
Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

1 Andrew Davison © 2006

Chapter 20.5. When Worlds Collide

An important physics-related gaming problem is how to handle object collisions. It
can be difficult to decide how a 3D object should rebound or bounce, especially when
mass, linear and angular velocity, gravity, friction, and other forces are taken into
account.

The solution is to utilize a physics API, such as ODE (http://www.ode.org/) to do the
heavy-lifting for you. Create physics-based models of the objects, and let ODE
calculate how they should move. Position and orientation details can be read from the
models, and used to update the game's graphical entities.

Applications of this type utilize a dual-model approach, with (mostly) separate
physics-based and graphical elements.

I’ll explain this approach in more detail with a simple example: balls bouncing off
each other and the walls of a box. Figure 1 shows the Balls3D application in action.

Figure 1. When Worlds Collide.

Figure 1 (and this chapter) are entitled "When Worlds Collide" because the balls are
textured wrapped with images of the earth, the moon, and mars.

1. Odejava and ODE
I’ll be using Odejava (http://odejava.org), a Java binding for the ODE physics API
(http://www.ode.org/). ODE's application domain is the physics of articulated rigid
bodies, such as a person's skeleton and muscles, or a car's suspension.

A rigid body's properties include its position, orientation, mass, and any applied
forces, accelerations, and velocities (e.g. gravity and friction). Complex bodies are
built by connecting simpler bodies together using different types of joints, such as
hinges, balls and sockets, and pistons.

Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

2 Andrew Davison © 2006

ODE bodies don't have a visual appearance; it's best to think of them as sets of
equations applied to invisible, connected masses. An ODE system is executed by
advancing time in discrete steps: at each time step, the equations are applied to the
bodies, changing their position and orientation.

ODE also has a collision detection engine, based around geoms (geometries), which
have shape and size attributes. Basic geoms include spheres, boxes, and meshes, with
more complex geoms built by combining simpler ones. An ODE body can be
involved in collisions if it's been assigned a geom.

As an ODE simulation progresses, body collisions are detected when their associated
geoms intersect. A contact is represented by a temporary contact joint, which permits
velocities and accelerations to be transferred between the bodies.

Although geoms have shape, size, position, and orientation, they don't have a visual
representation. This can make debugging an ODE program somewhat difficult since
there's no built-in view of the bodies and geoms. However, it also means that ODE
can be utilized with a variety of visualization APIs. For example, Odejava has been
employed with Java 3D, Xith3D, and jME (the jMonkey Engine).

It's possible to create geoms that have no corresponding body, which can't be affected
by velocities or accelerations. Bodyless geoms are often used to represent walls and
floors, which can be collided with, but can't move themselves.

A typical ODE (Odejava) program has two separate models: a graphical (perhaps 3D)
scene, and a physics-based representation of (some of) the objects in that scene.

One advantage of this approach is that the two models can be developed
independently. For example, the visual versions of the container and balls in Balls3D
were developed first, without any physics elements. The physics was added after the
graphical parts had been completed.

There's no requirement that the physics components model everything in the scene. In
Balls3D only the container and the balls have Odejava representations, since they're
the only things involved in collisions. Odejava isn't needed for the checkboard floor,
the axis labels, or the blue background.

Even when an object does have both visual and physics-based components, they don't
need to have the same complexity. For instance, a game monster may be represented
by a large 3DS model but a comparatively simple ODE body made of 10-20 hinged
parts.

Odejava is a Java wrapper over ODE's C/C++ API. Odejava offers both a low-level
interface and a more object oriented API; I'll be using the latter.

1.1. Installing Odejava
The Odejava API can be obtained from https://odejava.dev.java.net/. The "Odejava
snapshot" is available from the "2006-01-15_cvs (1)" folder, accessed via the
website's "Documents & files" menu item.

The snapshot is a zipped file containing Odejava's platform-independent JARs (and
lots more stuff as well). Extract odejava.jar from the odejava\odejava subdirectory,

Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

3 Andrew Davison © 2006

and log4j-1.2.9.jar from odejava\odejava\lib. You may also want the vecmath.jar file,
but Java 3D already contains that JAR, so I didn't need it.

The platform-dependent elements are a separate download from
https://odejava.dev.java.net/. Grab the "Windows Binaries" zip file from the "004-10-
30 natives (4)" folder, and extract the odejava.dll file from its windows\release
subdirectory.

At this point, you should have three files: odejava.dll, odejava.jar, and log4j-1.2.9.jar.
You may wonder why log4j logging is need, and so do I :). The two JARs should be
copied to <JAVA HOME>\jre\lib\ext, and the DLL to <JAVA HOME>\jre\bin. On
my machine, <JAVA HOME> is c:\Program Files\Java\jdk1.5.0_06.

If you've installed the JRE as well, then also copy the JARs and DLL into the
corresponding directories below <JRE HOME>. On my machine, <JRE HOME> is
c:\Program Files\Java\jre1.5.0_06.

One of Odejava's optional extras are classes which can semi-automatically map
geoms to displayable entities in a particular graphics API. The main developer of
Odejava, William Denniss, is also involved in Xith3D, and so the Odejava snapshot
contains a Xith3D subdirectory holding classes for mapping geoms to Xith3D. A
similar API for Java 3D, by Paul Byrne, can be found at https://odejava.dev.java.net/
in the "contrib (0)\java3d-binding (1)" folder.

These mapping classes are rather difficult to understand and use, and perhaps better
suited for complex geometries. I won’t be using the Java 3D binding, since Balls3D
only utilizes box and spheres.

1.2. Documentation, Examples, and Online Help
The Odejava API documentation can be downloaded as a zip file from
http://odejava.org/OdejavaDocs, or can be viewed online at
http://odejava.org/javadoc/. There's also a version in the Odejava snapshot, but it's
combined with Xith3D API information, which I don't need.

