
Java Prog. Techniques for Games. Chapter 28.85  Magic Wand Draft #1 (28th May '06) 

1 Andrew Davison © 2006 

 

Chapter 28.85 Waving a Magic Wand 
 

Would you like to shoot blasts of awesome cosmic energy from a magic wand? This 
chapter looks at how to replace boring key presses and mouse clicks by graceful wand 
waving, and there's no need to attend Hogwarts, or even Miss Cackle's Academy for 
Witches, to do it. 

Figure 1 shows the MagicWand application in action. 

Figure 1. Blasting Away with a Wand. 

 

Figure 2 reveals the input technology: a web camera focused on my real-world 'magic 
wand'. As I wave the wand around, the on-screen wand moves in a similar way.  

Figure 2. The Webcam and Wand. 

 

Blasts are emitted from the wand at regular intervals, and follow a path set by the 
current direction of the wand. The blasts don't do anything, but it wouldn't be hard to 
extend the sprite code to blow something up, or knock something down. 



Java Prog. Techniques for Games. Chapter 28.85  Magic Wand Draft #1 (28th May '06) 

2 Andrew Davison © 2006 

The wand isn't an expensive item from Ollivanders; I created it out of coloured card 
and sticky tape (see Figure 3). 

Figure 3. The Real-World Wand. 

 

The yellow and blue squares represent the 'head' and 'tail' of the wand. 

 

The class diagrams for MagicWand are shown in Figure 4. The application has two 
main areas of functionality: image capturing and processing (inside ImageAnalyzer, 
with the help of the JMFCapture, BlobsLine, BlobsManager, and Blob), and 2D 
rendering (in MWPanel, BlastsManager, and BlastSprite). 

Figure 4. Class Diagrams for MagicWand. 

 



Java Prog. Techniques for Games. Chapter 28.85  Magic Wand Draft #1 (28th May '06) 

3 Andrew Davison © 2006 

I've left out a few superclasses in Figure 4 to simplify things (e.g. MagicWand 
extends JFrame, and MWPanel is a JPanel). The support classes for loading GIFs and 
JPEGs aren't shown either (they're used to load the background desert image, wand 
image, and the sprite pictures). Only the public methods are listed for each class. 

 

The top-level class, MagicWand, is a JFrame. It creates the game panel, and monitors 
window events. MWPanel draws the game canvas using the threaded, active 
rendering approach explained in chapter 2. 

The ImageAnalyzer thread is similar to the BandsAnalyser class from chapter 28.8. It 
grabs a picture from the web camera every 0.1 second, using JMFCapture to interface 
with the Java Media Framework (JMF).  

The image is scanned for blobs (groups of pixels with the same colour), which are 
collected together in two BlobsManagers. Only yellow and blue blobs are stored, 
since the aim is to detect the head and tail of the wand in the webcam image.  

When the picture has been completely scanned, a BlobsLine object calculates the line 
between the center of the largest yellow blob and the largest blue one. This line 
should hopefully match the wand's position. The coordinates of the wand head (the 
yellow blob's center) and the wand's angle to the horizontal are passed to MWPanel. 

The blasts shooting from the wand head are BlastSprite objects, which subclass the 
Sprite class from chapter 11. They're managed by a BlastsManager object.  

 

I won't go through all the details of the reused classes in this chapter, so you may 
want to read up on: 

• the active rendering framework (chapters 2 and 3) 

• 2D sprites (chapter 11) 

• image processing with blobs (chapter 28.8) 

 

An important issue is MagicWand's use of multiple threads sharing data. A quick look 
at Figure 4 shows that MWPanel and ImageAnalyzer are both threaded. 
ImageAnalyzer periodically updates data structures holding wand details and the 
webcam snap, and these are rendered by MWPanel.   

 



Java Prog. Techniques for Games. Chapter 28.85  Magic Wand Draft #1 (28th May '06) 

4 Andrew Davison © 2006 

1.  Webcam Image Manipulation 

The ImageAnalyzer constructor initializes a BlobsLine object with two Color objects, 
HEAD_COLOUR (yellow) and TAIL_COLOUR (blue), which match those used on 
the 'real' wand (see Figure 3).  
 
