
Java Prog. Techniques for Games. Chapter N13. JOAL Draft #2 (29th Jan. 07)

1 Andrew Davison © 2007

Chapter N13. 3D Sound with JOAL

This chapter interrupts my discussion of non-standard input devices programming so I
can talk about JOAL (https://joal.dev.java.net/), a Java wrapper around OpenAL.
OpenAL, the OpenAudio Library, is a cross-platform API for programming 2D and
3D audio (http://www.openal.org/).

I’ll introduce JOAL (and OpenAL) by developing a JOALSoundMan class that
simplifies the creation of spatial 3D sound effects, and I’ll demonstrate it’s use with a
few simple, non-graphical examples. In chapter 14 ??, I’ll utilize JOALSoundMan to
add 3D sound to Java 3D, and it’ll crop up again in chapter 17 ??, managing the audio
effects in my JOGL code.

1. Why JOAL and Java 3D?

In chapter 1, I mentioned that Java 3D supports 2D and 3D sound. The API includes
three sound-related classes: BackgroundSound for ambient sound (sound that’s
audible everywhere in the scene), PointSound for a sound source located at a
particular spot, and ConeSound for a point source aimed in a specific direction.

PointSound and ConeSound are spatial sound classes, since their volume, and the
audio mix coming from the left and right speakers depends on the sound’s location in
relation to the listener (which is usually the camera's viewpoint). Another factor is the
relative velocities of the sound source and listener if they’re moving.

The bad news is that PointSound and ConeSound contain some nasty bugs, which led
to their demotion to optional parts of Java 3D starting with version 1.3.2. Also, the
Java 3D development team wanted the classes reimplemented so they didn’t rely on
the Headspace audio engine, third-party software not maintained by Sun. They hoped
to persuade a kindly Java 3D community member to do this work, using JOAL.

The end’s almost in sight – in July 2006, David Grace posted JoalMixer to the
org.jdesktop.j3d.audioengines.joal branch of the j3d-incubator project (at https://j3d-
incubator.dev.java.net/). It includes revised PointSound, ConeSound, and
BackgroundSound classes, built with JOAL.

Unfortunately, JoalMixer arrived too late for the Java 3D 1.5 release, and can only be
utilized at the moment by recompiling the Java 3D sources. For gallant users
interested in this approach, there are detailed instructions in the java.net Java 3D
forum thread on spatialized audio at
http://forums.java.net/jive/thread.jspa?threadID=4638&start=0&tstart=105.

I decided not to be gallant, and roll my own JOAL code instead (a JOALSoundMan
class). It offers ambient and point sounds, and is reusable across Java, Java 3D, and
JOGL applications, without requiring any recompilation of those APIs.

Java Prog. Techniques for Games. Chapter N13. JOAL Draft #2 (29th Jan. 07)

2 Andrew Davison © 2007

2. Background on OpenAL and JOAL

JOAL is a thin layer of Java over OpenAL, so its 2D and 3D audio features are really
those of OpenAL. For that reason, I’ll talk about OpenAL first, and then JOAL.

OpenAL supports the construction of a sound application containing a collection of
audio sources located in 3D space, heard by a single listener. The space doesn’t need
a graphical representation in the application.

The main OpenAL entities are the buffer, source, and listener.

• A buffer stores sound information, typically a sound clip loaded from a WAV file.
There may be many buffers in a program.

• A source is a point in the 3D space which emits a sound in all directions. A source
isn’t the audio sample, but the location where the sample is played. Each source
must refer to a buffer, to have a sound to play. It’s possible to connect several
sources to the same buffer.

• An application has a single listener, which represents the user in the scene.
Listener properties (position, and perhaps velocity) are combined with the
properties of each source (position, velocity, etc.) to determine how the source’s
audio is heard.

OpenAL is available on a wide range of platforms, including Windows, OS X, Linux,
the PS2, and Xbox. The API is hardware-independent but utilizes hardware support if
the underlying sound card has it. There’s a growing list of commercial games
employing OpenAL, including Doom 3, Unreal Tournament 2004, and Battlefield 2,
and it has a wide following in the open-source games world (see the list at
http://www.openal.org/titles.html).

OpenAL is currently maintained by Creative Labs, perhaps best known for their
Sound Blaster line of audio cards.

The Windows version of OpenAL (and JOAL) support Creative Lab’s EAX and EFX
technologies (Environmental Audio eXtensions and EFfects eXtensions). EAX offers
reverberations and low-pass filtering effects, while EFX adds filtering at the OpenAL
Source level. EAX and EFX require sound card support, so they aren’t widely
available.

OpenAL’s main website is at http://www.openal.org/, which includes various ports of
the library, and documentation. You don't need the software since we're using JOAL,
but the OpenAL 1.1 Programmer's Guide and specification are worth a read.