It's a good idea to download the ODE user guide, which explores ODE concepts and
its API in detail. This is useful since much of the Odejava API is closely related to
ODE. The user guide can be found at http://www.ode.org/ode-docs.html, in HTML or
PDF formats.

The Odejava snapshot contains several example folders in the subdirectory
odejava\odejava\src\org\odejava\test\. The simple\ folder is the place to start, and my
Bouncer.java example (discussed in the next section) is a variant of its
HighLevelApiExample.java. The car\ folder contains an example that models how a
car moves over a bumpy terrain.

The best source for help on Odejava is the "Game Physics" forum at javaGaming.org
(http://www.javagaming.org/forums/index.php?board=11.0).

For ODE advice, there's community page at the ODE site
(http://www.ode.org/community.html), which includes a link to an ODE mailing list

Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

4 Andrew Davison © 2006

archive at http://q12.org/pipermail/ode/. Unfortunately, there's no search feature at the
q12.org site, but Google can be employed instead by including "site:q12.org" in
search queries (e.g. type "xode site:q12.org" to scan the mailing list for references to
xode).

Another ODE forum, this one directly searchable, is at http://ode.petrucci.ch.

The gamedev.net site has an informative physics forum
(http://www.gamedev.net/community/forums/forum.asp?forum_id=20), and other
general physics resources. Another good forum is at
http://www.continuousphysics.com/Bullet/phpBB2/index2.php.

2. Bouncing a Ball
Bouncer.java is a small Odejava example that doesn't use any Java graphics (thereby
keeping the code nicely simple). A sphere drops onto a floor, and its position and
other information is printed out periodically. Whenever the sphere hits the floor, it
bounces.

The simulation continues until 1000 steps have been carried out, then stops.

The following partial output shows what happens when the ball (which has a radius of
1) drops from a height of 4 meters, under a gravity of 0.2 m/s2.

The "Pos" value is the position of the ball's center, and the "angle" is the ball's
rotation around the y-axis. Information is printed every 10 simulation steps.

> java Bouncer
0 [main] INFO odejava - Odejava version 0.2.4
Step 10) Pos: (0, 4, 0), angle: 0
Step 20) Pos: (0, 3.9, 0), angle: 0
Step 30) Pos: (0, 3.8, 0), angle: 0
Step 40) Pos: (0, 3.6, 0), angle: 0
Step 50) Pos: (0, 3.4, 0), angle: 0
Step 60) Pos: (0, 3.1, 0), angle: 0
Step 70) Pos: (0, 2.8, 0), angle: 0
Step 80) Pos: (0, 2.4, 0), angle: 0
Step 90) Pos: (0, 2, 0), angle: 0
Step 100) Pos: (0, 1.5, 0), angle: 0
Step 110) Pos: (0, 1, 0), angle: 0
Step 120) Pos: (0, 1.4, 0), angle: 0
Step 130) Pos: (0, 1.8, 0), angle: 0
Step 140) Pos: (0, 2.1, 0), angle: 0
 :
Step 920) Pos: (0, 1, 0), angle: 0
Step 930) Pos: (0, 1, 0), angle: 0
Step 940) Pos: (0, 1, 0), angle: 0
Step 950) Pos: (0, 1, 0), angle: 0
Step 960) Pos: (0, 1, 0), angle: 0
Step 970) Pos: (0, 1, 0), angle: 0
Step 980) Pos: (0, 1, 0), angle: 0
Step 990) Pos: (0, 1, 0), angle: 0

The ball drops from (0,4,0) until it reaches the floor at step 110, and then bounces up
to a reduced height. The bounces continue, but by step 990 the ball is at rest.

Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

5 Andrew Davison © 2006

The Odejava API is simple enough, that it's easy to modify the ball's behaviour. In the
second run shown below, the sphere now has a linear velocity of 2 m/s along the x-
axis, and an angular velocity around the y-axis of 1 m/s. Friction is also included to
slow the ball down.

> java Bouncer
0 [main] INFO odejava - Odejava version 0.2.4
Step 10) Pos: (1, 4, 0), angle: 28.6
Step 20) Pos: (2, 3.9, 0), angle: 57.3
Step 30) Pos: (3, 3.8, 0), angle: 85.9
Step 40) Pos: (4, 3.6, 0), angle: 114.6
Step 50) Pos: (5, 3.4, 0), angle: 143.2
Step 60) Pos: (6, 3.1, 0), angle: 171.9
Step 70) Pos: (7, 2.8, 0), angle: 200.5
Step 80) Pos: (8, 2.4, 0), angle: 229.2
Step 90) Pos: (9, 2, 0), angle: 257.8
Step 100) Pos: (10, 1.5, 0), angle: 286.5
Step 110) Pos: (11, 1, 0), angle: 315.1
Step 120) Pos: (11.7, 1.4, -0), angle: 318
Step 130) Pos: (12.4, 1.8, -0), angle: 281.5
Step 140) Pos: (13.2, 2.1, -0), angle: 236.8
Step 150) Pos: (13.9, 2.4, -0), angle: 190.5
Step 160) Pos: (14.6, 2.6, -0), angle: 143.9
 :
Step 920) Pos: (69.2, 1, -0.7), angle: 36.1
Step 930) Pos: (70, 1, -0.7), angle: 61.5
Step 940) Pos: (70.7, 1, -0.7), angle: 104.8
Step 950) Pos: (71.4, 1, -0.7), angle: 151.1
Step 960) Pos: (72.1, 1, -0.7), angle: 198.1
Step 970) Pos: (72.8, 1, -0.7), angle: 244.8
Step 980) Pos: (73.5, 1, -0.7), angle: 289.2
Step 990) Pos: (74.3, 1, -0.7), angle: 321.8

The ball bounces as before, and moves at a slowly decreasing speed to the right along
the x-axis. The ball also drifts slightly down the negative -z-axis (ending at -0.7), due
to its spin around the y-axis and the presence of friction.