// globals 
// head and tail colours (yellow, blue) for the wand 
private static final Color HEAD_COLOUR = new Color(200, 200, 85); 
private static final Color TAIL_COLOUR = new Color(50, 150, 200); 
 
private int imSize;               // size of captured image 
private MWPanel mwPanel;         
private BlobsLine blobsLine;    
 
 
public ImageAnalyzer(MWPanel lp, int sz) 
{ mwPanel = lp; 
  imSize = sz; 
  blobsLine = new BlobsLine(HEAD_COLOUR, TAIL_COLOUR); 
}  // end of ImageAnalyzer() 
 

I extracted suitable RGB values for the Color objects from a webcam snap of the 
wand. The image's pixels were examined with the freeware version of Ultimate Paint 
(http://www.ultimatepaint.com/). 

The quality of the image analysis is much improved if the wand colours are quite 
different from the rest of the colours in the scene. This is helped by MagicWand using 
the white background shown in Figure 2. Red is a poor wand colour since there's a lot 
of red tone in my hand, which usually appears on the right of a snap. It's also a good 
idea to use a bright light source, positioned to reduce shadows in the picture. 

 

1.1. Threaded Tasks 
The ImageAnalyzer thread does four things repeatedly: 

1. it grabs an image from the web camera (with the help of JMFCapture); 

2. it analyses the image, by asking two BlobsManagers to store yellow and blue 
blobs;  

3. once the image has been fully scanned, BlobsLine generates line details by 
examining the largest yellow and blue blobs; 

4. it passes the line information, and the webcam image, over to MWPanel, 
where they're rendered. 

These jobs are carried out inside a thread since they're computationally expensive and 
repeated often. Game rendering progresses independently in its own thread in 
MWPanel. 

I've highlighted the four tasks in the run() method: 
 
// globals 
private static final int SNAP_INTERVAL = 120;  // ms 
 



Java Prog. Techniques for Games. Chapter 28.85  Magic Wand Draft #1 (28th May '06) 

5 Andrew Davison © 2006 

private JMFCapture camera;   
private BufferedImage camImage = null;  
private boolean running; 
 
 
public void run() 
{ 
  camera = new JMFCapture(imSize);   // initialize the webcam 
  System.out.println("**Camera Ready**"); 
 
  long duration; 
  BufferedImage im = null; 
  running = true; 
 
  while (running) { 
    long startTime = System.currentTimeMillis(); 
    im = camera.grabImage();  // take a snap (task 1) 
    if (im == null) { 
      System.out.println("Problem loading image"); 
      duration = System.currentTimeMillis() - startTime; 
    } 
    else { 
      analyzeImage(im);   // task 2 
      blobsLine.calculateLine();  // task 3    
                  // calculate head coords and angle 
 
      duration = System.currentTimeMillis() - startTime; 
      // System.out.println("Duration: " + duration + " ms"); 
 
      // send snapped image and line info to MWPanel for rendering 
      mwPanel.updateCamInfo(im, blobsLine.getLineHead(), 
                                blobsLine.getAngle() ); // task 4   
    } 
 
    if (duration < SNAP_INTERVAL) { 
      try { 
        Thread.sleep(SNAP_INTERVAL-duration);   
        // wait until interval has passed 
      }  
      catch (Exception ex) {} 
    } 
  } 
  camera.close();    // close down the camera 
}  // end of run() 
 

The tasks are repeated every SNAP_INTERVAL ms (120 ms). I arrived at that value 
by examining the execution times of tasks 1-3. On average, image capture takes 
around 30ms, and the analysis a further 90ms.  

 

1.2. Analyzing the Image 

analyzeImage() converts a snapped image into a pixel array, and then compares each 
pixel to the wand colours (yellow and blue). If a pixel's colour is near to one of them 
then it's coordinate is added to a blob for that colour.  
 
// globals 
private static final int CLEAR = 0xffffff;   
  /* black pixel, which will be rendered transparently  



Java Prog. Techniques for Games. Chapter 28.85  Magic Wand Draft #1 (28th May '06) 

6 Andrew Davison © 2006 

     since the image is ARGB */ 
 
 
private void analyzeImage(BufferedImage im) 
{ 
  if (im == null) { 
    System.out.println("Input image is null"); 
    return; 
  } 
 
  blobsLine.clear();   // start with no blobs 
 
  // extract pixels from the image into an array 
  int imWidth = im.getWidth(); 
  int imHeight = im.getHeight(); 
  int [] pixels = new int[imWidth * imHeight]; 
  im.getRGB(0, 0, imWidth, imHeight, pixels, 0, imWidth); 
 
  int xc = 0;    // hold the current pixel coordinates 
  int yc = 0; 
 