An excellent series of OpenAL programming articles can be found at devmaster.net
(http://www.devmaster.net/articles.php?catID=6), and there’s more links at
http://www.openal.org/links.html. Although these tutorials are written in C for
OpenAL, JOAL methods and OpenAL functions are so similar that the information is
still helpful.

There are two official OpenAL mailing lists archived at
http://opensource.creative.com/pipermail/openal/ and
http://opensource.creative.com/pipermail/openal-devel/. There’s a Nabble forum for
OpenAL at http://www.nabble.com/OpenAL-f14243.html.

Java Prog. Techniques for Games. Chapter N13. JOAL Draft #2 (29th Jan. 07)

3 Andrew Davison © 2007

2.1. What about JOAL?

I’m not using OpenAL directly, but rather the Java wrapper, JOAL. Nearly all the
necessary JOAL software can be found at https://joal.dev.java.net/, so there’s no need
to download the OpenAL libraries. I’ll explain the gory installation details shortly.

The devmaster.net OpenAL tutorials have been ‘translated’ into JOGL (at https://joal-
demos.dev.java.net) except for one on OggVorbis streaming. Starfire Research also
has some brief, but good, JOAL examples, starting at
http://www.starfireresearch.com/services/java/docs/joal.html.

The main JOAL forum is at
http://www.javagaming.org/forums/index.php?board=26.0. There’s also a JOAL list
at the lwjgl site, http://lwjgl.org/forum/viewforum.php?f=10. The focus is on the
LightWeight Java Games Library (lwjgl), but there’s plenty of general information as
well. If these forums don’t answer your questions, then you should consider searching
through the OpenAL lists that I mentioned above.

2.2. Installing JOAL

I downloaded the Windows version of JOAL, release build 1.1.0, dated December
22nd, from https://joal.dev.java.net/, via the “Documents & files” menu. The file
(joal-1.1.0-windows-i586.zip) contains two JAR files, joal.jar and gluegen-rt.jar, and
two DLLs, joal-native.dll and gluegen-rt.dll. Other useful downloads are the API
documentation (joal-1.1.0-docs.zip) and the source code for the demos (joal-demos-
src.zip).

joal.jar and gluegen-rt.jar should be copied into <JAVA_HOME>\jre\lib\ext and
<JRE_HOME>\lib\ext. On my WinXP test machine, they’re the directories
c:\Program Files\Java\jdk1.6.0\jre\lib\ext and c:\Program Files\Java\jre1.6.0\lib\ext.

joal-native.dll and gluegen-rt.dll should be placed in a directory of your choice (I
chose d:\joal).

Java Prog. Techniques for Games. Chapter N13. JOAL Draft #2 (29th Jan. 07)

4 Andrew Davison © 2007

Figure 1 shows the two DLLs in my d:\joal directory.

Figure 1. The DLLs Needed for JOAL.

These DLLs are needed at runtime, so every call to java.exe requires a command line
option to supply the path to the libraries. For instance, to run the JOAL application
JoalExample1.java needs:
> java -Djava.library.path="d:\joal" JoalExample1

I’m lazy so I use a DOS batch file instead:
> runJoal JoalExample1

runJoal.bat contains:

@echo off
echo Executing %1 with JOAL...
java -Djava.library.path="d:\joal" %1 %2
echo Finished.

The %1 and %2 arguments allow at most two command line arguments to be passed
to the java.exe call.

3. Managing JOAL Sounds

Most JOAL applications look the same: there’s an initialization phase, then the
buffers, their sources, and the listener are created. During the program’s execution,
the sources and/or listener are moved around, causing the sound output to change. At
termination, the source and buffers are deleted.

I decided to package up these stages into a JOALSoundMan class in order to hide the
repetitive manipulation of the low-level buffers, sources, and listener data structures.

JOALSoundMan has three groups of public methods:

• general-purpose: JOALSoundMan(), cleanUp()

• buffer and source related: load(), setPos(), play(), pause(), stop()

• listener related: moveListener(), setListenerPos(), turnListener(), getX(), getZ(),
getAngle()

Java Prog. Techniques for Games. Chapter N13. JOAL Draft #2 (29th Jan. 07)

5 Andrew Davison © 2007

1. General. JOALSoundMan() initializes JOAL, and creates a listener located at
(0,0,0) facing along the -z axis. cleanUp() deletes any source and buffer data
structures created during the application’s execution.

2. Buffer and Source. load() loads a specified WAV file, and creates a buffer for it.
The buffer is then associated with a new source, located at the origin. A second
version of load() includes a (x, y, z) coordinate for positioning the source. Every
source is assigned a name which is used to refer to it in other methods.

setPos() changes the position of a named source. play() plays the named source,
pause() pauses the source, and stop() stops it.

