the splash screen and the 
game over message in order to simplify the code. 

I’ll start this chapter by describing the OBJ format and the key elements of my 
OBJLoader package, and illustrate its use in a simple model viewer, ModelLoaderGL 
(see Figure 3). 

 
Figure 3. Displaying a Model. 

 

The model’s name is specified on the command line, along with the display size and 
whether the model should be rotated.  

 

 

1.  The OBJ File Format 

The complete Wavefront OBJ file format offers many advanced elements, such as 
free-form curves and surfaces, rendering interpolation and shadowing. However, most 
OBJ exporters and loaders (including the Java 3D loader from chapter 7 ??) only 
support polygonal shapes. A polygon's face is defined using vertices, with the 
optional inclusion of normals and texture coordinates. Faces can be grouped together, 
and different groups can be assigned materials made from ambient, diffuse and 
specular colors, and textures. The material information is stored in a separate MTL 
text file. 

A detailed list of OBJ features can be found at 
http://www.csit.fsu.edu/~burkardt/txt/obj_format.txt, and MTL at 
http://www.csit.fsu.edu/~burkardt/data/mtl/mtl.html, but I’ll restrict my description to 
the core elements found in the Java 3D loader (accessed via the ObjectFile class). I’ll 
leave out some of the unnecessary details, which can be found in the ObjectFile class 
documentation. 

An OBJ file is a text file consisting of lines of statements, comments, and blank lines. 
Comments start with “#”, and are ignored. Each statement begins with a token 
indicating how to process the data that follows it on the line. There are three types of 
basic OBJ statements: shape-related, those for grouping, and ones for using materials. 
I’ll briefly explain the format of each. 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

3 © Andrew Davison 2007 

 

1.1.  Shape Statements 
v float float float 

The three floats specify a vertex's position. The first vertex listed in the OBJ file is 
assigned an index value of 1, and subsequent vertices are numbered sequentially.  
vn float float float 

The floats specify a normal. The first normal in the file is assigned index 1, and 
subsequent normals are numbered sequentially.  
vt float float [float] 

A 2D or 3D texture coordinate. The first texture coordinate in the file is index 1, and 
subsequent textures are numbered sequentially.  
f int int int ...  

or f int/int int/int int/int ...  

or f int/int/int int/int/int int/int/int ...  

A polygonal face is defined as a sequence of vertex indices (the first example), or 
vertices and textures (the second format), or vertices, textures, and normal indices (the 
last format). I’ll call each collection of indices (e.g. int/int/int) a term. 

When a term has three elements, it’s possible for the texture indices to be left out if 
they haven’t been defined for the model, resulting in the face statement: 
f int//int  int//int  int//int ...  

The number of terms making up a face depends on it’s shape; often it’s a triangle 
(which needs three terms to define it), or a quadrilateral (4 terms). 

The first face in the file is assigned index 1, and subsequent faces are numbered 
sequentially. 

 

1.2.  Grouping Statements 
g name  

Faces defined after a “g” statement will be added to the group called “name”. Named 
groups are a useful way of referring to a collection of faces; for example, Java 3D 
maps each named group to a Shape3D object at load time. This makes it easier to 
apply transformations or appearance changes to sub-components of the model. 

s int or s off  

If “vn” statements aren’t used to specify vertex normals, then an “s” statement can be 
utilized to collect faces into “smoothing” groups. Faces in the same smoothing group 
have their normals calculated as if they all form part of the same surface.  

 

1.3.  Material Use Statements 
mltlib filename 

The MTL file named in the “mltlib” statement will contain material definitions which 
can be used in the rest of the OBJ file. 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

4 © Andrew Davison 2007 

usemtl name  

All subsequent faces will be rendered with the named material, until the next “usemtl” 
statement. 

 

1.4.  The MTL File Format 

A MTL file is a text file consisting of lines of statements, comments, and blank lines. 
Comments start with “#”, and are ignored. The basic material statements are:  
Ka r g b  

It defines the ambient RGB color of the material as three floats.  
Kd r g b  

The diffuse RGB color of the material.  
Ks r g b  

The specular color of the material; the default is (1.0f, 1.0f, 1.0f);  
d alpha  

or Tr alpha 

The transparency of the material. The default is 1.0f. Java 3D doesn’t support either 
of these statement. 
Ns s 

The shininess of the material. The default is 0.0f, no shininess; 
illum n 

The illumination mode. If n is 1 then the material has no specular highlights, and the 
“Ks” value is ignored. If n is 2 then specular highlights are present, and will utilize the 
“Ks” value. When n is 0, lighting is disabled. 
map_Ka filename  

The named file will contain a texture. The MTL specification states that this should be 
an ASCII dump of RGB values, but most tools (including the Java 3D loader) also 
support standard image files (GIF, JPG, PNG). The image must have a size which is a 
power of 2 (e.g. 64x64, 128x128). 

 

 

2.  The OBJ File Loader 

The OBJLoader package can load models and materials from simple OBJ and MTL 
files. The shape statements (“v”, “vt”, “vn”, “f”), and material statements (“mtllib” 
and “usemtl”) are understood, but grouping operations are ignored (“g” and “s”). 
MTL statements are processed, except for transparency (“d”, “Tr”) and illumination 
(“illum”). Textures and colors can’t be blended together – the presence of a texture 
for a material (“map_Ka”) disables any color settings (e.g. “Ka”, “Kd”, “Ks”) 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

5 © Andrew Davison 2007 

Class diagrams for the OBJLoader package are shown in Figure 4. 

 
Figure 4. The Class Diagrams for the OBJLoader Package . 

 

The OBJModel class loads the OBJ model, centers it at the origin and scales it to a 
size supplied in its constructor. The OpenGL commands for rendering the model are 
stored in a display list, which are executed by calling OBJModel.draw(). 

The Faces class stores information about each face of the model. When OBJModel is 
constructing the display list, it calls Faces.renderFace() to render a face in terms of the 
loaded model’s vertices, texture coordinates, and normals. 

The Materials class loads material details from the MTL file, storing them as Material 
objects in an ArrayList.  

FaceMaterials stores the face indices where materials are first used. This information 
is used to load the right material when a given face needs to be drawn. 

ModelDimensions holds the smallest and largest coordinates for the model along its 
three dimensions. These are utilized to calculate the model's width, height, depth, its 
largest dimension, and its center point. ModelDimensions is employed by OBJModel 
to resize and center the loaded model. 

Tuple3 is a general-purpose class for storing a 3 element tuple. It’s used in several 
places in the package to store vertices, normals, and texture coordinates as Tuple3 
objects. 

While writing the OBJLoader package, I got a lot of help and inspiration from 
examining the loaders written by Evangelos Pournaras in his JautOGL game 
(http://today.java.net/pub/a/today/2006/10/10/development-of-3d-multiplayer-racing-



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

6 © Andrew Davison 2007 

game.html and https://jautogl.dev.java.net/) and Kevin Glass in his Asteroids tutorial 
(available at http://www.cokeandcode.com/asteroidstutorial). 