  // examine the pixels 
  int i = 0; 
  int colourID = BlobsLine.UNMATCHED_COLOUR; 
  while(i < pixels.length) { 
    colourID = blobsLine.matchesColour(pixels[i]); 
    if (colourID != BlobsLine.UNMATCHED_COLOUR)  // has wand colour 
      blobsLine.addPoint(xc, yc, colourID);   // store point in blob  
    else      // no match 
      pixels[i] = CLEAR;   // make the pixel transparent 
 
    // move to next coordinate in image 
    xc++; 
    if (xc == imWidth) {    // at end of row 
      xc = 0;   // start next row 
      yc++; 
    } 
    i++; 
  } 
 
  // update the image with the modified pixels data 
  im.setRGB(0, 0, imWidth, imHeight, pixels, 0, imWidth); 
}  // end of analyzeImage() 
 

analyzeImage() uses the BlobsLine object to test a pixel's colour, and to add it's 
coordinate to a blob. 

If a pixel isn't close to a wand colour then it's made transparent, which is possible 
since JMFCapture adds an alpha channel to the snapped image. 

The transparency changes mean that when the image is rendered by MWPanel only 
the blobs appear on screen. This gives the user some feedback on the image analysis – 
if no blobs are visible, then the wand should be moved around until some appear. 

Around 20ms can be trimmed from the analysis time (90ms) if the modified pixel data 
isn't stored back in the BufferedImage object at the end of analyzeImage(). But then 
the webcam snap displayed by MWPanel wouldn't be partially transparent. 

 



Java Prog. Techniques for Games. Chapter 28.85  Magic Wand Draft #1 (28th May '06) 

7 Andrew Davison © 2006 

2.  Capturing the Image 

JMFCapture grabs an image using the Java Media Framework (JMF), an approach 
explained at length in chapter 28.7. Aside from requiring the JMF API to be installed 
on your machine, the capture device (i.e. the webcam) should also be registered with 
JMF via its JMF Registry application. 

The version of JMFCapture used here differs in two ways from the one in chapter 
28.7. Firstly the image is scaled so that its height is equal to a value passed to the 
JMFCapture constructor and, secondly, the returned image is given an alpha channel. 

 

The height passed to the constructor is used to calculate a scale factor in 
hasBufferToImage(). A code fragment: 
 
Buffer buf = fg.grabFrame();             // take a snap 
VideoFormat vf = (VideoFormat) buf.getFormat(); 
int height = vf.getSize().height;        // the image's height 
scaleFactor = ((double) size) / height;  // scale uses height  
 

The ARGB version of the image requires a single change inside JMFCapture's 
makeBIM() method: 
 
private BufferedImage makeBIM(Image im) 
{ 
  BufferedImage copy = new BufferedImage(size, size,  
                                BufferedImage.TYPE_INT_ARGB);  
  // create a graphics context 
  Graphics2D g2d = copy.createGraphics(); 
 
  // image --> resized BufferedImage 
  g2d.scale(scaleFactor, scaleFactor);  // apply scale factor 
  g2d.drawImage(im,0,0,null); 
  g2d.dispose(); 
  return copy; 
}  // end of makeBIM() 
 

The original version of makeBIM() specified BufferedImage.TYPE_INT_RGB as the 
image type. makeBIM() also applies the scale factor to the image. 

 



Java Prog. Techniques for Games. Chapter 28.85  Magic Wand Draft #1 (28th May '06) 

8 Andrew Davison © 2006 

3.  Getting a Line on the Blobs 

BlobsLine has several duties, as shown in Figure 5. 

Figure 5. BlobsLine Tasks. 

 

BlobsLine creates two BlobsManager objects to manage the wand-coloured blobs 
(yellow for the head, blue for its tail).  
 
// globals  
private BlobsManager blobManHead, blobManTail;   
 
public BlobsLine(Color headColour, Color tailColour) 
{ blobManHead = new BlobsManager(headColour);  // for yellow blobs 
  blobManTail = new BlobsManager(tailColour);  // for blue blobs 
} 
 

3.1. Matching Against a Colour 

matchesColours() checks if a pixel colour is close to one of the wand colours. 
 
// globals   
// IDs for the possible line colours 
public static final int UNMATCHED_COLOUR = 0; 
private static final int HEAD_COLOUR = 1; 
private static final int TAIL_COLOUR = 2; 
 
public int matchesColour(int pixel) 
{ 
  if (blobManHead.matchesColour(pixel))   // close to head colour 
    return HEAD_COLOUR; 
  else if (blobManTail.matchesColour(pixel))  // close to tail colour 
    return TAIL_COLOUR; 
  else 
    return UNMATCHED_COLOUR; 
} // end of matchesColour() 
 

The pixel is tested against each BlobsManager. The result is an integer constant, 
which will be UNMATCHED_COLOUR if the pixel isn't yellow or blue. 