The rotation angle increases until the ball bounces, then the change in the ball's
direction causes the angle to start decreasing. This continues until the ball begins
falling again, at which time the angle starts increasing again.

Much more tweaking is possible, such as changing the gravity, the bounce velocity,
and the friction applied to the ball.

2.1. Three Stage Simulation
An Odejava simulation passes through three stages: set-up, execution, and clean up,
which can be seen in the Bouncer() constructor.

private static final int MAX_STEPS = 1000; // simulation steps
private DecimalFormat df; // used for reporting

public Bouncer()
{
 df = new DecimalFormat("0.#"); // 1 dp

Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

6 Andrew Davison © 2006

 // set-up
 Odejava.getInstance();
 initWorld();
 initStatics();
 initDynamics();

 simulate(MAX_STEPS); // carry out the simulation

 cleanUp();
} // end of Bouncer()

The set-up is divided into three parts: the initialization of the rigid body and collision
detection engines (in initWorld()), and the creation of static and dynamic objects. A
static object is a geom without a body, so it can't move. A dynamic object is a body,
so it can be affected by forces, accelerations, and velocities. A body may have an
associated geom to let it get involved in collisions.

simulate() steps the simulation forward until MAX_STEPS (1000) steps have been
carried out. The clean up phase closes down the ODE engines.

2.2. Initializing the Engines
The rigid body engine is accessed through the World class, while collision detection
utilizes HashSpace, JavaCollision, and Contact.

// globals
private World world;

// for collisions
private HashSpace collSpace; // holds collision info
private JavaCollision collCalcs; // calculates collisions
private Contact contactInfo; // for accessing contact details

private void initWorld()
{
 world = new World();
 world.setGravity(0f, -0.2f, 0); // down y-axis (9.8 is too fast)

 // max interactions per step (bigger is more accurate, but slower)
 world.setStepInteractions(10);

 // set step size (smaller is more accurate, but slower)
 world.setStepSize(0.05f);

 // create a collision space for the world's geoms
 collSpace = new HashSpace();

 collCalcs = new JavaCollision(world); // collision calculations
 contactInfo = new Contact(collCalcs.getContactIntBuffer(),
 collCalcs.getContactFloatBuffer());
} // end of initWorld()

The World object acts as an environment for the bodies and joints, and manages
gravity and step-related parameters.

Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

7 Andrew Davison © 2006

The HashSpace object is a collision space for geoms. Collision testing involves
examining pairs of geoms in the space to see if they intersect. It's possible to create
multiple collision spaces, which improves collision testing performance since testing
is only done between geoms within the same space.

JavaCollision performs the collision testing on geoms in a particular space. The tests
generate a list of contact points, and the details relating to a particular point can be
manipulated with the Contact object, contactInfo.

2.3. Initializing Static Objects
Static objects are geoms with no bodies, so the simulation can't change the objects'
positions or orientations. Static objects are often employed for modeling boundaries in
a scene, such as walls and the floor – objects which can be collided with, but can't
move themselves.

The only static entity in Bouncer is the floor, which is represented by a GeomPlane
object with its normal facing up the y-axis.

private void initStatics()
{
 // the floor, facing upward
 GeomPlane groundGeom = new GeomPlane(0, 1.0f, 0, 0);
 collSpace.add(groundGeom);
}

Since the floor plays a part in the collision calculations, it's added to the collision
space, collSpace.

2.4. Initializing Dynamic Objects
Dynamic objects have bodies, so the simulation can move them. If a body also has a
geom, then it can collide with other objects. The geom defines the object's shape,
while the body specifies the object's mass, position, orientation, and the forces,
velocities, and accelerations being applied to it.

initDynamics() creates a body and a geom for the ball. Its body has a mass, position,
and linear and angular velocities. Odejava has other methods for specifying force and
torque, which I haven't used here.

// globals for the sphere's body and geom
private Body sphere;
private GeomSphere sphereGeom;

private void initDynamics()
{
 // a sphere of radius 1, mass 1
 sphereGeom = new GeomSphere(1.0f);
 sphere = new Body("sphere", world, sphereGeom);
 sphere.adjustMass(1.0f);

 sphere.setPosition(0, 4.0f, 0); // starts 4 unit above the floor
 sphere.setLinearVel(2.0f, 0, 0); // moving to the right

Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

8 Andrew Davison © 2006

 sphere.setAngularVel(0, 1.0f, 0); // velocity around y-axis

 collSpace.addBodyGeoms(sphere);
} // end of initDynamics()

The sphere is added to the collision space, since it'll be involved in collisions with the
floor.

2.5. Executing the Simulation
simulate() repeatedly calls step() to advance the simulation. Information about the
sphere is printed every 10th simulation step.

// globals for holding sphere info
private Vector3f pos = new Vector3f();
private AxisAngle4f axisAng = new AxisAngle4f();

private void simulate(int maxSteps)
{
 int step = 1;
 while (stepCount < maxSteps) {
 step();
 // print sphere's details every 10th step
 if ((stepCount % 10) == 0) {
 pos = sphere.getPosition();
 sphere.getAxisAngle(axisAng);
 System.out.println("Step " + stepCount + ") Pos: (" +
 df.format(pos.x) + ", " + df.format(pos.y) + ", " +
 df.format(pos.z) + "), angle: " +
 df.format(Math.toDegrees(axisAng.angle)));
 // ", quat: " + sphere.getQuaternion());
 }
 stepCount++;
/*
 // sleep a bit
 try {
 Thread.sleep(50); // ms
 }
 catch(Exception e) {}
*/
 }
} // end of simulate()

The Odejava Body class has numerous get methods, and three are shown in
simulate(). Body.getPosition() returns the sphere's current position as a Vector3f
object. Body.getAxisAngle() returns the axis angle (a rotation in radians) about a
direction vector. Body.getQuaternion() is another way of obtaining the body's
rotation, as a quaternion.