3. Listener. moveListener() moves the listener by a specified x- and z- step.
setListenerPos() moves the listener to the new (x, 0, z) coordinate. It’s not possible to
change the listener’s y-axis position, a restriction that simplifies the coding.

turnListener() turns the listener a specified number of degrees around its y-axis.
There’s no way to rotate the listener around the x- or z- axes. getX(), getY(), and
getAngle() returns the listener’s current position and y-axis angle.

I’ll explain these methods in more detail in the following sections.

3.1. Initializing JOAL

The JOALSoundMan constructor creates two HashMaps, initializes OpenAL, and
creates the listener.

// global stores for the sounds
private HashMap<String, int[]> buffersMap; // (name, buffer) pairs
private HashMap<String, int[]> sourcesMap; // (name, source) pairs

public JOALSoundMan()
{
 buffersMap = new HashMap<String, int[]>();
 sourcesMap = new HashMap<String, int[]>();

 initOpenAL();
 initListener();
} // end of JOALSoundMan()

JOALSoundMan assumes that every sound will have it own JOAL buffer and source.
The two HashMaps store them, indexed by the sound’s name.

initOpenAL() sets up a link to OpenAL via the ALut library (so named to remind
OpenGL programmers of GLUT).

// globals
private AL al; // to access OpenAL

private void initOpenAL()
{
 try {
 ALut.alutInit(); // creates an OpenAL context

Java Prog. Techniques for Games. Chapter N13. JOAL Draft #2 (29th Jan. 07)

6 Andrew Davison © 2007

 al = ALFactory.getAL(); // used to access OpenAL
 al.alGetError(); // clears any error bits

 // System.out.println("JOAL version: " + Version.getVersion());
 }
 catch (ALException e) {
 e.printStackTrace();
 System.exit(1);
 }
} // end of initOpenAL()

The System.out.println() call to display JOAL’s version is commented out in
initOpenAL() since the Version class isn’t present in JOAL 1.1.0, although it was
available in the previous beta releases.

3.2. Initializing the Listener

JOALSoundMan.initListener() places the listener at the origin, looking along the -z
axis. Figure 2 illustrates the set-up: the triangle is the listener, with its apex pointing
towards a “look at” point. The view is from above, looking down onto the XZ plane.

Figure 2. The Listener's Orientation.

setListener() stores the listener's position in the globals xLis, yLis, and zLis. The
“look at” point is one unit along the -z axis, at (xLis, yLis, zLis-1).

// global listener info
private float xLis, yLis, zLis; // current position
private float[] oriLis; // orientation

private void initListener()
// position and orientate the listener
{
 xLis = 0.0f; yLis = 0.0f; zLis = 0.0f;
 al.alListener3f(AL.AL_POSITION, xLis, yLis, zLis);
 // position the listener at the origin

 al.alListener3i(AL.AL_VELOCITY, 0, 0, 0); // no velocity

 oriLis = new float[] {xLis, yLis, zLis-1.0f, 0.0f, 1.0f, 0.0f};
 /* the first 3 elements are the "look at" point,

Java Prog. Techniques for Games. Chapter N13. JOAL Draft #2 (29th Jan. 07)

7 Andrew Davison © 2007

 the second 3 are the "up direction" */
 al.alListenerfv(AL.AL_ORIENTATION, oriLis, 0);
} // end of initListener()

The listener properties are set with calls to AL.alListenerXX() methods, where XX
denotes the data type assigned to the property. The first argument of the method is the
property being affected.

The listener's orientation is defined in terms of the “look at” point and a vector for the
“up” direction. In initListener(), “up” is the +y axis. Both values are stored in a global
oriLis[] array, and assigned to the AL.AL_ORIENTATION property.

It’s worth noting that oriLis[0], oriLis[1], and oriLis[2] are the “look at” point’s x-, y-,
and z- values. The x- and z- values will be changed later as the listener moves around.

Where are the Listener's Ears?

The location of the listener's ears becomes important when the listener or sources
move, since they dictate the volume and distribution of sound emitted by the speakers.
The location of the ears, and even their number, isn't defined by the OpenAL
specification; the details are left to the implementation.

Java Prog. Techniques for Games. Chapter N13. JOAL Draft #2 (29th Jan. 07)

8 Andrew Davison © 2007

A listener in a standard PC environment with stereo speakers, or headphones, has two
ears mapped to the speakers (headphones) as shown in Figure 3.

Figure 3. The Listener's Ears.

LS is the left speaker, RS the right hand one.

By default in OpenAL, the listener starts at the origin, and faces along the –z axis, so
that its left and right ears are mapped to the left and right speakers. This means that
most of the code in setListener() is unnecessary, since it duplicates the default
position and orientation employed in JOAL. I included it just to be on the safe side.