Java Prog. Techniques for Games. Chapter 28.85  Magic Wand Draft #1 (28th May '06) 

9 Andrew Davison © 2006 

UNMATCHED_COLOUR is a public constant since it's used back in analyzeImage() 
in the ImageAnalyzer class. 

 

3.2. Adding a Pixel Coordinate 

If the pixel is yellow or blue then analyzeImage() calls addPoint() in BlobsLine to add 
the pixel's (x, y) coordinate to a blob. The colour ID previously returned by 
matchesColour() directs the coordinate to the right BlobsManager. 
 
public void addPoint(int x, int y, int colourID) 
{   
  if (colourID == HEAD_COLOUR) 
    blobManHead.addPoint(x,y); 
  else if (colourID == TAIL_COLOUR) 
    blobManTail.addPoint(x,y); 
  else 
    System.out.println("Could not add point for colour " + colourID); 
}  // end of addPoint() 
 

 

3.3. Calculating Line Information 
ImageAnalyzer calls BlobsLine's calculateLine() to calculate details about the line 
connecting the largest blobs of the two wand colours. The hope is that the largest 
yellow blob is centered on the wand's head, the blue blob on it's tail, and the line 
matches the wand's position. 
 
// globals for the line-related data 
private Point lineHead = null; 
private double lineAngle = 0; 
 
public void calculateLine() 
{ 
  // get the biggest blob for the head colour  
  int headBlobIdx = blobManHead.findLargest();   
  if (headBlobIdx == -1)   // no blob found 
    return;   // don't change head or angle values 
 
  // get the biggest blob for the tail colour  
  int tailBlobIdx = blobManTail.findLargest();  
  if (tailBlobIdx == -1)   // no blob found 
    return;    // don't change head or angle values 
 
  // found two largest blobs; so get their centers 
  lineHead = blobManHead.getBlobCenter( headBlobIdx ); 
  Point tailPt = blobManTail.getBlobCenter( tailBlobIdx ); 
 
  // get angle of head of line to the horizontal 
  int xDist = tailPt.x - lineHead.x; 
  int yDist = tailPt.y - lineHead.y; 
  if (xDist == 0)   
    xDist = 1;  // avoid division by zero 
 
  lineAngle = Math.atan( ((double)yDist)/xDist ); 
}  // end of calculateLine() 
 



Java Prog. Techniques for Games. Chapter 28.85  Magic Wand Draft #1 (28th May '06) 

10 Andrew Davison © 2006 

The method gets the indices of the largest blobs held by the BlobsManagers. If 
suitable indices are returned by both managers, then the coordinates of their centers 
are retrieved. The line angle is obtained by a simple piece of trigonometry, illustrated 
by Figure 6. 

Figure 6. Calculating the Line Angle. 

 

The line angle will be negative if the head is pointing downwards, and positive if it's 
pointing up.  

Aside from the two cases shown in Figure 6, what if the user is pointing the wand to 
the right? calculateLine() still generates an angle, but when MWPanel uses that angle, 
it assumes the wand is pointing to the left, and sends sprite blasts to the left. If I 
wanted to aim blasts in any direction, I'd have to generate a wand direction value (e.g. 
TO_LEFT, TO_RIGHT) in addition to the angle, so the blasting code could correctly 
aim the sprites. 

Another subtlety is what happens when one of the BlobsManagers doesn't supply an 
index. In that case, calculateLine() returns without updating lineHead and lineAngle. 
This means that if the snapped image doesn't have a large enough yellow or blue blob, 
then MWPanel will keep using the old wand head position and angle. This explains 
why the on-screen wand stays where it is when the user removes the real-world wand 
from in front of the webcam.  

Another approach would be to set lineHead to null and lineAngle to 0 when no large 
blobs are found. However, this can have a nasty effect on the rendering code in 
MWPanel, as discussed below. 

 

The head coordinates and angle are retrieved by ImageAnalyzer calling their get 
methods: 
 
public Point getLineHead() 
{ return lineHead; } 
 



Java Prog. Techniques for Games. Chapter 28.85  Magic Wand Draft #1 (28th May '06) 

11 Andrew Davison © 2006 

public double getAngle() 
{ return lineAngle; } 
 

 

4.  Managing the Blobs 

A BlobsManager manages all the blobs of a specified colour. 