 

2.1.  Reading in the OBJ File 

OBJModel is responsible for reading in the OBJ file, line-by-line, and processing the 
statements it finds. The shape data (the vertices, texture coordinates, and normals) is 
stored in ArrayLists of Tuple3 objects: 
 
private ArrayList<Tuple3> verts; 
private ArrayList<Tuple3> normals; 
private ArrayList<Tuple3> texCoords; 
 

OBJModel also initializes the other package objects: 
 
private Faces faces;              // holds model faces 
private FaceMaterials faceMats;   // materials used by the faces 
private Materials materials;      // materials defined in MTL file 
private ModelDimensions modelDims;  // model dimensions 
 

The parsing of the OBJ file is carried out in readModel(): 
 
private void readModel(BufferedReader br) 
{ 
  boolean isLoaded = true;   // hope things will go okay 
 
  int lineNum = 0; 
  String line; 
  boolean isFirstCoord = true; 
  boolean isFirstTC = true; 
  int numFaces = 0; 
 
  try { 
    while (((line = br.readLine()) != null) && isLoaded) { 
      lineNum++; 
      if (line.length() > 0) { 
        line = line.trim(); 
                     
        if (line.startsWith("v ")) {   // vertex 
          isLoaded = addVert(line, isFirstCoord); 
          if (isFirstCoord) 
            isFirstCoord = false; 
        } 
        else if (line.startsWith("vt")) {   // tex coord 
          isLoaded = addTexCoord(line, isFirstTC); 
          if (isFirstTC) 
            isFirstTC = false; 
        } 
        else if (line.startsWith("vn"))    // normal 
          isLoaded = addNormal(line); 
        else if (line.startsWith("f ")) {  // face 
          isLoaded = faces.addFace(line); 
          numFaces++; 
        } 
        else if (line.startsWith("mtllib "))   // load material 
          materials = new Materials( line.substring(7) ); 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

7 © Andrew Davison 2007 

        else if (line.startsWith("usemtl "))   // use material 
          faceMats.addUse( numFaces, line.substring(7));    
        else if (line.charAt(0) == 'g') {  // group name 
          // not implemented 
        } 
        else if (line.charAt(0) == 's') {  // smoothing group 
          // not implemented 
        } 
        else if (line.charAt(0) == '#')   // comment line 
          continue; 
        else 
          System.out.println("Ignoring line " + lineNum +  
                                                " : " + line); 
      } 
    } 
  } 
  catch (IOException e) { 
    System.out.println( e.getMessage() ); 
    System.exit(1); 
  } 
 
  if (!isLoaded) { 
    System.out.println("Error loading model");   
    System.exit(1); 
  } 
} // end of readModel() 
 

The “v”, “vt”, and “vn” statements trigger code that adds a vertex, texture coordinate, 
and a normal Tuple3 object to the verts, texCoords, and normals ArrayLists. For 
example, addVert() adds a tuple to verts, and updates the model dimension's 
information. 
 
private boolean addVert(String line, boolean isFirstCoord) 
{ 
  Tuple3 vert = readTuple3(line);  
                   // store (x,y,z) from “v x y z” in a tuple 
  if (vert != null) { 
    verts.add(vert); 
    if (isFirstCoord) 
      modelDims.set(vert);     // add first coordinate 
    else 
      modelDims.update(vert);  // add a later coordinate 
    return true; 
  } 
  return false; 
} // end of addVert() 
 

In readModel(), a “f” statement is handled by addFace() in the Faces class, and 
“mtllib” triggers the creation of a Materials object which reads in the named MTL 
file. A “usemtl” statement causes the FaceMaterials object to record the current face 
index and the named material. The material will be utilized when that face and 
subsequent ones need to be rendered. 

 

2.2.  Reading a Face 

The Faces object stores information about all the face statements in the OBJ file. 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

8 © Andrew Davison 2007 

The data for a single face is stored in three arrays of vertex, texture coordinate, and 
normal indices; the indices come from the face’s “f” statement.  

For example, if the statement is: 
f 10/12/287 9/14/287 8/16/287 

then the vertex indices array will hold {10, 9, 8}, the texture coordinate indices array 
will contain {12, 14, 16}, and the normal indices array is {287, 287, 287}. 

All the faces data is held in three ArrayLists, called facesVertIdxs, facesTexIdxs, and 
facesNormIdxs. facesVertIdxs stores all the vertex indices arrays, facesTexIdxs all the 
texture coordinate indices arrays, and facesNormIdxs the normal indices arrays. 
 
private ArrayList<int[]> facesVertIdxs;  // for the vertices indices 
private ArrayList<int[]> facesTexIdxs;  // texture coords indices 
private ArrayList<int[]> facesNormIdxs;  // normal indices 
 

The Faces.addFace() method (called from OBJModel.readModel()) pulls the terms 
out of a “f” line, builds arrays for the vertices, texture coordinates, and normals 
indices, and adds those arrays to the ArrayLists.  

Things are complicated by the fact that terms may be missing texture and normal 
information. 
 
public boolean addFace(String line) 
{ 
  try { 
    line = line.substring(2);   // skip the "f " 
    StringTokenizer st = new StringTokenizer(line, " "); 
    int numTokens = st.countTokens();   // number of v/vt/vn tokens 
    // create arrays to hold the v, vt, vn indices 
    int v[] = new int[numTokens];  
    int vt[] = new int[numTokens]; 
    int vn[] = new int[numTokens]; 
 
    for (int i = 0; i < numTokens; i++) { 
      String faceToken = addFaceVals(st.nextToken());   
                                  // get a v/vt/vn token 
 
      StringTokenizer st2 = new StringTokenizer(faceToken, "/"); 
      int numSeps = st2.countTokens();   
                        // how many '/'s are there in the token 
 
      v[i] = Integer.parseInt(st2.nextToken()); 
      vt[i] = (numSeps > 1) ? Integer.parseInt(st2.nextToken()) : 0; 
      vn[i] = (numSeps > 2) ? Integer.parseInt(st2.nextToken()) : 0; 
          // add 0's if the vt or vn index values are missing; 
          // 0 is a good choice since real indices start at 1 
    } 
    // store the indices for this face 
    facesVertIdxs.add(v); 
    facesTexIdxs.add(vt); 
    facesNormIdxs.add(vn); 
  } 
  catch (NumberFormatException e) { 
    System.out.println("Incorrect face index"); 
    System.out.println(e.getMessage()); 
    return false; 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

9 © Andrew Davison 2007 

  } 
  return true; 
}  // end of addFace() 
 

 

2.3.  Reading in a MTL File 

The processing of a MTL file is handled by a Materials object. readMaterials() parses 
the MTL file line-by-line, adding Material objects to a materials ArrayList. 
 
// global 
public ArrayList<Material> materials; 
     // stores the Material objects built from the MTL file data 
 
 
private void readMaterials(BufferedReader br) 
{ 
  try { 
    String line; 
    Material currMaterial = null;  // current material 
 
    while (((line = br.readLine()) != null)) { 
      line = line.trim(); 
      if (line.length() == 0) 
        continue; 
 
      if (line.startsWith("newmtl ")) {  // new material 
        if (currMaterial != null)   // save previous material 
          materials.add(currMaterial); 
 
        // start collecting info for new material 
        currMaterial = new Material(line.substring(7)); 
      } 
      else if (line.startsWith("map_Kd ")) {  // texture filename 
        String fileName = MODEL_DIR + line.substring(7); 
        currMaterial.loadTexture( fileName ); 
      } 
      else if (line.startsWith("Ka "))    // ambient colour 
        currMaterial.setKa( readTuple3(line) ); 
      else if (line.startsWith("Kd "))    // diffuse colour 
        currMaterial.setKd( readTuple3(line) ); 
      else if (line.startsWith("Ks "))    // specular colour 
        currMaterial.setKs( readTuple3(line) ); 
      else if (line.startsWith("Ns ")) {  // shininess 
        float val = Float.valueOf(line.substring(3)).floatValue(); 
        currMaterial.setNs( val ); 
      } 
      else if (line.charAt(0) == 'd') {    // alpha 
        float val = Float.valueOf(line.substring(2)).floatValue(); 
        currMaterial.setD( val ); 
      } 
      else if (line.startsWith("illum ")) { // illumination model  
        // not implemented 
      } 
      else if (line.charAt(0) == '#')   // comment line 
        continue; 
      else 
        System.out.println("Ignoring MTL line: " + line); 
 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

10 © Andrew Davison 2007 

    } 
    materials.add(currMaterial); 
  } 
  catch (IOException e)  
  { System.out.println(e.getMessage());  } 
} // end of readMaterials() 
 

When a “newmtl” statement is encountered, the current Material object is added to the 
materials ArrayList, and a new object is created, ready to be filled with colour and 
texture information read from subsequent statements. 