3.3. JOAL Clean Up

Before the JOAL application terminates, it should stop playing sounds, and delete any
buffers and sources.

public void cleanUp()
{
 Set<String> keys = sourcesMap.keySet();
 Iterator<String> iter = keys.iterator();

 String nm;
 int[] buffer, source;
 while(iter.hasNext()){
 nm = iter.next();

 source = sourcesMap.get(nm);
 System.out.println("Stopping " + nm);
 al.alSourceStop(source[0]);
 al.alDeleteSources(1, source, 0);

 buffer = buffersMap.get(nm);
 al.alDeleteBuffers(1, buffer, 0);
 }

Java Prog. Techniques for Games. Chapter N13. JOAL Draft #2 (29th Jan. 07)

9 Andrew Davison © 2007

 ALut.alutExit();
} // end of cleanUp()

The names associated with the sources are converted into an Iterator, which loops
through the buffer and source HashMaps using Al.alDeleteBuffers() and
Al.alDeleteSources() to delete the entries. Playing sounds are stopped with
Al.alSourceStop().

The ALut.alutExit() method shuts down OpenAL, and closes the output device.

3.4. Loading a Sound

A sound is loaded in two stages: first it’s converted into a JOAL buffer, then a JOAL
source, linked to that buffer, is placed in the scene. The buffer and source references
are stored in the global HashMaps, using the sound’s name as the key.

public boolean load(String nm, boolean toLoop)
{
 if (sourcesMap.get(nm) != null) {
 System.out.println(nm + " already loaded");
 return true;
 }

 int[] buffer = initBuffer(nm);
 if (buffer == null)
 return false;

 int[] source = initSource(nm, buffer, toLoop);
 if (source == null) {
 al.alDeleteBuffers(1, buffer, 0);
 // no need for the buffer anymore
 return false;
 }

 if (toLoop)
 System.out.println("Looping source created for " + nm);
 else
 System.out.println("Source created for " + nm);

 buffersMap.put(nm, buffer);
 sourcesMap.put(nm, source);
 return true;
} // end of loadSource()

Buffer creation is handled by initBuffer(), while initSource() creates the source.

The toLoop boolean is used in initSource() to specify whether the source should play
its sound repeatedly.

Making a Buffer

The WAV file is loaded into several data arrays, then the buffer is initialized with
those arrays

Java Prog. Techniques for Games. Chapter N13. JOAL Draft #2 (29th Jan. 07)

10 Andrew Davison © 2007

// global
private final static String SOUND_DIR = "Sounds/";
 // where the WAV files are stored

private int[] initBuffer(String nm)
{
 // create arrays for holding various WAV file info
 int[] format = new int[1];
 ByteBuffer[] data = new ByteBuffer[1];
 int[] size = new int[1];
 int[] freq = new int[1];
 int[] loop = new int[1];

 // load WAV file into the data arrays
 String fnm = SOUND_DIR + nm + ".wav";
 try {
 ALut.alutLoadWAVFile(fnm, format, data, size, freq, loop);
 }
 catch(ALException e) {
 System.out.println("Error loading WAV file: " + fnm);
 return null;
 }
 // System.out.println("Sound size = " + size[0]);
 // System.out.println("Sound freq = " + freq[0]);

 // create an empty buffer to hold the sound data
 int[] buffer = new int[1];
 al.alGenBuffers(1, buffer, 0);
 if (al.alGetError() != AL.AL_NO_ERROR) {
 System.out.println("Could not create a buffer for " + nm);
 return null;
 }

 // store data in the buffer
 al.alBufferData(buffer[0], format[0], data[0], size[0], freq[0]);

 // ALut.alutUnloadWAV(format[0], data[0], size[0], freq[0]);
 // not in API anymore
 return buffer;
} // end of initBuffer()

ALut only offers ALut.alutLoadWAVFile() at present, so a buffer is restricted to
being a stereo or mono WAV file.

The size[] and freq[] data arrays contain information on the size and frequency of the
loaded file. The commented-out println()'s show how to access it:
// System.out.println("Sound size = " + size[0]);
// System.out.println("Sound freq = " + freq[0]);

An empty buffer is created with AL.alGenBuffers(), then filled with the data from the
arrays with Al.alBufferData().

Earlier versions of JOAL used ALut.alutUnloadWAV() to release the WAV file. The
call is no longer required, and has been removed from the API.

initBuffer()'s result is an array holding a reference to the buffer, or null.