The class bears a striking resemblance to BandManager in chapter 28.8. The 
matchesColour() method is identical, and addPoint() very similar. The Blob class used 
by BlobsManager is virtually unchanged, so I won't bother describing it again. 

 

BlobsManager's constructor initializes an ArrayList to store its blobs. 
 
// globals 
// RGB components for this manager's colours 
private int redCol, greenCol, blueCol; 
 
private ArrayList<Blob> blobs; 
private int currBlobIdx;     // index of last blob that was updated 
   
 
public BlobsManager(Color c) 
{ 
  redCol = c.getRed(); 
  greenCol = c.getGreen(); 
  blueCol = c.getBlue(); 
 
  blobs = new ArrayList<Blob>(); 
  currBlobIdx = -1; 
}  // end of BlobsManager() 
 

J2SE 5 generics are utilized for the ArrayList. 

 

4.1. Adding a Pixel Coordinate 

addPoint() adds a pixel coordinate to a blob. The coordinate either joins an existing 
blob if it's close enough, or a new blob is created. 
 
public void addPoint(int x, int y) 
{   
  int blobIndex = findCloseBlob(x,y); 
  if (blobIndex != -1) {   // found a blob close to (x,y) 
    Blob b = (Blob) blobs.get(blobIndex); 
    b.addPoint(x,y); 
    currBlobIdx = blobIndex; 
  } 
  else {   // no close blob, so create a new one 
    Blob b = new Blob(); 
    b.addPoint(x,y); 
    blobs.add(b); 
    currBlobIdx = blobs.size() - 1; 
  } 
}  // end of addPoint() 
 



Java Prog. Techniques for Games. Chapter 28.85  Magic Wand Draft #1 (28th May '06) 

12 Andrew Davison © 2006 

findCloseBlob() returns the index of a blob that's close to (x,y). If no suitable blob is 
found then it returns -1. The code is identical to the same-named method in 
BandManager. 

 

4.2. Finding the Largest Blob, Maybe 

findLargest() performs a linear search through the blobs ArrayList, looking for the 
blob with the most points, but with at least MIN_POINTS points. This minimum 
requirement reduces the possibility of mistaking a small blob made from background 
pixels for the wand's head or tail. 
 
// globals 
private static final int MIN_POINTS = 100; 
 
public int findLargest() 
/* Search through the blobs, and return the index 
   of the largest, or -1 if none is found */ 
{ 
  int largestIdx = -1; 
  int maxPts = MIN_POINTS;    // blob must be at least this big 
 
  int numPts; 
  Blob blob; 
  for(int i=0; i < blobs.size(); i++) {  
    blob = blobs.get(i); 
    numPts = blob.numPoints(); 
    if (numPts > maxPts) { 
      maxPts = numPts; 
      largestIdx = i; 
    } 
  } 
  return largestIdx; 
}  // end of findLargest() 
 

 

4.3. A Blob's Center 

getBlobCenter() returns the center of the specified blob: 
 
public Point getBlobCenter(int idx) 
{ 
  Point p = null; 
  if ((idx < 0) || (idx >= blobs.size())) 
    System.out.println("No blob with that index: " + idx); 
  else { 
    Blob blob = blobs.get(idx); 
    p = blob.getCenter(); 
  } 
  return p; 
} 
 

 



Java Prog. Techniques for Games. Chapter 28.85  Magic Wand Draft #1 (28th May '06) 

13 Andrew Davison © 2006 

5.  The Game Canvas 

The MWPanel constructor sets up active rendering (see chapter 2 for an explanation). 
In addition, it loads the necessary MagicWand images with the help of ImagesLoader 
(from chapter 6), initializes the BlastsManager, and starts the ImageAnalyzer thread: 
 
// globals 
private static final int PWIDTH = 700;   // size of panel 
private static final int PHEIGHT = 256;  
 
// image loader information files 
private static final String IMS_INFO = "imsInfo.txt"; 
 
private BlastsManager blastsMan;     // manages the wand blasts 
private ImageAnalyzer imAnalyzer;    // analyzes the webcam images 
 
private BufferedImage bgImage = null;    // the background image 
private BufferedImage wandImage = null;  // a picture of the wand 
 
 
// in the MWPanel constructor... 
// load the background and wand images 
ImagesLoader imsLoader = new ImagesLoader(IMS_INFO);  
bgImage = imsLoader.getImage("desert"); 
wandImage = imsLoader.getImage("wand"); 
 
// create manager for blast sprites 
blastsMan = new BlastsManager(PWIDTH, PHEIGHT, imsLoader,  
                                (int)(period/1000000L) ); // in ms 
 
// start webcam snapping and analysis 
imAnalyzer = new ImageAnalyzer(this, PHEIGHT);  
   // the captured image is scaled to be the same height as the panel 
imAnalyzer.start(); 
 

The wand image (see Figure 7) has a transparent background, with the wand head 
located at (3,22), coordinates used in later code to position the blast sprites. 

