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Chapter NUI-13. Depth Processing 

 

One of the claims to fame of the Kinect sensor is its depth processing capabilities, 

including the generation of depth maps. It's possible to implement similar 

functionality on a PC with two ordinary webcams, (after they've been calibrated). 

Figure 1 shows the left and right images from the cameras being rectified, using the 

calibration information to undistort and align the pictures. Those images are then 

transformed into a grayscale disparity map, 3D point cloud, and an anaglyph picture. 

 

Figure 1. Extracting Depth from Images. 

 

The disparity map indicates that the user's coffee cup is closest to the cameras since 

it's colored white, the user is a light gray and so a bit further away, and the 

background is a darker gray.  
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Figure 2 shows a modified version of the disparity map, adjusted using the 

application's GUI controls. The right hand camera image is included for comparison.

 

Figure 2. Right-hand Image and Modified Disparity Map. 

 

The user's leg is highlighted in white, and the background is better outlined.  

It's possible to click on the disparity map, to retrieve depth information (in 

millimeters. Figure 3 shows the complete DepthViewer GUI, with a red dot and 

number marked on the map stating that the coffee cup is 614 mm away from the 

camera.  

 

 

Figure 3. Accessing Depth Information via the GUI. 

 

Unfortunately, this information isn't particularly accurate (the actual distance is nearer 

900 mm) due to reasons explained later. 

A point cloud is a 3D representation of the depth information, stored in the popular 

PLY data format (http://en.wikipedia.org/wiki/PLY_(file_format)), which allows it to 

be loaded (and manipulated) by various 3D tools. Figure 4 shows two screenshots of 

the point cloud of Figure 1 loaded into MeshLab (http://meshlab.sourceforge.net/).  
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Figure 4. Point Cloud Loaded into MeshLab, and then Rotated. 

 

The image on the right of Figure 4 shows the point cloud rotated to the left so that the 

z-axis (the depth information) is more visible. 

The anaglyph in Figure 1 is created by encoding the left and right rectified images 

using red and cyan filters and merging them into a single picture. The 3D effect 

becomes clear when the image is viewed through color-coded anaglyph glasses. An 

enlarged version of the anaglyph appears in Figure 5, along with an example of 

suitable glasses. 

 

 

Figure 5. The Anaglyph and Glasses. 

 

The quality of the disparity map, point cloud, and anaglyph depend on the 

undistortion and rectification mapping carried out on the left and right input images. 

This mapping is generated during an earlier calibration phase, when a large series of 

paired images are processed by DepthViewer. These image pairs are collected using a 

separate application, called SnapPics, that deals with the two webcams independently 

of the complex tasks involved in depth processing.  
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The calibration technique supported by OpenCV requires the user to hold a 

chessboard picture. Figure 6 shows one of the calibration image pairs. 

 

Figure 6. A Calibration Image Pair (User with a Chessboard). 

 

In summary, depth processing consists of three stages: 

1. Multiple image pairs are snapped using the SnapPics application. At least 20 

image pairs are needed, and usually a lot more, in order for the calibration process 

in stage 2 to produce decent results. 

2. The calibration phase performed by DepthViewer analyses the image pairs (all 

showing the user holding a chessboard in various poses). The result is a collection 

of undistortion and rectification matrices that are employed in stage 3. 

3. The depth processing phase, illustrated by Figure 1, converts a specific image pair 

into a disparity map, point cloud PLY file, and an anaglyph. At this stage, it's no 

longer necessary for the user to be holding a chessboard in the images. 

I'll explain these stages in more detail during the course of this chapter. For more 

information on the underlying maths, I recommend chapters 11 and 12 of Learning 

OpenCV by Gary Bradski and Adrian Kaehler, O'Reilly 2008. 

 

 

1. Preparing the Webcams 

The hardware required for collecting image pairs seems fairly simple at first glance: 

two USB 2.0 webcams plugged into a laptop. But a quick look online shows that  

multiple webcams have posed a problem for PCs in the past. One reason is the old 

USB 1.1 protocol which couldn't deal with the bandwidth requirements of 

simultaneous input from two cameras. This problem has receded with more modern 

hardware and OSes, although USB 2.0 is still not fast enough for processing data from 

more than two cameras unless some kind of data compression is utilized (e.g. as in the 

PS3 eye cameras).  

Bandwidth problems can be avoided by plugging the webcams into separate USB 

controllers on the PC. They should not be attached to an external hub using a single 

USB port since this raises the chances of it's bandwidth being exceeded. One way to 
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reduce the data load on the USB controller is to switch each camera's resolution to 

320x240 pixels, but this makes it harder for the computer vision code in stages 2 and 

3 to produce reliable results. Fortunately, my Windows 7 test machine was fast 

enough to handle resolutions of 640x480 from both cameras. 