Java Prog. Techniques for Games. Chapter N13. JOAL Draft #2 (29th Jan. 07)

11 Andrew Davison © 2007

Making a Source

The source is positioned at (0,0,0), and linked to the buffer that was just created. The
source may play repeatedly, depending on the toLoop argument.

private int[] initSource(String nm, int[] buf, boolean toLoop)
{
 // create a source (a point in space that emits a sound)
 int[] source = new int[1];
 al.alGenSources(1, source, 0);
 if (al.alGetError() != AL.AL_NO_ERROR) {
 System.out.println("Error creating source for " + nm);
 return null;
 }

 // configure the source
 al.alSourcei(source[0], AL.AL_BUFFER, buf[0]); // bind buffer
 al.alSourcef(source[0], AL.AL_PITCH, 1.0f);
 al.alSourcef(source[0], AL.AL_GAIN, 1.0f);
 al.alSource3f(source[0], AL.AL_POSITION, 0.0f, 0.0f, 0.0f);
 // position the source at the origin
 al.alSource3i(source[0], AL.AL_VELOCITY, 0, 0, 0); // no velocity
 if (toLoop)
 al.alSourcei(source[0], AL.AL_LOOPING, AL.AL_TRUE); // looping
 else
 al.alSourcei(source[0], AL.AL_LOOPING, AL.AL_FALSE); //play once

 if (al.alGetError() != AL.AL_NO_ERROR) {
 System.out.println("Error configuring source for " + nm);
 return null;
 }

 return source;
} // end of initSource()

An empty source is created with AL.alGenSources(), and its various attributes are set
via calls to AL.alSourceXX(). The most important is the AL.AL_BUFFER attribute
which links the source to the buffer.

initSource() returns an array holding the source reference, or null.

Java Prog. Techniques for Games. Chapter N13. JOAL Draft #2 (29th Jan. 07)

12 Andrew Davison © 2007

Figure 4 shows the source located at the origin, as viewed from above.

Figure 4. A Source in 3D Space.

The point source emits sound in every direction.

3.5. Positioning a Source

A source is easily moved by changing the (x, y, z) coordinate in its
AL.AL_POSITION attribute. setPos() does the task:

// globals
private HashMap<String, int[]> sourcesMap;

public boolean setPos(String nm, float x, float y, float z)
// move the nm sound to (x,y,z)
{
 int[] source = (int[]) sourcesMap.get(nm);
 if (source == null) {
 System.out.println("No source found for " + nm);
 return false;
 }

 al.alSource3f(source[0], AL.AL_POSITION, x, y, z);
 return true;
} // end of setPos()

setPos(), and the other source-related methods, use the sound’s name as a key into
sourcesMap. The retrieved source has its position adjusted.

Positioning a source is such a common task that JOALSoundMan offers a variant of
load() which employs setPos().

public boolean load(String nm, float x, float y, float z,
 boolean toLoop)
{ if (load(nm, toLoop))
 return setPos(nm, x, y, z);
 else
 return false;
}

Java Prog. Techniques for Games. Chapter N13. JOAL Draft #2 (29th Jan. 07)

13 Andrew Davison © 2007

3.6. Playing, Stopping, and Pausing a Source

A source can be played, stopped, and paused with AL.alSourcePlay(),
AL.alSourceStop(), and AL.alSourcePause(). The JOALSoundMan methods for
playing, stopping, and pausing a source are all similar: they use the sound’s name to
find the source, then call the relevant AL method. For example,
JOALSoundMan.play():

public boolean play(String nm)
{
 int[] source = (int[]) sourcesMap.get(nm);
 if (source == null) {
 System.out.println("No source found for " + nm);
 return false;
 }

 System.out.println("Playing " + nm);
 al.alSourcePlay(source[0]);
 return true;
} // end of play()

Calling play() on a stopped source will restart it, but resumes a paused source.

3.7. Moving the Listener

It’s useful to be able to move the listener in different ways: either with an (x, z) step
added to the listener’s current position, or by supplying it with an entirely new (x, z)
location. Neither approach changes the listener’s y-axis position (at 0).

moveListener() performs the step-based move by utilizing the positional method,
setListenerPos(), to do most of the work.

// globals
private float xLis, yLis, zLis; // listener’s current position

public void moveListener(float xStep, float zStep)
// move the listener by a (x,z) step
{
 float x = xLis + xStep;
 float z = zLis + zStep;
 setListenerPos(x, z);
} // end of moveListener()

Java Prog. Techniques for Games. Chapter N13. JOAL Draft #2 (29th Jan. 07)

14 Andrew Davison © 2007

Changing the listener’s position also requires an update to its orientation. The trick is
to calculate the x- and z- axis offsets of the listener’s move, and apply them to the
“look at” point. This is illustrated in Figure 5.

Figure 5. Moving the Listener and its “look at” Point.

The moveListener() method:

public void setListenerPos(float xNew, float zNew)
// position the listener at (xNew,zNew)
{
 float xOffset = xNew-xLis;
 float zOffset = zNew-zLis;

 xLis = xNew; zLis = zNew;
 al.alListener3f(AL.AL_POSITION, xLis, yLis, zLis);

 /* keep the listener facing the same direction by
 moving the "look at" point by the (x,z) offset */
 oriLis[0] += xOffset;
 oriLis[2] += zOffset;
 // no change needed to y-coord in oriLis[1]
 al.alListenerfv(AL.AL_ORIENTATION, oriLis, 0);
} // end of setListenerPos()

There’s no need to manipulate y-axis values, since the listener only moves over the
XZ plane.