The pos and axisAng objects are global so that new, temporary Vector3f and
AxisAngle4f objects don't need to be created in every iteration of the simulation loop.

The simulation step (0.05 ms) defined in initWorld() is an elapsed time within the
simulation, and has no effect on the running time of the Bouncer application. A

Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

9 Andrew Davison © 2006

simple way of slowing down the simulate() loop is to call Thread.sleep(), as shown in
the commented code.

2.6. Performing a Simulation Step
step() detects collisions, creates contact joints, and advances the simulation.

private void step()
{
 collCalcs.collide(collSpace); // find collisions
 examineContacts(); // examine contact points
 collCalcs.applyContacts(); // apply contacts joint

 world.stepFast(); // make a step
}

JavaCollision.collide() examines the geoms in the collision space to determine which
ones are touching each other, and their contact points are collected.

examineContacts() converts the interesting contact points into contact joints. These
joints act as a temporary links between the bodies attached to the geoms.

JavaCollision.applyContacts() applies the forces, acceleration, and velocity equations
of the newly formed contact joints to their associated bodies, and then the joints are
deleted.

Finally the simulation is stepped forward, moving the bodies and their geoms.

2.7. Examining the Contact Points
In Bouncer, the only contact point is the one made by the sphere when it touches the
floor. examineContacts() finds the contact point, and converts it into a 'bouncy'
contact joint.

private void examineContacts()
{
 for (int i = 0; i < collCalcs.getContactCount(); i++) {
 contactInfo.setIndex(i); // look at the ith contact point

 // if the contact involves the sphere, then make it bounce
 if ((contactInfo.getGeom1() == sphereGeom) ||
 (contactInfo.getGeom2() == sphereGeom)) {
 contactInfo.setMode(Ode.dContactBounce);
 contactInfo.setBounce(0.82f); // 1 is max bounciness
 contactInfo.setBounceVel(0.1f); // min velocity for a bounce
 contactInfo.setMu(100.0f); // 0 is friction-less
 }
 }
} // end of examineContacts()

The contact point in the list is accessed via the Contact object, contactInfo.

A contact point involves a pair of geoms, referenced via Contact.getGeom1() and
Contact.getGeom2(). If either one is the sphere, then a bouncing contact joint is
created. The joint's mode is set to be Ode.dCountBounce, and the amount of

Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

10 Andrew Davison © 2006

bounciness is specified. If the sphere's velocity is below 0.1 m/s then no bounce will
occur, and friction is added in to slow the sphere down.

2.8. Cleaning Up
At the end of the simulation (after 1000 steps have been executed), cleanUp() is called
from Bouncer():

private void cleanUp()
{
 collSpace.delete();
 collCalcs.delete();
 world.delete();
 Ode.dCloseODE();
}

It switches off the rigid body and collection detection engines, and terminates ODE.

3. Visualizing Balls in a Box
Figure 2 shows a snapshot of the Balls3D application:

Figure 2. More Ball Collisions.

Most of the visual elements in Balls3D are taken from the Checkers3D example in
Chapter 15, including the checkboard floor, the numbered axes, the blue background,
the two directional lights, and the OrbitBehavior for moving the user's viewpoint
around the scene. I won't bother explaining them again, so please look back at
Chapter 15 if that material is unfamiliar to you.

The new elements are the translucent box with yellow edges, and the ten textured
bouncing spheres. The box and the spheres have Odejava models, as does the floor, so
that collision detection can be carried out.

Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

11 Andrew Davison © 2006

The class diagrams for Balls3D are shown in Figure 3; only the public methods are
listed for each class.

Figure 3. Class Diagrams for Balls3D.

Balls3D is the top-level JFrame, while WrapBalls3D does the work of creating the 3D
scene. This includes setting up the graphical elements borrowed from Checkers3D,
such as the floor, background, and lighting. The floor is created with the help of the
CheckerFloor and ColouredTiles classes taken from Checkers3D.

Each sphere has a graphical and physics component, which are wrapped up in the
PhySphere class. PhySpheres manages the PhySphere objects.

The Java 3D and Odejava aspects of the translucent box are created by PhyBox.

The simulation is executed by a Behavior subclass, StepBehavior, which is triggered
every 30 milliseconds to perform a simulation step.

3.1. Creating the Scene
WrapBalls3D initializes the physics system, creates the box and spheres, and starts
StepBehavior. These tasks are carried out from createSceneGraph()

// globals
private BranchGroup sceneBG;
private BoundingSphere bounds; // for environment nodes

private void createSceneGraph()
{
 sceneBG = new BranchGroup();
 bounds = new BoundingSphere(new Point3d(0,0,0), BOUNDSIZE);

Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

12 Andrew Davison © 2006

 lightScene(); // add the lights
 addBackground(); // add the sky
 sceneBG.addChild(new CheckerFloor().getBG()); // add the floor

 initPhysWorld(); // start the physics engines
 addPhysObjects(); // add the box and spheres
 addStepper(); // step behaviour for simulation

 sceneBG.compile(); // fix the scene
} // end of createSceneGraph()

3.1.1. Initializing the Engines
initPhysWorld() starts Odejava's rigid body and collision detection engines.

// global physics objects
private World world;
private HashSpace collSpace; // holds collision info
private JavaCollision collCalcs; // calculates collisions

private void initPhysWorld()
{
 Odejava.getInstance();

 world = new World();
 // world.setGravity(0f, -0.2f, 0);
 world.setStepInteractions(10);
 world.setStepSize(0.05f);

 // create a collision space for the world's box and spheres
 collSpace = new HashSpace();

 collCalcs = new JavaCollision(world); // for collision calcs
}

The gravity setting has been commented out so the spheres won't fall to the bottom of
the box.