Windows XP had poor support for multiple webcams, but this was remedied in 

Windows 7 which has a default USB 2.0 camera driver that supports multiple 

cameras. Once the webcams are plugged in, the Device Manager will list the drivers 

under "Imaging Devices" (see Figure  7).  

 
Figure 7 The Windows 7 Webcam Drivers in the Device Manager. 

 

The calibration techniques implemented by OpenCV assume the webcams are aligned 

parallel to each other (or very nearly parallel), and have similar device characteristics. 

The easiest way of satisfying this second requirement is to buy two cameras of the 

same brand. Ideally, the cameras should have the same focal length, so some time 

should be spent on focussing them on the user's location. If the cameras have auto-

focus, switch it off . 

Proper alignment is very important for obtaining good results, which I achieved by 

attaching my cameras to a fixed tripod bar, as in Figure 8 

. 

Figure 8. Webcams on a Tripod Bar. 

 

The cameras configuration is shown graphically in Figure 9.  

 



Java Webcam Vision. Chapter NUI-13. Depth Processing Draft #1 (19th June 2013) 

 6 (c) Andrew Davison 2013 

 

Figure 9. Webcams in a Scene. 

 

The webcams are labeled "left" and "right" relative to the camera's point of view. The 

camera IDs in Figure 9 are employed by JavaCV's FrameGrabber class – the left 

camera uses ID 0, and the right camera is number 1. 

Also important for later is to note that the depths will be negative, since the scene is 

spaced out along the negative z-axis. 

 

 

2. Collecting Webcam Pictures 

SnapPics, the webcam image collector, is a variation of my usual 'picture snapping' 

code which utilizes two JavaCV FrameGrabber instances. A threaded loop inside the 

JPanel grabs snaps from both cameras on each iteration, and displays them side-by-

side in the window. Figure 10 shows SnapPics executing, with the left webcam image 

displayed on the left side of the panel, and the right webcam on the right. 
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Figure 10. The SnapPics Application. 

 

SnapPics snaps images every 150ms or so, but only saves pictures to files when the 

user presses the <enter>, space, or numpad-5 key. A surprisingly tricky problem is 

having the user press keys without moving, which would blur the images. My solution 

was to use a wireless keyboard device.  

The calibration images must include a chessboard, and preferably one which is not 

square. The calibration code has a slightly easier job judging a board's orientation if 

its edges are not equal. The user needs to supply at least 20 image pairs, with the 

board held in a variety of positions and orientations in each pair. The board shouldn't 

be obscured or be bent. For that reason, my 'board' (actually an A4 sheet of paper) is 

stuck to a cardboard box lid (see Figure 11). This makes it both rigid and easier to 

hold. 

 

Figure 11. The Chessboard Stuck to a Cardboard Lid. 

 

The OpenCV method for analyzing a chessboard image looks for the interior corners 

in the board, which means that my board has 9x6 corners. The best dimensions make 

the chessboard grid asymmetrical (as here), and so easier for the software to correctly 

orientate. 

SnapPics uses JavaCV's FrameGrabber class, whose constructor uses a camera ID to 

identify the webcam of interest. The easiest way of obtaining the IDs is to run 

ListDevices.java: 

 

public class ListDevices 

{ 
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  public static void main( String args[] ) 

  {   

    int numDevs = videoInput.listDevices(); 

    System.out.println("No of video input devices: " + numDevs); 

    for (int i = 0; i < numDevs; i++) 

      System.out.println(" " + i + ": " +  

                             videoInput.getDeviceName(i)); 

  }  // end of main() 

 

} // end of ListDevices class 

 

When both webcams are plugged into my PC, ListDevices prints the following: 

 

No of video input devices: 6 

 0: USB2.0 Camera 

 1: USB2.0 Camera 

 2: Kinect Virtual Camera : Depth 

 3: Kinect Virtual Camera : Image 

 4: Kinect Virtual Camera : SmartCam 

 5: Video Blaster WebCam 3/WebCam Plus (VFW) 

 

Therefore, I should use camera IDs 0 and 1 inside SnapPics. The simplest way of 

identifying which camera uses which ID is to unplug one of them, and run 

ListDevices again: 

 

No of video input devices: 5 

 0: USB2.0 Camera 

 1: Kinect Virtual Camera : Depth 

 2: Kinect Virtual Camera : Image 

 3: Kinect Virtual Camera : SmartCam 

 4: Video Blaster WebCam 3/WebCam Plus (VFW) 

 

I obtained this result after  unplugging the gray camera (the right hand device in 

Figure 9), so the left camera must be ID 0, and the right camera is ID 1 (when plugged 

back in). 

The UML class diagrams for the SnapPics application has the familiar structure of a 

JFrame containing a threaded JPanel (see Figure 12). 