Figure 7. The Wand Image. 

 

The animation period passed to BlastsManager (period/1000000) is in milliseconds, 
and controls the frequency of the blasts coming from the wand. 

The panel height (PHEIGHT) argument of the ImageAnalyzer object is used to scale 
the snapped image. When the image is drawn, it'll occupy the full height of the panel. 

 

5.1. The Animation Loop 

The active rendering animation loop in run() is quite complex, but can be summarized 
as: 



Java Prog. Techniques for Games. Chapter 28.85  Magic Wand Draft #1 (28th May '06) 

14 Andrew Davison © 2006 

 
while(running) { 
  gameUpdate(); 
  gameRender(); 
  paintScreen(); 
  // maybe sleep a while 
} 
imAnalyzer.closeDown();    // stop snapping pictures 
 

paintScreen() is unchanged from previous active rendering examples, so won't be 
described further, but I will explain how the game is updated and rendered. 

 

5.2. Updating the Game 

Game elements are modified in two places. gameUpdate() handles the blast sprites by 
contacting the BlastsManager: 
 
private void gameUpdate()  
{ if (!isPaused) 
    blastsMan.updateSprites();   
} 
 

The less obvious place where things are changed is in updateCamInfo(), a method 
called by the ImageAnalyzer thread after it has analyzed each webcam snap. 
 
// global data changed periodically by ImageAnalyzer 
private BufferedImage camImage = null;  // the current webcam image 
private Point wandHeadPt = null;        // the wand's head coords 
private double wandAngle = 0;          // angle of wand to horizontal 
 
 
public void updateCamInfo(BufferedImage im,  
                            Point hdPt, double angle) 
{ if (!isPaused) { 
    camImage = im; 
    wandHeadPt = hdPt; 
    wandAngle = angle; 
  } 
}  // end of updateCamInfo() 
 

updateCamInfo() is the point of contact between the ImageAnalyzer thread and the 
MWPanel rendering thread. This method makes it possible for ImageAnalyzer to 
change camImage, wandHeadPt, and wandAngle while MWPanel is using them. 

A common solution to this kind of sharing conflict is to synchronize the methods that 
manipulate and use the data with the synchronized keyword. This prevents a method 
that updates the data from executing while the data is being accessed. 

The drawback with this approach in MagicWand is that ImageAnalyzer carries out 
changes every 0.1 second. The frequent locking caused by synchronization would 
severely impact the performance of the rendering code. 

An alternative is to not to bother with expensive synchronization, but code the 
rendering methods with care instead, bearing in mind that camImage, wandHeadPt, 
and wandAngle may change at any time. 



Java Prog. Techniques for Games. Chapter 28.85  Magic Wand Draft #1 (28th May '06) 

15 Andrew Davison © 2006 

A useful feature of ImageAnalyzer is that after the first picture has been processed, 
the head coordinates object will never again be null. If large blobs cannot be found in 
the webcam snap then the head coordinates are left unchanged. This means that the 
rendering code can rely on the wandHeadPt object always having a value after its first 
assignment.  

 

5.3. Rendering the Scene 

The game scene is composed from a background image, a (mostly transparent) 
webcam image, a picture of a wand, and the blast sprites shot from the wand. 
 