The “Ka”, “Kd”, “Ks”, “Ns”, and “d” values are passed to the Material object via set 
methods. When readMaterials() sees a “map_Kd” statement, it calls loadTexture() in 
the current Material object: 
 
// in the Material class 
// global  texture info 
private String texFnm; 
private Texture texture; 
 
public void loadTexture(String fnm) 
{ 
  try { 
    texFnm = fnm; 
    texture = TextureIO.newTexture( new File(texFnm), false); 
    texture.setTexParameteri(GL.GL_TEXTURE_MAG_FILTER,  
                                           GL.GL_NEAREST); 
    texture.setTexParameteri(GL.GL_TEXTURE_MIN_FILTER,  
                                           GL.GL_NEAREST); 
  } 
  catch(Exception e) 
  { System.out.println("Error loading texture " + texFnm);  } 
}  // end of loadTexture() 
 

 

2.4.  Recording Material Use 

A subtle aspect of the OBJ format is how materials are linked to faces. After a 
material is named in a “usemtl” statement, all subsequent faces will use it for 
rendering until another “usemtl” line is encountered. For example: 
 
usemtl couch 
f 10/10/287 9/9/287 8/8/287 
f 10/10/287 8/8/287 7/7/287 
f 10/10/287 7/7/287 6/6/287 
f 10/10/287 6/6/287 5/5/287 
   // many more faces ... 
 

All the faces defined after the “usemtl” line will use the “couch” material at render 
time. 

When OBJModel.readModel() encounters a “usemtl” statement, it captures the link by 
passing the current face index and material name to a FaceMaterials object: 

 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

11 © Andrew Davison 2007 

else if (line.startsWith("usemtl "))   // use materials 
   faceMats.addUse( numFaces, line.substring(7));    
 

numFaces contains the current index, and the substring is the material name. 

A hashmap in the FaceMaterials object is employed to connect face indices to 
material names: 
private HashMap<Integer, String>faceMats; 

FaceMaterials.addUse() adds a new face index and material name to faceMats: 
 
public void addUse(int faceIdx, String matName) 
{ 
  // store the face index and the material it uses 
  if (faceMats.containsKey(faceIdx))  // face index already present 
    System.out.println("Face index " + faceIdx +  
                   " changed to use material " + matName); 
 
  faceMats.put(faceIdx, matName); 
 
  // other non-relevant code... 
} // end of addUse() 
 

 

2.5.  Centering and Resizing a Model 

After the OBJ and MTL files have been read in, OBJModel calls centerScale() to 
center the model at the origin, and resize it. The size is either specified in 
OBJModel’s constructor, or defaults to 1 unit. 

centerScale() relies on the ModelDimensions object, which stores the minimum and 
maximum coordinates for the model, and includes methods for calculating the 
model’s largest dimension and center point. 
 
// global 
private float maxSize;     // for scaling the model 
 
private void centerScale() 
{ 
  // get the model's center point 
  Tuple3 center = modelDims.getCenter(); 
 
  // calculate a scale factor 
  float scaleFactor = 1.0f; 
  float largest = modelDims.getLargest(); 
  if (largest != 0.0f) 
    scaleFactor = (maxSize / largest); 
  System.out.println("Scale factor: " + scaleFactor); 
 
  // modify the model's vertices 
  Tuple3 vert; 
  float x, y, z; 
  for (int i = 0; i < verts.size(); i++) { 
    vert = (Tuple3) verts.get(i); 
    x = (vert.getX() - center.getX()) * scaleFactor; 
    vert.setX(x); 
    y = (vert.getY() - center.getY()) * scaleFactor; 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

12 © Andrew Davison 2007 

    vert.setY(y); 
    z = (vert.getZ() - center.getZ()) * scaleFactor; 
    vert.setZ(z); 
  } 
} // end of centerScale() 
 

centerScale() directly modifies the model’s vertices to modify its scale. An alternative 
approach, which may seem more efficient, is to apply translation and scaling 
transformations to the geometry. Unfortunately, a scaling transformation also affects 
the model’s normals so they’re no longer guaranteed to be of unit length. This will 
cause the model’s color to change at render time, and textures to be positioned 
incorrectly. 

 

2.6.  Creating a Display List for the Model 

Once OBJModel has centered and scaled the model, it can render it to a display list. 
Subsequent calls to OBJModel.draw() will execute the list, greatly improving the 
drawing speed. 

OBJModel.drawToList() creates the display list: 
 
// globals 
private int modelDispList;  // the model's display list 
 
 
private void drawToList(GL gl) 
{ 
  modelDispList = gl.glGenLists(1); 
  gl.glNewList(modelDispList, GL.GL_COMPILE); 
 
  gl.glPushMatrix(); 
  // render the model face-by-face 
  String faceMat; 
  for (int i = 0; i < faces.getNumFaces(); i++) { 
    faceMat = faceMats.findMaterial(i); 
                         // get material used by face i 
    if (faceMat != null) 
      materials.renderWithMaterial(faceMat, gl);   
                         // render using that material 
    faces.renderFace(i, gl);            // draw face i 
  } 
  materials.switchOffTex(gl); 
  gl.glPopMatrix(); 
 
  gl.glEndList(); 
} // end of drawToList() 
 

drawToList() draws each face by calling Faces.renderFace() in a loop. Before 
rendering a face, it checks if the face’s index is associated with a material (with 
FaceMaterials.findMaterial()). If a material change is required, then it’s loaded into 
OpenGL by Materials.renderWithMaterial(). 

Texturing may still be enabled at the end of the loop, so a call to 
Materials.switchOffTex() makes sure that it’s switched off, and that the lights are re-
enabled. 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

13 © Andrew Davison 2007 

 

2.7.  Finding a Material 

The FaceMaterial instance, faceMats, stores a hashmap of face indices mapped to 
material names. When FaceMaterial.findMaterial() is called with a face index, the 
retrieval of the associated material name is a fast lookup: 
 
// in the FaceMaterial class 
private HashMap<Integer, String>faceMats; 
    // the face index (integer) where a material is first used 
 
 
public String findMaterial(int faceIdx) 
{ return (String) faceMats.get(faceIdx); }  
 

If the index isn’t in the hashmap, then the method returns null, which is tested for 
back in OBJModel.drawToList(). 

 

2.8.  Rendering with a Material 

If the face that’s about to be rendered has an associated material, then it needs to be 
loaded first.  

Materials.renderWithMaterial() has two types of material to deal with: colors and 
textures. Also, before a new material can be loaded, any existing texturing must be 
disabled. 
 
// in the Materials class 
/* global for storing the material currently being  
   used for rendering */ 
private String renderMatName = null; 
 
 
public void renderWithMaterial(String faceMat, GL gl) 
{ 
  if (!faceMat.equals(renderMatName)) { // is faceMat new? 
    renderMatName = faceMat; 
    switchOffTex(gl);   // switch off any previous texturing 
 
    // set up new rendering material 
    Texture tex = getTexture(renderMatName); 
    if (tex != null)   // use the material's texture 
      switchOnTex(tex, gl); 
    else   // use the material's colors 
      setMaterialColors(renderMatName, gl); 
  } 
}  // end of renderWithMaterial() 
 

renderWithMaterial() checks the new material name (stored in faceMat) with the 
name of the currently loaded material (in renderMatName), and make no changes if 
the names are the same. 