3.1.2. The Physics Objects
The details of the spheres and the box are hidden away inside their own objects,
which addPhysObjects() create.

// globals
private static final int NUM_SPHERES = 10;
private PhySpheres spheres; // manages the bouncing spheres

private void addPhysObjects()
{
 PhyBox box = new PhyBox(6.0f, 3.0f, 6.0f, collSpace);
 sceneBG.addChild(box.getBoxBG()); // add the box to the scene

Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

13 Andrew Davison © 2006

 // create the spheres
 spheres = new PhySpheres(sceneBG, world, collSpace);
 for(int i=0; i < NUM_SPHERES; i++)
 spheres.addSphere();
}

The first three arguments of PhyBox() are the box's width, height, and depth. The
box's visual representation (the translucent space with yellow edges) is returned via
PhyBox.getBoxBG(), and added to the scene graph.

NUM_SPHERES (10) spheres are created at random places inside the box, by
repeatedly calling PhySpheres.addSphere(). The Java 3D spheres are attached to the
scene graph inside PhySpheres, which is passed sceneBG.

3.1.3. Staring the Simulation
The simulation is driven by a StepBehavior object, created in addStepper().

// global
private StepBehavior stepBeh;

private void addStepper()
{
 stepBeh =
 new StepBehavior(30, spheres, world, collSpace, collCalcs);
 // it will be triggered every 30ms (== 33 frames/sec)

 stepBeh.setSchedulingBounds(bounds);
 sceneBG.addChild(stepBeh);
}

The behaviour is triggered every 30 ms, according to the first argument of its
constructor. StepBehavior also takes a reference to the PhySpheres object, spheres, so
it can request that the spheres' visual components be redrawn.

3.2. The Box

The PhyBox class manages the graphical and physics elements of a box whose
dimensions are specified by width, height, and depth values supplied in the PhyBox()
constructor. The box is centered at the origin, with its base resting on the XZ plane.

The graphical box is translucent, and its edges are highlighted with thick yellow lines
(apart from those edges resting on the floor.) See Figures 1 and 2 for screenshots.

The physics box is defined by a geom plane on the XZ plane and five geom boxes for
the walls and ceiling.

The dual nature of PhyBox is highlighted in its constructor:

public PhyBox(float width, float height, float depth,
 HashSpace collSpace)
{ makeBox(width, height, depth); // makes the graphical parts

Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

14 Andrew Davison © 2006

 makeBoxGeom(width, height, depth, collSpace); // physics parts
}

makeBox() handles the Java 3D graphics, while makeBoxGeom() generates the
Odejava geoms.

3.2.1. The Graphical Box
WrapBalls3D supplies the dimensions (6, 3, 6) for the box's width, height, and depth,
and makeBox() creates a Java 3D Box object like the one in Figure 4.

Figure 4. The Box's Dimensions.

By default, a Java 3D Box object is centered at the origin. makeBox() must move the
box 1.5 units up the y-axis to make its base sit on the XZ plane. The box also needs to
be made semi-transparent.

The makeBox() method:

// global
private BranchGroup boxBG; // for holding the box's graphical parts

private void makeBox(float width, float height, float depth)
{
 float xDim = width/2.0f;
 float yDim = height/2.0f;
 float zDim = depth/2.0f;

 Appearance app = new Appearance();

 // switch off face culling
 PolygonAttributes pa = new PolygonAttributes();
 pa.setCullFace(PolygonAttributes.CULL_NONE);
 app.setPolygonAttributes(pa);

 // semi-transparent appearance
 TransparencyAttributes ta = new TransparencyAttributes();
 ta.setTransparencyMode(TransparencyAttributes.BLENDED);
 ta.setTransparency(0.7f); // 1.0f is totally transparent
 app.setTransparencyAttributes(ta);

Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

15 Andrew Davison © 2006

 // position the box: centered, sitting on the XZ plane
 Transform3D t3d = new Transform3D();
 t3d.set(new Vector3f(0, yDim+0.01f,0));
 /* the box is a bit above the floor, so it doesn't visual
 interact with the floor. */
 TransformGroup boxTG = new TransformGroup(t3d);
 boxTG.addChild(
 new com.sun.j3d.utils.geometry.Box(xDim, yDim, zDim, app));
 // set the box's dimensions and appearance

 Shape3D edgesShape = makeBoxEdges(xDim, height, zDim); // edges

 // collect the box and edges together under a single BranchGroup
 boxBG = new BranchGroup();
 boxBG.addChild(boxTG);
 boxBG.addChild(edgesShape);
} // end of makeBox()

Aside from making the Box's Appearance node use transparency, culling is also
switched off. Then if the user moves the camera inside the box, the box's sides will
still appear translucent.

The translation upwards is by height/2 (yDim), plus a small amount (0.01), so the
box's base doesn't overlap with the checkboard floor.

makeBoxEdges() creates the yellow box edges by utilizing a Shape3D object. The
Box, the box's TransformGroup, and edges shape are collected together under a single
BranchGroup, resulting in the scene graph branch shown in Figure 5.

Figure 5. The Scene Graph Branch for the On-screen Box.