// globals for off-screen rendering 
private Graphics2D dbg2;  
private Image dbImage = null; 
 
private void gameRender() 
{ 
  if (dbImage == null){ 
    dbImage = createImage(PWIDTH, PHEIGHT); 
    if (dbImage == null) { 
      System.out.println("dbImage is null"); 
      return; 
    } 
    else 
      dbg2 = (Graphics2D) dbImage.getGraphics(); 
  } 
 
  // draw the background 
  dbg2.drawImage(bgImage, 0, 0, this); 
 
  if (camImage != null)  {   // if there's a webcam image 
    int imXOffset = PWIDTH - camImage.getWidth();    
    /* this offset will put the right edge of webcam image  
       against the right edge of the panel */ 
 
    dbg2.drawImage(camImage, imXOffset, 0, this);    
       // draw the webcam image offset to the right 
 
    if (wandHeadPt != null) { 
      // copy wand head coords, and make x-value relative to panel 
      int xHead = wandHeadPt.x + imXOffset; 
      int yHead = wandHeadPt.y; 
      double angle = wandAngle;   // copy the wand angle also 
 
      drawWand(dbg2, xHead, yHead, angle);  
      fireWand(xHead, yHead, angle); 
    } 
  } 
  blastsMan.drawSprites(dbg2);   // draw the blast sprites 
}  // end of gameRender() 
 

The imXOffset value ensures that the webcam image, wand, and blasts are positioned 
over on the right side of the panel. 

The advantage of using copies of the wandHeadPt coordinates and wandAngle is that 
they cannot change while they're being used inside drawWand() and fireWand().  
However, copying only reduces the chance of conflicts. There's still a slim chance 



Java Prog. Techniques for Games. Chapter 28.85  Magic Wand Draft #1 (28th May '06) 

16 Andrew Davison © 2006 

that the head coordinates and/or angle will be changed by ImageAnalyzer during their 
copying. This is really not so serious, since it only means that the wand image and a 
new blast sprite may be incorrectly positioned. The benefits of not being burdened 
with synchronization code outweigh this slight problem.  

 

5.4. Drawing the Wand 

The wand image (see Figure 7) has to be translated to the head position, and rotated 
by the angle amount. Rather than applying these operations directly to the image, an 
affine transformation is applied to the coordinates system instead. The payoff is that 
the call to drawImage() can use (0,0) as the drawing position. 
 
private void drawWand(Graphics2D g2, int xHead, int yHead,  
                                                   double angle) 
{ AffineTransform oldTrans = g2.getTransform();  
                           // save current coords system 
 
  AffineTransform posHead = new AffineTransform(); 
  posHead.translate(xHead-3, yHead-22);    
    /* Move the drawing coordinates to the head position. 
       The (-3,-22) shifts the coordinates back to the  
       top-left of the wand image. */ 
 
  // rotate the drawing coordinates by the wand angle amount 
  posHead.rotate(angle);  
 
  g2.transform(posHead);  // apply the translation and rotation 
  g2.drawImage(wandImage, 0,0, this);     
      // draw the image at the modified (0,0) position 
 
  // restore the old coordinates system 
  g2.setTransform(oldTrans); 
}  // end of drawWand() 
 

It's important to backup the original coordinates system at the start of drawWand(), so 
it can be restored at the end. 

The drawing coordinates for the wand image are offset back to the top-left corner of 
the image by subtracting (3, 22) from the wand head position. 

 

5.5. Firing a Blast from the Wand 

fireWand() asks the BlastsManager to fire a blast sprite, with a frequency controlled 
by a counter. 
 
// globals 
private static final int BLAST_FREQ = 5; 
private int blastCounter = 0;   
 
private void fireWand(int xHead, int yHead, double angle) 
{ 
  blastCounter++; 
  if (blastCounter >= BLAST_FREQ) { 
    blastsMan.requestBlast(xHead, yHead, angle); 
    blastCounter = 0;   // reset counter 



Java Prog. Techniques for Games. Chapter 28.85  Magic Wand Draft #1 (28th May '06) 

17 Andrew Davison © 2006 

  } 
} 
 

 

6.  Managing the Blasts 

BlastsManager's constructor creates an array of ten inactive BlastSprite objects. 
 
// globals 
private static final int NUM_BLASTS = 10; 
private BlastSprite sprites[]; 
 
public BlastsManager(int width, int height,  
                       ImagesLoader imsLd, int period) 
{ sprites = new BlastSprite[NUM_BLASTS]; 
  for (int i=0; i < NUM_BLASTS; i++) 
    sprites[i] = new BlastSprite(width, height, imsLd, period); 
} 
 

Updating and drawing the sprites involves iterating through the array and calling the 
sprites' updateSprite() and drawSprite() methods. A sprite is only updated and drawn 
if it's active. 
 
public void updateSprites() 
{ for (int i=0; i < NUM_BLASTS; i++) 
    sprites[i].updateSprite(); 
} 
 
public void drawSprites(Graphics g) 
{ for (int i=0; i < NUM_BLASTS; i++) 
    sprites[i].drawSprite(g); 
} 
 

6.1. Requesting a New Blast 
MWPanel calls BlastsManager's requestBlast() to fire a blast from the head of the 
wand. The sprite then moves a fixed distance on each update (STEP_SIZE pixels), 
independent of its starting angle. All the sprites move by the same amount, which 
means they all have the same velocity. 