Java Prog. Techniques for Games. Chapter N13. JOAL Draft #2 (29th Jan. 07)

15 Andrew Davison © 2007

3.8. Turning the Listener

Turning the listener is complicated by having to turn the “look at” point as well.
However, the calculations are simplified by only permitting the listener to rotate
around the y-axis.

Figure 6 shows what happens when the listener rotates by angleLis degrees.

Figure 6. Rotating the Listener and the “look at” Point.

xLen and zLen are added to the listener’s position to get the new “look at” point. This
approach is implemented in turnListener():

// globals
private float xLis, yLis, zLis; // current position
private float[] oriLis; // orientation
private int angleLis = 0;

public void turnListener(int degrees)
// turn the listener anti-clockwise by degrees amount
{
 angleLis += degrees;

 double angle = Math.toRadians(angleLis);
 float xLen = -1.0f * (float) Math.sin(angle);
 float zLen = -1.0f * (float) Math.cos(angle);

 /* face in the (xLen, zLen) direction by adding the
 values to the listener position */
 oriLis[0] = xLis+xLen; oriLis[2] = zLis+zLen;
 al.alListenerfv(AL.AL_ORIENTATION, oriLis, 0);
} // end of turnListener()

angleLis is a global storing the listener’s total rotation away from its starting direction
along the -z axis. The user supplies an angle change which is added to angleLis.

Java Prog. Techniques for Games. Chapter N13. JOAL Draft #2 (29th Jan. 07)

16 Andrew Davison © 2007

4. Using JOALSoundMan

In the rest of this chapter, I’ll go through several small examples showing how
JOALSoundMan can move a source, and translate and rotate the listener. None of
these use 3D (or 2D) graphics, although the last one utilizes a simple GUI.

I also use JOALSoundMan in a Java 3D example in the next chapter, and with JOGL
in chapter 17 ??.

4.1. Moving a Source

In MovingSource.java, a source is placed at (0,0,0), at the same spot as the listener
(which by default starts at the origin and faces along the -z axis). Gradually the source
is moved along the -z axis, away from the listener, causing the repeating sound to fade
away. Figure 7 shows the situation diagrammatically.

Figure 7. Moving the Source.

The complete MovingSource.java program:

public class MovingSource
{
 public static void main(String[] args)
 {
 if (args.length != 1) {
 System.out.println("Usage: runJOAL MovingSource <WAV name>");
 System.exit(1);
 }
 String soundName = args[0];

 JOALSoundMan soundMan = new JOALSoundMan();
 // the listener is at (0,0,0) facing along the –z axis

 if (!soundMan.load(soundName, true))
 System.exit(1);
 // default position for sound is (0,0,0)
 soundMan.play(soundName);

 // move the sound along the -z axis
 float step = 0.1f;
 float zPos = 0.0f;

Java Prog. Techniques for Games. Chapter N13. JOAL Draft #2 (29th Jan. 07)

17 Andrew Davison © 2007

 for(int i=0; i < 50; i++) {
 zPos -= step;
 soundMan.setPos(soundName, 0, 0, zPos);
 try {
 Thread.sleep(250); // sleep for 0.25 secs
 }
 catch(InterruptedException ex) {}
 }

 // soundMan.stop(soundName);
 soundMan.cleanUp();
 } // end of main()

} // end of MovingSource class

MovingSource must be supplied with the name of a WAV file (e.g. FancyPants.wav):
> runJOAL MovingListener FancyPants

JOALSoundMan.load() loads the sound from the Sounds/ subdirectory, and positions
the source at the origin. JOALSoundMan.play() starts it playing, and the while loop
gradually moves it with repeated calls to JOALSoundMan.setPos().

After the loop finishes, the sound could be stopped with JOALSoundMan.stop(), but
JOALSoundMan.cleanUp() does that anyway.

4.2. Moving the Listener

Another way of making a source fade away is to leave it alone and move the listener
instead. This is demonstrated by MovingListener.java, which starts with the same
configuration as MovingSource.java (the source and listener both at the origin), but
incrementally shifts the listener along the +z axis. This is shown in Figure 8.

Figure 8. Moving the Listener.

The main() method for MovingListener.java:

public static void main(String[] args)
{
 if (args.length != 1) {
 System.out.println("Usage: runJOAL MovingListener <WAV name>");
 System.exit(1);

Java Prog. Techniques for Games. Chapter N13. JOAL Draft #2 (29th Jan. 07)

18 Andrew Davison © 2007

 }
 String soundName = args[0];

 JOALSoundMan soundMan = new JOALSoundMan();
 // the listener is at (0,0,0) facing along the –z axis

 if (!soundMan.load(soundName, true))
 System.exit(1);
 // default position for sound is (0,0,0)
 soundMan.play(soundName);

 // move the listener along the z axis
 for(int i=0; i < 50; i++) {
 soundMan.moveListener(0, 0.1f);
 try {
 Thread.sleep(250); // sleep for 0.25 secs
 }
 catch(InterruptedException ex) {}
 }
 soundMan.cleanUp();
} // end of main()

The only difference from MovingSource.java is that the listener is translated in 0.1
steps along the +z axis by calling JOALSoundMan.moveListener().