The method doesn’t allow color and texturing to be mixed (i.e. blended). Any face 
color is ignored when a texture is applied. 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

14 © Andrew Davison 2007 

switchOffTex() switches off 2D texturing (and enables the lighting). switchOnTex() 
turns texturing on (and disables lighting).  
 
// global 
private boolean usingTexture = false; 
 
 
public void switchOffTex(GL gl) 
{  
  if (usingTexture) { 
    gl.glDisable(GL.GL_TEXTURE_2D); 
    usingTexture = false; 
    gl.glEnable(GL.GL_LIGHTING); 
  } 
} // end of switchOffTex() 
 
 
private void switchOnTex(Texture tex, GL gl) 
{  
  gl.glDisable(GL.GL_LIGHTING); 
  gl.glEnable(GL.GL_TEXTURE_2D); 
  usingTexture = true; 
  tex.bind(); 
}  // end of switchOnTex() 
 

getTexture() iterates through the materials ArrayList until it finds the named material, 
and retrieves its texture. 
 
// global 
private ArrayList<Material> materials; 
  // stores the Material objects built from the MTL file data 
 
 
private Texture getTexture(String matName)  
{ 
  Material m; 
  for (int i = 0; i < materials.size(); i++) { 
    m = (Material) materials.get(i); 
    if (m.hasName(matName)) 
      return m.getTexture(); 
  } 
  return null; 
} // end of getTexture() 
 

setMaterialColors() performs a similar iteration through materials, but gets the 
Material object to turn on its own colors. 
 
private void setMaterialColors(String matName, GL gl) 
{ 
  Material m; 
  for (int i = 0; i < materials.size(); i++) { 
    m = (Material) materials.get(i); 
    if (m.hasName(matName)) 
      m.setMaterialColors(gl); 
  } 
}  // end of setMaterialColors() 
 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

15 © Andrew Davison 2007 

Material.setMaterialColors() consists of several calls to GL.glMaterialfv() to switch 
on the ambient, diffuse, specular colors for the material, and its shininess. 
 
// in the Material class 
// global colour info 
private Tuple3 ka, kd, ks;  // ambient, diffuse, specular colors 
private float ns, d;        // shininess and alpha 
 
public void setMaterialColors(GL gl) 
{ 
  if (ka != null) {   // ambient color 
    float[] colorKa = { ka.getX(), ka.getY(), ka.getZ(), 1.0f }; 
    gl.glMaterialfv(GL.GL_FRONT_AND_BACK, GL.GL_AMBIENT, colorKa,0); 
  } 
  if (kd != null) {  // diffuse color 
    float[] colorKd = { kd.getX(), kd.getY(), kd.getZ(), 1.0f }; 
    gl.glMaterialfv(GL.GL_FRONT_AND_BACK, GL.GL_DIFFUSE, colorKd,0); 
  } 
  if (ks != null) {   // specular color 
    float[] colorKs = { ks.getX(), ks.getY(), ks.getZ(), 1.0f }; 
    gl.glMaterialfv(GL.GL_FRONT_AND_BACK, GL.GL_SPECULAR,colorKs,0); 
  } 
 
  if (ns != 0.0f)   // shininess 
    gl.glMaterialf(GL.GL_FRONT_AND_BACK, GL.GL_SHININESS, ns); 
 
  if (d != 1.0f) {   // alpha 
    // not implemented 
  } 
} // end of setMaterialColors() 
 

Although the Material object stores an alpha value (in the d variable), I haven’t 
implemented transparency. It would require the use of blending and depth testing, and 
the inclusion of the d value in the three calls to GL.glMaterialfv(). 

 

2.9.  Rendering a Face 

The code for rendering a face is complicated by the use of indices in the OBJ data. 
Each face is defined by a sequence of terms, with each term consisting of indices 
pointing to the actual vertex, texture coordinate, and normal data. For example: 
 
f 104/22/188 114/45/198 78/78/138 
f 81/56/144 104/87/188 78/21/138 
    : 
 

The numbers are indices for the vertices, texture coordinates, and normals data. 

Faces.renderFace()’s task is to draw the ith face of the model. The i value is used to 
access the ith arrays in facesVertIdxs, facesTexIdxs, and facesNormIdxs: 
 
private ArrayList<int[]> facesVertIdxs; 
private ArrayList<int[]> facesTexIdxs; 
private ArrayList<int[]> facesNormIdxs; 
 
The array retrieved from facesVertIdxs contains vertex indices for the ith face. The 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

16 © Andrew Davison 2007 

array extracted from facesTexIdxs holds texture coordinate indices, and the array 
from facesNormIdxs has normal indices. 

The actual data is stored in the verts, normals, or texCoords ArrayLists: 
 
private ArrayList<Tuple3> verts; 
private ArrayList<Tuple3> normals; 
private ArrayList<Tuple3> texCoords; 
 

When an index (e.g. index value j) is read from one of the indices arrays, such as 
facesVertIdxs, renderFace() uses it to access the j-1th tuple in verts. This tuple 
contains the model’s vertex for index j.  

I use j-1 since the OBJ format starts its indices at 1, while the tuples in the verts, 
normals, and texCoords ArrayLists start at position 0.  

Faces.renderFace() is: 
 
// global 
private static final float DUMMY_Z_TC = -5.0f; 
 
public void renderFace(int i, GL gl) 
{ 
  if (i >= facesVertIdxs.size())   // i out of bounds? 
    return; 
 
  int[] vertIdxs = (int[]) (facesVertIdxs.get(i)); 
       // get the vertex indices for face i 
 
  int polytype;  // the shape of the faces 
  if (vertIdxs.length == 3) 
    polytype = gl.GL_TRIANGLES; 
  else if (vertIdxs.length == 4) 
    polytype = gl.GL_QUADS; 
  else 
    polytype = gl.GL_POLYGON; 
 
 
  gl.glBegin(polytype); 
 
  // get the normal and tex coords indices for face i 
  int[] normIdxs = (int[]) (facesNormIdxs.get(i)); 
  int[] texIdxs = (int[]) (facesTexIdxs.get(i)); 
 
  /* render the normals, tex coords, and vertices for face i 
     by accessing them using their indices */ 
  Tuple3 vert, norm, texCoord; 
  for (int f = 0; f < vertIdxs.length; f++) { 
    if (normIdxs[f] != 0) {  // if there are normals, render them 
      norm = (Tuple3) normals.get(normIdxs[f] - 1); 
      gl.glNormal3f(norm.getX(), norm.getY(), norm.getZ()); 
    } 
 
    if (texIdxs[f] != 0) {   // if there are tex coords, render them 
      texCoord = (Tuple3) texCoords.get(texIdxs[f] - 1); 
      if (texCoord.getZ() == DUMMY_Z_TC)  // using 2D tex coords 
        gl.glTexCoord2f(texCoord.getX(), texCoord.getY()); 
      else // 3D tex coords 
        gl.glTexCoord3f(texCoord.getX(), texCoord.getY(),  



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

17 © Andrew Davison 2007 

                                            texCoord.getZ()); 
    } 
 
    vert = (Tuple3) verts.get(vertIdxs[f] - 1);   
                                    // render the vertices 
    gl.glVertex3f(vert.getX(), vert.getY(), vert.getZ()); 
  } 
 
  gl.glEnd(); 
} // end of renderFace() 
 

The vertex, texture coordinates, and normals data is rendered using the GL methods: 
glVertex3f(), glTexCoord2f(), and glNormal3f(). 