Figure 8 illustrates how the STEP_SIZE distance along the sprite's path is split into x- 
and y- axis components. 

Figure 8. Step Sizes for a Blast Sprite. 
 
// globals 
private static final double STEP_SIZE = 10.0; 
 



Java Prog. Techniques for Games. Chapter 28.85  Magic Wand Draft #1 (28th May '06) 

18 Andrew Davison © 2006 

 
public void requestBlast(int xHead, int yHead, double lineAngle) 
{ 
  // calculate sprite's steps in the x- and y- directions 
  int xStep = (int) Math.round( -STEP_SIZE * Math.cos(lineAngle) ); 
  int yStep = (int) Math.round( -STEP_SIZE * Math.sin(lineAngle) ); 
    /* the negative step makes the direction opposite to the  
       direction defined by the wand head-to-tail */ 
 
  // fire an inactive blast sprite (if there's one available) 
  for (int i=0; i < NUM_BLASTS; i++) 
    if (!sprites[i].isActive()) { 
      sprites[i].startMoving(xHead, yHead, xStep, yStep); 
      break; 
    } 
}  // end of requestBlast() 
 

The negative step size used in the step expressions makes the sprite move in the 
opposite direction from that specified by the wand's head-to-tail orientation. 

The head position (xHead, yHead) and direction vector (xStep, yStep) are assigned to 
the first inactive sprite found in the sprites[] array. If all the sprites are active (i.e. 
moving on-screen) then the request isn't carried out 

 

 

7.  The Blast Sprite 

A blast sprite is an animated sprite, which inherits most of its functionality from the 
Sprite class described in chapter 11. 

The constructor creates an inactive sprite, visually represented by the image strip 
stored in blast.gif.  
 
// globals 
private int period;   // in ms 
  /* The game's animation period used by the image cycling. */ 
 
 
public BlastSprite(int width, int height, ImagesLoader imsLd, int p)  
{  
  super(0, 0, width, height, imsLd, "blast");  
  period = p; 
  setStep(0,0);  // no movement 
  setActive(false); 
} // end of BlastSprite() 
 

blast.gif contains 6 images, shown in Figure 9. I grabbed them from the excellent 
freeware sprite library, SpriteLib GPL, by Ari Feldman, available at 
http://www.flyingyogi.com/fun/spritelib.html. 

Figure 9. The blast.gif Image Strip. 

 



Java Prog. Techniques for Games. Chapter 28.85  Magic Wand Draft #1 (28th May '06) 

19 Andrew Davison © 2006 

7.1. Making the Sprite Move 

startMoving() sets the sprite's starting position, its step increments in the x- and y- 
directions (xStep, yStep), and the duration of its animation loop. 
 
// globals 
private static final double DURATION = 1.0;  // secs 
  // total time to cycle through all the images 
 
 
public void startMoving(int xHead, int yHead, int xStep, int yStep) 
{  
  // center the sprite at the wand head position 
  setPosition(xHead - (getWidth()/2), yHead - (getHeight()/2) ); 
  setStep(xStep, yStep);         // movement direction 
  loopImage(period, DURATION);   // cycle through the images 
  setActive(true); 
} // end of moveLeft() 
 

setPosition() requires the sprite's top-left corner, which is calculated so its center is 
located at the wand head position (xHead, yHead). 

The call to loopImage() specifies that the 'blast' image strip is cycled through every 
second.  

 

7.2. Updating the Sprite 

The blast sprite utilizes the inherited updateSprite() behavior except when it leaves the 
panel. In that case, the sprite is made inactive, so it can be reused as a 'new' blast later 
on. 
 
public void updateSprite()  
{ 
  if (isActive()) { 
    if ( ((locx+getWidth() < 0) && (dx < 0)) ||     // gone off lhs 
         ((locx > getPWidth()) && (dx > 0)) ||      // gone off rhs 
         ((locy+getHeight() < 0) && (dy < 0)) ||    // gone off top 
         ((locy > getPHeight()) && (dy > 0)) ) {   // gone off bottom 
      setStep(0,0);  // no movement 
      setActive(false); 
    } 
    super.updateSprite(); 
  } 
} // end of updateSprite() 
 

 