4.3. Moving the Listener Between Sources

MovingListener2.java translates the listener away from one source towards another;
Figure 9 shows most of the details.

Figure 9. Moving the Listener Between Sources.

The “cow” source repeatedly moos at (10,0,0), and the listener starts at the same spot.
It then travels incrementally along the x-axis towards (-10,0,0) where an “ocean”
source is playing.

The mooing will initially be the loudest sound coming from the speakers, but will
slowly fade way, being replaced by the increasingly louder “ocean”. The orientation
of the listener means that both ears receive the same amount of sound, so the fade-out
of the cow and fade-in of the ocean are the same for both speakers.

The main() method of MovingListener2.java:

public static void main(String[] args)

Java Prog. Techniques for Games. Chapter N13. JOAL Draft #2 (29th Jan. 07)

19 Andrew Davison © 2007

{
 JOALSoundMan soundMan = new JOALSoundMan();

 float xPos = 10.0f;
 soundMan.moveListener(xPos, 0);
 // the listener is at (xPos,0,0) facing along the –z axis

 // cow at (xPos,0,0)
 if (!soundMan.load("cow", xPos,0,0, true))
 System.exit(1);
 soundMan.play("cow");

 // ocean at (-xPos,0,0)
 if (!soundMan.load("ocean", -xPos,0,0, true))
 System.exit(1);
 soundMan.play("ocean");

 // move the listener from cow to ocean
 float xStep = (2.0f * xPos)/40.0f;
 for(int i=0; i < 40; i++) {
 soundMan.moveListener(-xStep, 0);
 try {
 Thread.sleep(250); // sleep for 0.25 secs
 }
 catch(InterruptedException ex) {}
 }
 soundMan.cleanUp();
} // end of main()

4.4. Turning the Listener

This example examines how the listener’s orientation affects the speakers output.

As shown in Figure 10, the listener begins by facing along the -z axis as usual, but
positioned at (1,0,0). The “FancyPants” sound plays repeatedly off to its right. Then
the listener is slowly rotated in an anti-clockwise direction in a full circle.

Figure 10. Rotating the Listener.

The effect on the audio is more interesting than previously because the balance of
sound changes between the left and right ears (the left and right speakers).

“FancyPants” is initially loudest for the right ear/speaker (when the listener’s angle is
0). As the listener turns, the volume decreases in the right ear and increases in the left,

Java Prog. Techniques for Games. Chapter N13. JOAL Draft #2 (29th Jan. 07)

20 Andrew Davison © 2007

until at 90 degrees, the sound is the same from both speakers. As the listener
continues turning towards 180 degrees, the sound in the right ear decreases almost to
nothing, and becomes louder in the left ear. At 180 degrees, the left ear is nearest to
the source and the sound is at its loudest there. Thereafter, the volume starts
increasing again in the right ear. At 270 degrees, the listener is facing the source, and
the sound has the same volume from both speakers once again. After that, the left
speaker gets quieter until the listener returns to its starting orientation at 360 degrees.

The main() function of TurningListener.java:

public static void main(String[] args)
{
 if (args.length != 1) {
 System.out.println("Usage: runJOAL TurningListener <WAV name>");
 System.exit(1);
 }
 String soundName = args[0];

 JOALSoundMan soundMan = new JOALSoundMan();
 // the listener is at (0,0,0) facing along the –z axis
 soundMan.moveListener(1,0); // now at (1,0,0)

 if (!soundMan.load(soundName, 2,0,0, true)) // at (2,0,0)
 System.exit(1);
 soundMan.play(soundName);

 // rotate listener anti-clockwise
 for(int i=0; i < 60; i++) {
 soundMan.turnListener(6); // 6 degrees each time
 try {
 Thread.sleep(250); // sleep for 0.25 secs
 }
 catch(InterruptedException ex) {}
 }
 soundMan.cleanUp();
} // end of main()

The only new coding feature here is the call to JOALSoundMan.turnListener() inside
the loop.

Java Prog. Techniques for Games. Chapter N13. JOAL Draft #2 (29th Jan. 07)

21 Andrew Davison © 2007

4.5. JOAL and Swing

There’s nothing preventing JOAL from being used in Java applications with GUIs.
The SingleSource.java example plays, suspends and stops a JOAL source using
Swing buttons. Figure 11 shows the GUI.

Figure 11. The SingleSource Application.