If 3D texture coordinates are detected then glTexCoord3f() is called, but only the 2D 
part will be drawn due to the use of 2D texture rendering in switchOnTex().  

OBJ face data may leave out texture coordinate and normal indices. For example, a 
face without texture coordinates will have the form: 
 
f 104//188 114//198 78//138 
f 81//144 104//188 78//138 
   : 
 

If faces don’t use normals or texture coordinates then the indices arrays will contain 
0's. This is tested for in renderFace(), and the calls to glTexCoord2f() and 
glNormal3f() are skipped. 

 

2.10.  Drawing a Model 

The lengthy code needed to create a display list has its payoff in the brevity and speed 
of the drawing operation, OBJModel.draw(): 
 
// in the OBJModel class 
private int modelDispList;  // the model's display list 
 
public void draw(GL gl) 
{  gl.glCallList(modelDispList);  }  
 

draw() is the only public method in OBJModel, aside from its constructors. 

 

 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

18 © Andrew Davison 2007 

3.  Viewing a Model 

Before moving onto TourModelGL, I’ll demonstrate the OBJLoader package by using 
it inside a simple model display application, ModelLoaderGL (shown in action in 
Figure 3). 

ModelLoaderGL utilizes the callback coding approach, described in chapter 15 ??, 
and illustrated by Figure 5. 

 
Figure 5. The Callback Coding Framework. 

 

The ModelLoaderGL JFrame contains a JPanel which holds a GLCanvas. The 
GLCanvas displays the OBJ model, which may be rotating. The model is scaled and 
centered at the origin.  

The canvas’ listener is ModelLoaderGLListener (a subclass of GLEventListener), and 
the canvas' display is updated by an FPSAnimator instance using fixed-rate 
scheduling. 

The simplicity of the application is reflected in the class diagrams for 
ModelLoaderGL in Figure 6 (only the public methods are listed). 

 
Figure 6. Class Diagrams for ModelLoaderGL. 

 

3.1.  Loading the Model 

The name of the model is supplied on the command line, and passed to the 
ModelLoaderGLListener constructor where it’s stored in the global string 
modelName. 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

19 © Andrew Davison 2007 

When init() is called, the model is loaded using its name: 
 
// in the ModelLoaderGLListener class 
// globals 
private String modelName; 
private OBJModel model; 
 
 
public void init(GLAutoDrawable drawable)  
{ 
  GL gl = drawable.getGL(); 
     // other non-relevant lines... 
 
  model = new OBJModel(modelName, maxSize, gl, true); 
} // end of init() 
 

The maxSize value in the OBJModel constructor specifies the maximum size of the 
model's largest dimension. The true argument switches on verbose reporting of the 
model’s details, which includes the number of vertices, normals, and texture 
coordinates found, its dimensions, and colors used. They’re printed to standard 
output. 

 

3.2.  Drawing the Model 

OBJModel.draw() is called in the display() callback method: 
 
public void display(GLAutoDrawable drawable)  
{ 
  GL gl = drawable.getGL(); 
  // other non-relevant lines... 
 
  model.draw(gl);  
  gl.glFlush(); 
} // end of display() 
 

 

4.  Other JOGL Model Loaders 

JautOGL, by Evangelos Pournaras, is a 3D multiplayer racing game with many 
interesting features, such as use of the Full-Screen Exclusive Mode (FSEM), 3D 
sound through JOAL, multiple camera views, and a UDP client-server model 
employing non-blocking sockets 
(http://today.java.net/pub/a/today/2006/10/10/development-of-3d-multiplayer-racing-
game.html and https://jautogl.dev.java.net/). 

The loader part of the game consists of two classes, GLModel and MtlLoader. The 
former is responsible for parsing and displaying the OBJ file, the latter for loading the 
MTL file. Texturing isn’t supported, and coloring is implemented using 
GL.GL_COLOR_MATERIAL and calls to GL.glColor4f(). 

Kevin Glass’ loader is part of his 3D asteroid game tutorial 
(http://www.cokeandcode.com/asteroidstutorial) built using LWJGL (which is quite 
similar to JOGL). He also develops a game framework, utilities for drawing the GUI 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

20 © Andrew Davison 2007 

(e.g. menus), a texture loader, classes for 3D sprites, a particle system, and sound 
based around LWJGL’s binding of OpenAL and JOrbis for decoding OGG files. 

His loader handles “v”, “vt”, “vn”, and “f” OBJ statements, but there’s no MTL 
capability. Instead, a texture is loaded separately, and wrapped around the entire 
model. 

An OBJ loader is under development by Chris Brown at https://jglmark.dev.java.net/. 
As of January 2007, it doesn’t handle materials or textures. 

A 3DS loader can be found at http://joglutils.dev.java.net: the ThreeDS package by 
Greg Rodgers supports colors and textures, but 3DS features such as keyframe 
animation aren’t in place yet.  

As I’ve said before, the NeHe site (http://miklabs.com/) is an excellent resource for 
OpenGL tutorials. Lesson 31 by Brett Porter explains how to build a MilkShape3D 
model loader. Color and texturing is available, but not animation. The JOGL port by 
Nikolaj Ougaard can be found at http://pepijn.fab4.be/?page_id=34. Interestingly, it 
includes code for keyframe positioning of joints, but it’s incomplete as of January 
2007. 

The need for model loaders in JOGL will undoubtedly drive development forward at a 
rapid rate, so it’s a good idea to regularly search the JOGL javagaming.org forum at 
http://www.javagaming.org/forums/index.php?board=25.0 for announcements about 
new and improved packages. 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

21 © Andrew Davison 2007 

5.  The TourModelsGL Application 

Having developed the OBJLoader package and tested it with ModelLoaderGL, it’s 
time to consider TourModelsGL. It reuses a lot of code from the TourGL example in 
chapter 16 ?? – it implements the active rendering framework, and the 3D scene 
reuses TourGL’s green and blue checkerboard floor with numbers along its x- and z- 
axes. 

The class diagrams for TourModelsGL is shown in Figure 7; only public methods are 
shown. 

Figure 7. Class Diagrams for TourModelsGL. 

 

TourModelsGL creates the JFrame and JPanel around the heavy-weight 
TourModelsCanvasGL canvas, and handles window events such as resizing and 
iconification. 

TourModelsCanvasGL spawns a single thread which initializes rendering, then loops, 
carrying out an update/render/sleep cycle with a fixed period.  



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

22 © Andrew Davison 2007 

Aside from the checkerboard, TourModelsCanvasGL makes use of TourCanvasGL’s 
user navigation code which converts key presses into camera movement forward, 
backwards, left, and right. One change is that the user can’t move vertically. This 
simplifies the 3D audio requirements for the game, and lets me reuse 
JOALSoundMan from chapter 13 (it assumes that a listener stays on the XZ plane).  

TourModelsCanvasGL doesn’t display a skybox, billboard trees, a rotating sphere, or 
the splash screen and game over message. Instead, the scene contains four OBJ 
models, shown in Figure 8 (and also in Figure 1). 

Figure 8. The Models in TourModelsGL. 

 

The other new elements in TourModelsCanvasGL are: 

• the ability to select (pick) the penguin or couch with the mouse; 

• penguin 3D singing with the help of JOALSoundMan; 

• spooky fog (which I switched off in Figures 1 and 8, but can be seen in Figure 
2). 

I’ll explain each of these in detail in the rest of this chapter. 

 

5.1.  Adding Models 

The four models (penguin, rose and vase, racing car, and couch) were chosen to 
illustrate the features (and limitations) of the OBJLoader package.  