A close look at Figures 1 and 2 shows that the yellow highlighting only appears on
the eight box edges above the floor. The simplest way of creating these edges is as
lines in a Java 3D LineArray. This data structure can be used to initialize the Shape3D
node.

Eight lines requires 16 points in the LineArray.

private Shape3D makeBoxEdges(float x, float y, float z)

Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

16 Andrew Davison © 2006

{
 LineArray edges = new LineArray(16, LineArray.COORDINATES |
 LineArray.COLOR_3);

 Point3f pts[] = new Point3f[16];
 // front edges
 pts[0] = new Point3f(-x, 0, z); // edge 1 (left)
 pts[1] = new Point3f(-x, y, z);

 pts[2] = new Point3f(-x, y, z); // edge 2 (top)
 pts[3] = new Point3f(x, y, z);

 pts[4] = new Point3f(x, y, z); // edge 3 (right)
 pts[5] = new Point3f(x, 0, z);

 // back edges
 pts[6] = new Point3f(-x, 0,-z); // edge 4 (left)
 pts[7] = new Point3f(-x, y,-z);

 pts[8] = new Point3f(-x, y,-z); // edge 5 (top)
 pts[9] = new Point3f(x, y,-z);

 pts[10] = new Point3f(x, y,-z); // edge 6 (right)
 pts[11] = new Point3f(x, 0,-z);

 // top edges, running front to back
 pts[12] = new Point3f(-x, y, z); // edge 7 (left)
 pts[13] = new Point3f(-x, y,-z);

 pts[14] = new Point3f(x, y, z); // edge 8 (right)
 pts[15] = new Point3f(x, y,-z);

 edges.setCoordinates(0, pts);

 // set the edges colour to yellow
 for(int i = 0; i < 16; i++)
 edges.setColor(i, new Color3f(1, 1, 0));

 Shape3D edgesShape = new Shape3D(edges);

 // make the edges (lines) thicker
 Appearance app = new Appearance();
 LineAttributes la = new LineAttributes();
 la.setLineWidth(4);
 app.setLineAttributes(la);
 edgesShape.setAppearance(app);

 return edgesShape;
} // end of makeBoxEdges()

The colour of the lines is set as part of the geometry, while their thickness is achieved
with a LineAttributes object in the shape's appearance.

3.2.2. The Physics-based Box
The box geometry manufactured in makeBoxGeom() consists of a geom plane for the
floor, four geom boxes for the walls, and a fifth one for the ceiling.

Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

17 Andrew Davison © 2006

The geom plane coincides with the XZ plane, while the boxes surround the space
occupied by the translucent Java 3D box. This notion is illustrated in Figure 6.

Figure 6. The Placing of the Geoms Around the Box.

The trickiest aspect is positioning the geom boxes correctly. By default, each box is
centered at the origin, so needs to be repositioned. Each box is THICKNESS (1.0)
units thick, an arbitrary value.

private static final float THICKNESS = 1.0f;

private void makeBoxGeom(float width, float height, float depth,
 HashSpace collSpace)
{
 float xDim = width/2.0f;
 float yDim = height/2.0f;
 float zDim = depth/2.0f;
 float midWall = THICKNESS/2.0f;

 collSpace.add(new GeomPlane(0, 1.0f, 0, 0)); // floor

 // the four walls
 GeomBox rightWall = new GeomBox(THICKNESS, height, depth);
 rightWall.setPosition(xDim+midWall, yDim, 0);
 collSpace.add(rightWall);

 GeomBox leftWall = new GeomBox(THICKNESS, height, depth);
 leftWall.setPosition(-(xDim+midWall), yDim, 0);
 collSpace.add(leftWall);

 GeomBox frontWall = new GeomBox(width, height, THICKNESS);
 frontWall.setPosition(0, yDim, zDim+midWall);
 collSpace.add(frontWall);

 GeomBox backWall = new GeomBox(width, height, THICKNESS);
 backWall.setPosition(0, yDim, -(zDim+midWall));
 collSpace.add(backWall);

 // the ceiling
 GeomBox ceiling = new GeomBox(width, THICKNESS, depth);
 ceiling.setPosition(0, height+midWall, 0);

Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

18 Andrew Davison © 2006

 collSpace.add(ceiling);
} // end of makeBoxGeom()

Since the floor, walls, and ceiling will be involved in collision detection, they're
added to the collision space, collSpace.

3.3. Managing the Spheres
PhySpheres main task is to create a PhySphere using a randomly generated radius,
position, and linear velocity. Each sphere is also assigned a texture, chosen at random.

The textures are loaded by PhySpheres at initialization time, so each PhySphere
object can use one immediately, without the overhead of loading it.

PhySpheres has a redraw() method for all its spheres, which the StepBehavior class
calls.

3.3.1. Initializing PhySpheres
The constructor creates an empty array list for holding future PhySphere objects, and
uses loadTextures() to load the "earth", "moon", and "mars" textures, storing them as
Texture2D objects in an array.

// globals
private BranchGroup sceneBG; // the scene graph
private World world; // physics elements
private HashSpace collSpace;

private ArrayList<PhySphere> spheres;
private Random rand;

public PhySpheres(BranchGroup sg, World w, HashSpace cs)
{
 sceneBG = sg;
 world = w;
 collSpace = cs;

 spheres = new ArrayList<PhySphere>();
 rand = new Random();

 loadTextures();
} // end of PhySpheres()

3.3.2. Adding a Sphere
addSphere() (called from WrapBalls3D) utilizes random numbers to set the texture,
radius, position, and velocity for a new sphere.