The SingleSource() constructor loads the source with JOALSoundMan, and sets up
the GUI.

// globals
private JOALSoundMan soundMan;
private String soundName;

public SingleSource(String nm)
{
 super("Single Static Source");

 soundMan = new JOALSoundMan();
 soundName = nm;

 if (!soundMan.load(soundName, true))
 System.exit(1);

 buildGUI();

 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e)
 { soundMan.cleanUp();
 System.exit(0);
 }
 });

 pack();
 setResizable(false); // fixed size display
 setVisible(true);
} // end of SingleSource()

The window closing event is caught so that JOALSoundMan.cleanUp() can be called
before termination.

buildGUI() sets up three buttons, whose action listeners are the class itself. When any
of the buttons are pressed, SingleSource’s actionPerformed() method is called.

// globals
private JButton playButton, stopButton, pauseButton;

public void actionPerformed(ActionEvent e)

Java Prog. Techniques for Games. Chapter N13. JOAL Draft #2 (29th Jan. 07)

22 Andrew Davison © 2007

{
 if (e.getSource() == playButton)
 soundMan.play(soundName);
 else if (e.getSource() == stopButton)
 soundMan.stop(soundName);
 else if (e.getSource() == pauseButton)
 soundMan.pause(soundName);
} // end of actionPerformed

The relevant play(), stop(), or sound() method is called in JOALSoundMan.

5. Other Source Types

As I mentioned earlier, Java 3D includes three sound-related classes:
BackgroundSound for ambient sound, PointSound for a sound source located at a
particular place in the scene, and ConeSound for a point source aimed in a specific
direction. All of these can be implemented using JOAL, as David Grace’s JoalMixer
illustrates (https://j3d-incubator.dev.java.net/).

JOALSoundMan creates point sound sources, so how much work is needed for it to
support ambient and cone sounds?

5.1. Ambient Sounds

For ambient sounds, JOALSoundMan can utilize an OpenAL ‘feature’: stereo WAV
files will not be played positionally. This means that calls to
JOALSoundMan.setPos() for a stereo source will have no effect on the sound coming
from the speakers. This can be tested by calling the MovingListener.java example
with a stereo WAV file:
> runJOAL MovingListener FancyPantsS

FancyPantsS.wav is a stereo version of the mono FancyPants.wav, which I created
using the WavePad audio editing tool (http://www.nch.com.au/wavepad/).

Another way of playing sounds ambiently is to use Java’s own sound classes (e.g.
AudioClip), or perhaps the SoundsPlayer class I developed in chapter 12 ??, since
they don’t use positional effects.

A third approach is to ‘connect’ the source to the listener, so that it moves as the
listener does. Then the source’s volume and speaker distribution will stay the same no
matter where the listener moves to.

The AL.AL_SOURCE_RELATIVE attribute changes the source’s position to be
relative to the listener. For example:
al.alSourcei(source[0], AL.AL_SOURCE_RELATIVE, AL.AL_TRUE);
al.alSource3f(source[0], AL.AL_POSITION, 0.0f, 0.0f, 0.0f);

The source will always be at the same spot as the listener.

Java Prog. Techniques for Games. Chapter N13. JOAL Draft #2 (29th Jan. 07)

23 Andrew Davison © 2007

5.2. Cone Sounds

A cone sound is a point source with four additional parameters. A typical cone is
shown in Figure 12.

Figure 12. A Cone Sound.

Two cones are defined in terms of inner and outer angles around a central direction
vector. The inner cone plays the sound using the AL.AL_GAIN volume setting (often
1.0f), but the volume tails off in the outer cone, decreasing to the
AL.AL_CONE_OUTER_GAIN value (typically 0.0f) at the outer cone’s edges.

The following code snippet shows how the source’s attributes are set:

al.alSourcef(source[0], AL.AL_CONE_INNER_ANGLE, innerAngle);
al.alSourcef(source[0], AL.AL_CONE_OUTER_ANGLE, outerAngle);
al.alSourcef(source[0], AL.AL_GAIN, 1.0f);
al.alSourcef(source[0], AL.AL_CONE_OUTER_GAIN, 0.0f);
al.alSource3f(source[0], AL.AL_DIRECTION, x, y, z);

innerAngle and outerAngle are specified in degrees (e.g. 30.0f and 45.0f). The (x, y,
z) direction should be a vector, such as (0,0,1) to make the cone point along the +z
axis.

6. Summary

The chapter has discussed JOAL, a Java wrapper around OpenAL, a popular library
for programming with 2D and 3D audio.

I developed a JOALSoundMan class which hides the low-level details of buffer,
source, and listener creation, and I demonstrated its use with several simple examples.

JOALSoundMan will appear again in the next chapter when I employ it to add 3D
sound to a Java 3D example, and in chapter 17 ?? when it does something similar for
a JOGL program.