The penguin is a mesh wrapped with a single texture. The use of texturing means that 
the color lighting values defined in the penguin’s MTL file are ignored. 

The couch employs a single diffuse color, but the model’s normals allow it to be 
affected by the scene’s light source. 

The rose and vase model utilizes several colors using various ambient, diffuse, and 
specular settings. 

I borrowed the racing car model from Evangelos Pournaras’ JautOGL game, and 
modified its MTL file so the car uses different colors and textures on different faces. 

 

Loading the Models 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

23 © Andrew Davison 2007 

The models are loaded during the initialization phase in 
TourModelsCanvasGL.initRender(): 
 
// globals for the four OBJ models 
private OBJModel couchModel, carModel, penguinModel, roseVaseModel; 
 
// loading done in initRender() 
couchModel = new OBJModel("couch", 2.0f, gl, false); 
carModel = new OBJModel("formula", 4.0f, gl, false); 
penguinModel = new OBJModel("penguin", gl); 
roseVaseModel = new OBJModel("rose+vase", 3.2f, gl, false); 
 

OBJModel attempts to load a OBJ file with the specified name. The four argument 
version of the constructor includes a maximum size, a reference to the GL state, and a 
boolean which determines whether verbose model details are printed to standard 
output. 

It’s important to set the model’s size using a constructor argument rather than a later 
call to GL.glScalef(), since a scaling transformation will affect the model’s normals 
and so modify the model’s coloring and/or texturing. 

The two argument version of the OBJModel constructor assumes that the maximum 
size of the model will be 1.0f and that it’s details shouldn’t be output. 

 

Drawing the Models 

renderScene() calls drawModels() to render the models. Each model is drawn after 
being translated and rotated: 
 
private void drawModels() 
{ 
  drawCouch(); 
 
  // the racing car 
  gl.glPushMatrix(); 
    gl.glTranslatef(-3.0f, 0.5f, -3.0f);   // left, up, back 
    carModel.draw(gl); 
  gl.glPopMatrix(); 
 
  drawPenguin(); 
 
  // the rose vase 
  gl.glPushMatrix(); 
    gl.glTranslatef(0f, 1.6f, 0f);   // up 
    roseVaseModel.draw(gl); 
  gl.glPopMatrix(); 
}  // end of drawModels() 
 
 
private void drawCouch() 
{ 
  gl.glPushMatrix(); 
    gl.glTranslatef(4.0f, 0.5f, -4.0f);   // right, up, back 
    gl.glRotatef(-90.0f, 1.0f, 0.0f, 0.0f);   
                            // rotate clockwise around x-axis 
    couchModel.draw(gl); 
  gl.glPopMatrix(); 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

24 © Andrew Davison 2007 

}  // end of drawCouch() 
 
 
private void drawPenguin() 
{ 
  gl.glPushMatrix(); 
    gl.glTranslatef(2.0f, 0.5f, 0f);   // right, up 
    gl.glRotatef(-90.0f, 0.0f, 1.0f, 0.0f);  // rotate clockwise 
    penguinModel.draw(gl); 
  gl.glPopMatrix(); 
}  // end of drawPenguin() 
 

The couch and penguin are drawn by separate methods so these functions can be 
reused by the picking code described below. 

The calls to GL.glPushMatrix() and GL.glPopMatrix() stop the translation and 
rotation operations from affecting other elements in the scene. If a model isn’t moved 
from its default position at the origin then stack pushing and popping isn’t needed. 

The rotation of a model around the x-axis (e.g. for the couch) is a fairly common 
requirement since many drawing packages use the XY plane as a ‘floor’ rather than 
XZ. 

 

5.2.  Let’s be Picky 

OpenGL supports a selection (or picking) mode which makes it fairly straightforward 
to click on an object inside a scene with the mouse and retrieve details about it, such 
as its ID and distance from the camera.  

Picking is enabled for the penguin and the couch in TourModelsCanvasGL. For 
example, I can click on the penguin’s eye when the camera is orientated as in Figure 9 

Figure 9. The Penguin in Front of the Couch. 

 

The application then prints the following: 
 
No. of hits: 2 
Hit: 1 
 minZ: 0.7478; maxZ: 0.769 
 Name(s): couch 
Hit: 2 
 minZ: 0.3818; maxZ: 0.4625 
 Name(s): penguin 
Picked the penguin 
 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

25 © Andrew Davison 2007 

The positioning of the penguin in front of the couch means that both models are 
selected when the user clicks on the penguin’s eye. Their depth information (stored in 
minZ and maxZ) allows the application to determine that the penguin is nearest to the 
camera, so it is chosen from the two possibilities. 

If the camera is moved so the models don’t overlap then picking will only return 
details for the one clicked upon. 

The picking code has four main stages: 

1. The cursor coordinates of a mouse press are recorded. 

2. Selection mode is entered when its time to render the scene, and the viewing 
volume is reduced to a small area around the cursor location. 

3. The scene is ‘rendered’ which means that details about named objects inside the 
viewing volume are stored in hit records in a selection buffer. Rendering is a 
misleading word since nothing is drawn to the frame buffer. 

4. Once the selection mode has been exited, name and depth information can be 
extracted from the hit records.  

An object is named with an integer (not a string), which is pushed onto the name stack 
prior to the object’s ‘rendering’ in selection mode, and popped afterwards. The names 
stored in the hit records are copied from the name stack when the viewing volume is 
examined in stage 3. 

 

Capturing Mouse Presses 

A mouse listener is set up in TourModelsCanvasGL’s constructor: 
 
// in TourModelsCanvasGL() 
addMouseListener( new MouseAdapter() {   // used for picking 
  public void mousePressed(MouseEvent e) 
  { mousePress(e); } 
}); 
 

mousePress() stores the cursor coordinates and switches on the inSelectionMode 
boolean. 
 
// globals for picking 
private boolean inSelectionMode = false; 
private int xCursor, yCursor; 
 
private void mousePress(MouseEvent e) 
{ 
  xCursor = e.getX(); 
  yCursor = e.getY(); 
  inSelectionMode = true; 
} 

 

Switching to Selection Mode 

In renderScene(), the inSelectionMode boolean is used to distinguish between normal 
rendering and selection mode. 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

26 © Andrew Davison 2007 

 
// global 
private GLDrawable drawable;  // the rendering 'surface' 
 
 
// in renderScene() 
if (inSelectionMode) 
  pickModels(); 
else {   // normal rendering  
  drawFloor(); 
  drawModels(); 
  drawable.swapBuffers(); // put the scene onto the canvas 
  // swap front and back buffers, making the new rendering visible 
} 
 

All the normal scene rendering (e.g. of the floor and models) should be moved to the 
else part of the if-test since there’s no point drawing objects unrelated to picking when 
selection mode is enabled. 

In previous active rendering examples (e.g. TourCanvasGL in the previous chapter), 
the call to GLDrawable.swapBuffer() occurs after renderScene() has returned, back in 
renderLoop(). The call has been moved so it only occurs after the scene has really 
been rendered. Selection mode ‘rendering’ only affects the selection buffer, so there’s 
no need to swap the front and back buffers. 

If the swapBuffers() call is left in renderLoop() in TourModelsCanvasGL, it triggers a 
nasty flicker since the back buffer is empty after picking, but filled after normal 
rendering. This means the user will see a white screen for a moment after each 
selection.  