// globals
private Texture2D[] textures; // holds the loaded textures

Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

19 Andrew Davison © 2006

public void addSphere()
{
 Texture2D planTex = textures[rand.nextInt(textures.length)];
 float radius = rand.nextFloat()/4.0f + 0.2f; // between 0.2 & 0.45

 PhySphere s = new PhySphere(world, collSpace, "planet "+counter,
 planTex, radius, randomPos(), randomVel());

 sceneBG.addChild(s.getSphereTG());
 spheres.add(s); // add to ArrayList
 counter++;
} // end of addSphere()

PhySphere creates a Java 3D sphere, which is accessed via PhySphere.getSphereTG(),
and linked to the scene graph.

randomPos() and randomVel() generate random position and velocity vectors within
prescribed ranges.

private Vector3f randomPos()
{ Vector3f pos = new Vector3f();
 pos.x = rand.nextFloat()*5.0f - 2.5f; // -2.5 to 2.5
 pos.y = rand.nextFloat()*2.0f + 0.5f; // 0.5 to 2.5
 pos.z = rand.nextFloat()*5.0f - 2.5f; // -2.5 to 2.5
 return pos;
} // end of randomPos()

private Vector3f randomVel()
{ Vector3f vel = new Vector3f();
 vel.x = rand.nextFloat()*6.0f - 3.0f; // -3.0 to 3.0
 vel.y = rand.nextFloat()*6.0f - 3.0f;
 vel.z = rand.nextFloat()*6.0f - 3.0f;
 return vel;
} // end of randomVel()

The position values are hardwired to be somewhere within the translucent space,
while the velocity numbers produce a reasonable speed in most cases.

3.3.3. Helping StepBehavior
StepBehavior periodically needs to redraw the visual components of the spheres. It
does this with PhySpheres' redraw() method.

public void redraw()
{ for(PhySphere ps: spheres)
 ps.redraw();
}

Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

20 Andrew Davison © 2006

3.4. A Sphere
A sphere has two parts: a Java 3D visualization and an Odejava body. This is
highlighted by the method calls in the constructor, which build them.

// globals
private Transform3D t3d; // used for accessing a TG's transform
private DecimalFormat df; // for printing data

public PhySphere(World world, HashSpace collSpace, String name,
 Texture2D tex, float radius,
 Vector3f posVec, Vector3f velVec)
{ t3d = new Transform3D();
 df = new DecimalFormat("0.##"); // 2 dp

 makeSphere3D(tex, radius, posVec); // makes the graphical part
 makeSphereBody(world, collSpace, name, radius, posVec, velVec);
 // physics part
}

3.4.1. The Graphical Sphere
The graphical sphere is textured and lit, and hangs below two TransformGroups
(TGs) which control its position and orientation. The configuration is shown in Figure
7.

Figure 7. The Scene Graph Branch for an On-screen Sphere.

The moveTG TransformGroup is used to translate the sphere, and rotTG rotates it. I
could have used a single TransformGroup instead, but separating the two operations
makes them easier to understand.

makeSphere3D() also constructs the Java 3D Sphere, and sets its appearance.

// globals
// sphere colours
private static final Color3f BLACK = new Color3f(0.0f, 0.0f, 0.0f);

Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

21 Andrew Davison © 2006

private static final Color3f GRAY = new Color3f(0.6f, 0.6f, 0.6f);
private static final Color3f WHITE = new Color3f(0.9f, 0.9f, 0.9f);

// TGs which the sphere hangs off:
private TransformGroup moveTG, rotTG;

private void makeSphere3D(Texture2D tex, float radius,
 Vector3f posVec)
{
 Appearance app = new Appearance();

 // combine texture with material and lighting of underlying surface
 TextureAttributes ta = new TextureAttributes();
 ta.setTextureMode(TextureAttributes.MODULATE);
 app.setTextureAttributes(ta);

 // assign gray material with lighting
 Material mat= new Material(GRAY, BLACK, GRAY, WHITE, 25.0f);
 // sets ambient, emissive, diffuse, specular, shininess
 mat.setLightingEnable(true);
 app.setMaterial(mat);

 // apply texture to shape
 if (tex != null)
 app.setTexture(tex);

 // make the sphere with normals for lighting, and texture support
 Sphere sphere = new Sphere(radius,
 Sphere.GENERATE_NORMALS |
 Sphere.GENERATE_TEXTURE_COORDS,
 15, app); // default divs == 15

 // create a transform group for rotating the sphere
 rotTG = new TransformGroup();
 rotTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 rotTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 rotTG.addChild(sphere);

 // create a transform group for moving the sphere
 t3d.set(posVec);
 moveTG = new TransformGroup(t3d);
 moveTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 moveTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 moveTG.addChild(rotTG);
} // end of makeSphere3D()

3.4.2. The Physics-based Sphere
The Odejava sphere combines GeomSphere and Body objects. The GeomSphere is for
detecting collisions with other spheres and the box. The Body object stores the mass,
position, and the linear and angular velocities.

The position and linear velocity come from PhySpheres, the mass is derived from the
sphere's radius, and the angular velocity is hardwired to produce a clockwise spin
around the y-axis.

// globals

Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

22 Andrew Davison © 2006

// radius --> mass conversion
private static final float MASS_FACTOR = 5.0f;

private Body sphereBody;

private void makeSphereBody(World world, HashSpace collSpace,
 String name, float radius,
 Vector3f posVec, Vector3f velVec)
{
 sphereBody = new Body(name, world, new GeomSphere(radius));

 sphereBody.adjustMass(MASS_FACTOR*radius);
 sphereBody.setPosition(posVec); // same as graphical sphere
 sphereBody.setLinearVel(velVec);
 sphereBody.setAngularVel(0, 2.0f, 0); // clockwise around y-axis

 collSpace.addBodyGeoms(sphereBody); // add to collision space
} // end of makeSphereBody()

Care must be taken that the Odejava and Java 3D spheres start at the same position.
Also, the Odejava sphere must be added to the collision space so it can take part in
collision detection.