 

Model Picking 

pickModels() illustrates the picking code stages: 
 
// global names (IDs) for pickable models 
private static final int COUCH_ID = 1; 
private static final int PENGUIN_ID = 2; 
 
 
private void pickModels() 
// draw the couch and penguin models in selection mode 
{ 
  startPicking(); 
 
  gl.glPushName(COUCH_ID); 
  drawCouch(); 
  gl.glPopName(); 
 
  gl.glPushName(PENGUIN_ID); 
  drawPenguin(); 
  gl.glPopName(); 
 
  endPicking(); 
}  // end of pickModels() 
 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

27 © Andrew Davison 2007 

The initialization stage 2 is carried out in startPicking(), then the objects are rendered 
(stage 3), and picking is terminated by endPicking() (stage 4), which also processes 
the hit records in the selection buffer. 

The drawCouch() and drawPenguin() methods are reused without change, but their 
calls are bracketed by the pushing and popping of their names onto OpenGL’s name 
stack.  

A common mistake is to forget to pop a name after its object has been rendered. Also, 
GL.glPushName() and GL.glPopName() only work after the selection mode has been 
enabled (which is done in startPicking()). 

 

The Start of Picking 

startPicking() switches to the selection mode, initializes the selection buffer and name 
stack, and creates a reduced-size viewing volume around the cursor. 
 
// globals 
private static final int BUFSIZE = 512;   // size of buffer 
private IntBuffer selectBuffer; 
 
 
private void startPicking() 
{ 
  // initialize the selection buffer 
  int selectBuf[] = new int[BUFSIZE]; 
  selectBuffer = BufferUtil.newIntBuffer(BUFSIZE); 
  gl.glSelectBuffer(BUFSIZE, selectBuffer); 
 
  gl.glRenderMode(GL.GL_SELECT);  // switch to selection mode 
 
  gl.glInitNames();   // make an empty name stack 
 
  // save the original projection matrix 
  gl.glMatrixMode(GL.GL_PROJECTION); 
  gl.glPushMatrix(); 
  gl.glLoadIdentity(); 
 
  // get the current viewport 
  int viewport[] = new int[4]; 
  gl.glGetIntegerv(GL.GL_VIEWPORT, viewport, 0); 
 
  // create a 5x5 pixel picking volume near the cursor location 
  glu.gluPickMatrix((double) xCursor, 
                    (double) (viewport[3] - yCursor),  
                    5.0, 5.0, viewport, 0); 
 
  /* set projection (perspective or orthogonal) exactly as it is in  
     normal rendering (i.e. duplicate the gluPerspective() call 
     in resizeView()) */ 
  glu.gluPerspective(45.0,  
         (float)panelWidth/(float)panelHeight, 1, 100); 
 
  gl.glMatrixMode(GL.GL_MODELVIEW);   // restore model view 
}  // end of startPicking() 
 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

28 © Andrew Davison 2007 

I used JOGL’s BufferUtil utility class to create an integer buffer 
(BufferUtil.newIntBuffer()). The selection buffer in OpenGL is an array of unsigned 
integers, a slightly different thing, which impacts how depth values are extracted later. 

The first two arguments of GLU.gluPickMatrix() are the cursor (x, y) location, but it 
needs to be converted from Java coordinate’s scheme (x and y starting at the top-left) 
to OpenGL’s scheme (x and y starting at the bottom-left). This is done by subtracting 
the cursor’s y-value from the viewport’s height: (viewport[3] - yCursor). 

A common problem is forgetting to set the selection mode’s projection (perspective or 
orthogonal) to be the same as in normal rendering. In the active rendering framework, 
this is done with a call to GLU.gluPerspective() in resizeView(), which is duplicated 
in startPicking(). 

 

The End of Picking 

endPicking() switches rendering back to normal, which has the side-effect of making 
the selection buffer available.  
 
private void endPicking() 
{ 
  // restore original projection matrix 
  gl.glMatrixMode(GL.GL_PROJECTION); 
  gl.glPopMatrix(); 
  gl.glMatrixMode(GL.GL_MODELVIEW); 
  gl.glFlush(); 
 
  // return to normal rendering mode, and process hits 
  int numHits = gl.glRenderMode(GL.GL_RENDER); 
  processHits(numHits); 
 
  inSelectionMode = false; 
}  // end of endPicking() 
 

The buffer is examined in processHits(). 

 

Processing the Hit Records 

processHits() simply lists all the hit records in the selection buffer, and reports the 
name of the object that was picked closest to the viewport.  

Each hit record contains:  

• the number of names assigned to the hit object (usually there’s only one, but 
it’s possible to assign more); 

• the minimum and maximum depths of the hit; 

• the names assigned to the hit object (which come from the name stack). 

One source of confusion is that the depth values are for the part of an object that 
intersects with the viewing volume; they do not correspond to the object’s z-axis 
dimensions.  

Also, although the OpenGL specification talks about names on the name stack and in 
the hit records, it’s more accurate to think of them as integer name IDs.  



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

29 © Andrew Davison 2007 

 
public void processHits(int numHits) 
{ 
  if (numHits == 0) 
    return;   // no hits to process 
 
  System.out.println("No. of hits: " + numHits); 
 
  // storage for the name ID closest to the viewport  
  int selectedNameID = -1;    // dummy initial values 
  float smallestZ = -1.0f; 
 
  boolean isFirstLoop = true; 
  int offset = 0; 
 
  /* iterate through the hit records, saving the smallest z value 
     and the name ID associated with it */ 
  for (int i=0; i < numHits; i++) { 
    System.out.println("Hit: " + (i + 1)); 
 
    int numNames = selectBuffer.get(offset);  
    offset++; 
 
    // minZ and maxZ are taken from the Z buffer 
    float minZ = getDepth(offset); 
    offset++; 
 
    // store the smallest z value 
    if (isFirstLoop) { 
      smallestZ = minZ; 
      isFirstLoop = false; 
    } 
    else { 
      if (minZ < smallestZ) 
        smallestZ = minZ; 
    } 
 
    float maxZ = getDepth(offset); 
    offset++; 
 
    System.out.println(" minZ: " + df4.format(minZ) +  
                      "; maxZ: " + df4.format(maxZ)); 
 
    // print name IDs stored on the name stack 
    System.out.print(" Name(s): "); 
    int nameID; 
    for (int j=0; j < numNames; j++){ 
      nameID = selectBuffer.get(offset); 
      System.out.print( idToString(nameID) );  
      if (j == (numNames-1)) {   
        // if the last one (the top element on the stack) 
        if (smallestZ == minZ)    // is this the smallest min z? 
          selectedNameID = nameID;  // then store it's name ID 
      } 
      System.out.print(" "); 
      offset++; 
    } 
    System.out.println(); 
  } 
 
  System.out.println("Picked the " + idToString(selectedNameID)); 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

30 © Andrew Davison 2007 

  System.out.println("-------------"); 
} // end of processHits() 
 

Typical output from processHits() was shown earlier. Here’s another example, when 
only the couch was picked: 
 
No. of hits: 1 
Hit: 1 
 minZ: 0.6352; maxZ: 0.6669 
 Name(s): couch 
Picked the couch 
 

A depth is in the range 0 to 1, but is stored after being multiplied by 2^32 -1 and 
rounded to the nearest unsigned integer. The number will be negative due to the 
multiplication and being cast to a signed integer in the buffer. 

The conversion of the integer back to a float is done by getDepth(): 
 
private float getDepth(int offset) 
{ 
  long depth = (long) selectBuffer.get(offset);  // large -ve number 
  return  (1.0f + ((float) depth / 0x7fffffff));   
                          // return as a float between 0 and 1 
}  // end of getDepth() 
 

The depths aren’t linearly proportional to the distance to the viewpoint due to the 
nonlinear nature of the Z buffer, but different depths can be compared to find the one 
closest to the camera. 