3.4.3. Redrawing the Sphere
redraw() is where changes in the Odejava sphere affect the Java 3D sphere.

StepBehavior calls PhySpheres' redraw() at the end of its simulation step, after the
physics-based spheres have been moved.

PhySpheres calls redraw() in each PhySphere to update the position and orientation of
the Java 3D sphere with the position and orientation of the corresponding Odejava
sphere.

public void redraw()
{
 // get position and orientation from the physics sphere
 Vector3f posVec = sphereBody.getPosition();
 Quat4f quat = sphereBody.getQuaternion();

 // update the TGs in the graphical sphere
 t3d.set(posVec);
 moveTG.setTransform(t3d); // translate the sphere

 t3d.set(quat);
 rotTG.setTransform(t3d); // rotate the sphere
} // end of redraw()

The mapping from Odejava to Java 3D is quite straightforward. The position and
orientation details of the Odejava sphere are extracted as a Vector3f vector and a
Quat4f quaternion, and applied to the moveTG and rotTG TransformGroups of the
Java 3D sphere.

An important reason for the simplicity is that Odejava and Java 3D use the same
vector and matrix classes, so data can be readily shared.

Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

23 Andrew Davison © 2006

3.5. I'm Steppin Out…
StepBehavior advances the simulation a step at a time, once every timeDelay ms.

The simulation step performs collision detection, creates contact joints, and redraws
the Java 3D spheres.

3.5.1. Initializing the Behavior
The StepBehavior constructor stores references to the PhySpheres object, the rigid
body and collision engines, and the Java 3D WakeupCondition object, which will
periodically trigger the behaviour.

// globals
private WakeupCondition timeOut;
private PhySpheres spheres;

private World world;
private HashSpace collSpace; // holds collision info
private JavaCollision collCalcs; // calculates collisions
private Contact contactInfo; // for accessing contact details

public StepBehavior(int timeDelay, PhySpheres ps,
 World w, HashSpace cs, JavaCollision cc)
{
 timeOut = new WakeupOnElapsedTime(timeDelay);
 spheres = ps;
 world = w;
 collSpace = cs;
 collCalcs = cc;
 contactInfo = new Contact(collCalcs.getContactIntBuffer(),
 collCalcs.getContactFloatBuffer());
}

Java 3D calls the behaviour's initialize() method to set it waiting until the specified
time has elapsed.

public void initialize()
{ wakeupOn(timeOut); }

3.5.2. Responding to a Wake-up Call
The behaviour is woken by Java 3D calling its processStimulus() method, where the
step execution code is located.

public void processStimulus(Enumeration criteria)
{
 // step through the simulation
 collCalcs.collide(collSpace); // find collisions
 examineContacts(); // examine contact points
 collCalcs.applyContacts();
 // add contacts to contactInfo jointGroup

Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

24 Andrew Davison © 2006

 world.stepFast(); // advance the simulation

 spheres.redraw(); // redraw the graphical spheres

 wakeupOn(timeOut); // wait for the next wake-up
} // end of processStimulus()

The contact points are found, converted to joints, and the physics simulation is
advanced, thereby changing the position and orientation of the physics spheres.
redraw() is called in PhySpheres to use those changes to modify the graphical sphere's
position and orientation.

examineContacts() loops through the contact points and converts those involving
spheres into bouncing contact joints.

private void examineContacts()
{
 for (int i = 0; i < collCalcs.getContactCount(); i++) {
 contactInfo.setIndex(i); // look at the ith contact point

 // if contact involves a sphere, then make the contact bounce
 if ((contactInfo.getGeom1() instanceof GeomSphere) ||
 (contactInfo.getGeom2() instanceof GeomSphere)) {
 contactInfo.setMode(Ode.dContactBounce);
 contactInfo.setBounce(1.0f); // 1 is max bounciness
 contactInfo.setBounceVel(0.1f); // min velocity for a bounce
 contactInfo.setMu(0); // 0 is friction-less
 }
 }
} // end of examineContacts()

The contact point details in contactInfo include references to the geoms involved in
the collision. StepBehavior checks if either of them is a GeomSphere before
configuring the joint to be very bouncy, and frictionless.

Another, slightly more general, way of identifying a geom is to examine its name,
using Geom.getName(). In Balls3D, all the sphere names start with "Planet", followed
by a number, so are easy to recognize. makeSphereBody() in PhySphere assigns the
name to the sphere's Body object, which gets taken up by its associated geom.

4. A Note of Application Development
A useful way of structuring the development of a Java 3D/Odejava application is to
split it into two stages. The first stage involves the creation of the visual elements
only – the Java 3D scene without the physics.

In the case of Balls3D, I implemented the PhyBox and PhySphere classes without
their Odejava methods (makeBoxGeom() and makeSphereBody()). I also left out the
StepBehavior and PhySpheres classes.

This approach allows the graphical features to be tested and debugged without the
extra complexity of physics simulation.

Java Prog. Techniques for Games. Chapter 20.5. Worlds Collide Draft #1 (12th April 06)

25 Andrew Davison © 2006

The second stage adds in the physics elements. Since the Odejava bodies and geoms
are closely linked to their Java 3D counterparts, it's quite easy to decide which classes
need augmenting.

The basic StepBehavior class is always the same: a behaviour using an elapsed time
WakeupCondition. The code in processStimulus() is fairly standard, although the
details of examineContacts() will vary depending on what geoms are of interest.

Another advantage of developing the graphical side of the application first, is that it
can show how things look when various parameters, such as gravity, friction, and the
amount of bounce, are tweaked.