The mapping from a name ID to a string is carried out by idToString(): 
 
private String idToString(int nameID) 
{ 
  if (nameID == COUCH_ID) 
    return "couch"; 
  else if (nameID == PENGUIN_ID) 
    return "penguin"; 
 
  // we should not reach this point 
  return "nameID " + nameID; 
}  // end of idToString() 
 

 

5.3.  A Singing Penguin 

JOALSoundMan (developed back in chapter 13 ??) is employed to set up a 3D sound 
for the penguin model, and to attach a audio listener to the camera. 

A JOALSoundMan instance is created in TourModelsCanvasGL’s constructor: 
 
// global 
private JOALSoundMan soundMan; 
 
// in TourModelsCanvasGL() 
soundMan = new JOALSoundMan(); 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

31 © Andrew Davison 2007 

 

Locating the Penguin Sound 

The penguin sound is positioned at (2,0,0) in initRender(), and set to play repeatedly. 
 
// in initRender() 
if (!soundMan.load("penguin", 2, 0, 0, true)) 
  System.out.println("Penguin sound not found"); 
else 
  soundMan.play("penguin"); 
 

Although the penguin model is also loaded in initRender(), it isn’t positioned until 
drawPenguin() is called at rendering time: 
 
private void drawPenguin() 
{ 
  gl.glPushMatrix(); 
    gl.glTranslatef(2.0f, 0.5f, 0f);  // up, right, to (2,0.5,0) 
    gl.glRotatef(-90.0f, 0.0f, 1.0f, 0.0f);   
                   // rotate the model to face left 
    penguinModel.draw(gl); 
  gl.glPopMatrix(); 
}  // end of drawPenguin() 
 

There’s no direct link between the audio source and the penguin model, so it’s up to 
the programmer to ensure they stay co-located. That’s easy here since the penguin 
doesn’t move. 

 

Connecting the Camera and the Listener 

As the camera moves and rotates about the scene, so should the listener. The 
connection is made by updating the listener’s position and y-axis orientation to match 
those of the camera. 

Obtaining the positional data is straightforward since the camera details are stored in 
three globals, xPlayer, yPlayer, and zPlayer, updated by processKey(). The listener 
moves by using xPlayer and zPlayer (yPlayer isn’t utilized since JOALSoundMan 
assumes the listener always stays on the floor). 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

32 © Andrew Davison 2007 

Linking the rotation of the camera to the listener is a bit more tricky. The camera’s 
rotation angle is stored in the viewAngle global, which initially has the value -90 
degrees to point it along the –z axis. When the camera rotates clockwise around the y-
axis, a positive amount is added to viewAngle (see Figure 10). However, JOAL 
initializes its listener to point down the –z axis, so it starts at 0 degrees. Also, a 
clockwise rotation reduces the angle rather than increases it (as shown in Figure 10). 

Figure 10. Rotating the Camera and Listener. 

 

TourModelsCanvasGL includes a new global, listenerAngle, which stores the current 
rotation angle of the listener around the y-axis. It starts with the value 0, which 
corresponds to it pointing down the –z axis. Both viewAngle and listenerAngle are 
initialized in initViewerPosn(): 
 
// globals 
private double viewAngle, listenerAngle; 
 
// in initViewerPosn() 
viewAngle = -90.0;   // along -z axis 
listenerAngle = 0; 
 

When processKey() adjusts the camera’s rotation value (in viewAngle) it also changes 
the listener’s rotation (in listenerAngle), but with the opposite operation (e.g. addition 
instead of subtraction). For instance, the following code fragment deals with the 
camera turning left: 
 
// globals 
private final static double ANGLE_INCR = 5.0;   // degrees 
 
// turning left in processKey() 
viewAngle -= ANGLE_INCR;      // subtract 
listenerAngle += ANGLE_INCR;  // add 
 

The positional and rotational data are employed in renderScene() to move the listener: 
 
// in renderScene() 
soundMan.setListenerPos( (float)xPlayer, (float)zPlayer ); 
soundMan.setListenerOri( (int) listenerAngle ); 
 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

33 © Andrew Davison 2007 

The casting of listenerAngle to an integer is a requirement of the 
JOALSoundMan.setListenerOri() method, and perhaps the code should be rewritten 
to accept doubles (or floats). 

 

5.4.  The Fog Descends 

The fog shown in Figure 2 makes it much harder to find the models, which could be 
used as the basis of a time-constrained search game. Also, the fog reduces the amount 
of geometry that needs to be rendered, thereby improving the application’s speed.  

Almost all the fog-related code is in one new method, addFog(), which is called from 
initRender(): 
 
private void addFog() 
{ 
  gl.glEnable(GL.GL_FOG); 
 
  gl.glFogi(GL.GL_FOG_MODE, GL.GL_EXP2); 
    // possible modes are: GL.GL_LINEAR, GL.GL_EXP, GL.GL_EXP2 
 
  float[] fogColor = {0.7f, 0.6f, 0.6f, 1.0f}; 
                            // same colour as background 
  gl.glFogfv(GL.GL_FOG_COLOR, fogColor, 0); 
 
  gl.glFogf(GL.GL_FOG_DENSITY, 0.35f);  
 
  gl.glFogf(GL.GL_FOG_START, 1.0f);  // start depth 
  gl.glFogf(GL.GL_FOG_END, 5.0f);    // end depth 
 
  gl.glHint(GL.GL_FOG_HINT, GL.GL_DONT_CARE);  
    /* possible hints are: GL.GL_DONT_CARE, GL.GL_NICEST,  
       GL.GL_FASTEST */ 
}  // end of addFog() 
 

The fog is enabled and its various characteristics are set. OpenGL implements fog by 
blending each pixel with the fog’s color depending on the distance from the camera, 
the fog density, and the fog mode. 

Possible modes are GL.GL_LINEAR, GL.GL_EXP, and GL.GL_EXP2, with 
GL.GL_EXP2 looking the most realistic but also being the computationally most 
expensive. If the linear blend is chosen then start and end depths for the fog must be 
defined using the GL_FOG_START and GL.GL_FOG_END attributes. If 
GL.GL_EXP or GL.GL_EXP2 are employed then the GL_FOG_DENSITY attribute 
needs to be set.  

I’ve used the GL.GL_EXP2 mode in addFog(), so the GL_FOG_START and 
GL.GL_FOG_END values aren’t really needed; I’ve included them to show how 
they’re used. 

The fog color is set with the GL.GL_FOG_COLOR argument, and the scene 
generally looks better if it’s background is the same color as well. In initRender(), I 
set the background to be: 
gl.glClearColor(0.7f, 0.6f, 0.6f, 1.0f);   // same as the fog 



Java Prog. Techniques for Games. JOGL 3. Model Picking Draft #1 (1st Jan 07) 

34 © Andrew Davison 2007 

In the other screenshots (Figures 1, 8, and 9), the blue background was generated 
with: 
gl.glClearColor(0.17f, 0.65f, 0.92f, 1.0f);  // sky blue 

The GL.GL_FOG_HINT argument may be utilized by OpenGL to switch to faster or 
higher quality blending; it’s default value is GL.GL_DONT_CARE. 

Fog can be switched off with GL.glDisable(), so it’s possible to have the fog only 
selectively affect objects in the scene. 

 

 

6.  Summary 

This chapter looked at four techniques: the loading and positioning of Wavefront OBJ 
models, the use of picking with OpenGL’s selection mode, 3D sound, and fog.  

The OBJLoader package can load polygonal shapes which utilize multiple colors and 
textures, defined using the Wavefront MTL format. 

The 3D sound (a chirping penguin) employs JOAL via my JOALSoundMan class 
which was introduced in chapter 13. 