 

Figure 12. Class Diagrams for the SnapPics Application. 
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A DoublePicsPanel instance is passed the IDs of the two cameras:  

 

// in the SnapPics class 

DoublePicsPanel pp = new DoublePicsPanel(0, 1);   

 

These IDs are used to create JavaCV FrameGrabber instances at the beginning of the 

DoublePicsPanel run() method: 

 

// in the DoublePicsPanel class 

// globals 

private static final int DELAY = 150;  // ms  

 

// directory and filenames used to save images 

private static final String SAVE_DIR = "pics/";  

private static final String LEFT_FNM = "left"; 

private static final String RIGHT_FNM = "right"; 

 

private volatile boolean isRunning; 

private long totalTime = 0; 

private int imageCount = 0; 

 

private IplImage leftImage = null; 

private IplImage rightImage = null; 

private int leftID, rightID;    // IDs of the FrameGrabber objects 

private volatile boolean takeSnaps = false; 

 

 

public void run() 

{ 

  FrameGrabber leftGrabber = initGrabber(leftID); 

  FrameGrabber rightGrabber = initGrabber(rightID); 

  if ((leftGrabber == null) || (rightGrabber == null)) 

    return; 

 

  long duration; 

  int snapCount = 0; 

  isRunning = true; 

 

  while (isRunning) { 

    long startTime = System.currentTimeMillis(); 

 

    leftImage = picGrab(leftGrabber, leftID);  

    rightImage = picGrab(rightGrabber, rightID);  

 

    if (takeSnaps) {   // save the current images 

      saveImage(leftImage, LEFT_FNM, snapCount); 

      saveImage(rightImage, RIGHT_FNM, snapCount); 

      snapCount++; 

      takeSnaps = false; 

    } 

 

    imageCount++; 

    repaint(); 

 

    duration = System.currentTimeMillis() - startTime; 

    totalTime += duration; 

    if (duration < DELAY) { 

      try { 

        Thread.sleep(DELAY-duration);   
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        // wait until DELAY time has passed 

      }  

      catch (Exception ex) {} 

    } 

  } 

  closeGrabber(leftGrabber, leftID); 

  closeGrabber(rightGrabber, rightID); 

}  // end of run() 

 

The FrameGrabbers take snapshots roughly every DELAY(150) milliseconds until the 

isRunning boolean is set to false. If the takeSnaps boolean is true (which occurs via a 

call to DoublePicsPanel.takeSnaps() when the user presses the relevant key) then the 

current snapshots are saved in a local subdirectory. Each image is labeled "left" and 

"right", together with the snapCount number. 

initGrabber() initializes the FrameGrabber instance to use DirectShow and return a 

640x480 size image: 

 

private FrameGrabber initGrabber(int ID) 

{ 

  FrameGrabber grabber = null; 

  System.out.println("Initializing grabber for " +  

               videoInput.getDeviceName(ID) + " ..."); 

  try { 

    grabber = FrameGrabber.createDefault(ID); 

    grabber.setFormat("dshow");       // using DirectShow 

    grabber.setImageWidth(WIDTH);     // change from 320x240 

    grabber.setImageHeight(HEIGHT); 

    grabber.start(); 

  } 

  catch(Exception e)  

  {  System.out.println("Could not start grabber");   

     System.out.println(e); 

     System.exit(1); 

  } 

  return grabber; 

}  // end of initGrabber() 

 

picGrab() wraps up a call to FrameGrabber.grab(): 

 

private IplImage picGrab(FrameGrabber grabber, int ID) 

{ 

  IplImage im = null; 

  try { 

    im = grabber.grab();  // take a snap 

  } 

  catch(Exception e)  

  {  System.out.println("Problem grabbing camera " + ID);  } 

  return im; 

}  // end of picGrab() 

 

closeGrabber(), called twice at the end of run(), shuts down a FrameGrabber: 

 

private void closeGrabber(FrameGrabber grabber, int ID) 

{ 

  try { 
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    grabber.stop(); 

    grabber.release(); 

  } 

  catch(Exception e)  

  {  System.out.println("Problem stopping camera " + ID);  } 

}  // end of closeGrabber() 

 

By the time SnapPics finishes, a sequence of numbered JPG files labeled "left" and 

"right" have been collected. These can be used as the image pairs input to 

DepthViewer. 

 

 

3. An Overview of the DepthViewer 

Figure 13 shows the class diagrams for the DepthViewer application.   

 

Figure 13. Class Diagrams for the DepthViewer Application. 

 

The collection of sliders on the left side of the GUI in Figure 3 are SliderBox objects, 

which communicate slider adjustments to DepthViewer via calls to the 

SliderBoxWatcher.valChange() method implemented in DepthViewer. The disparity 

map on the right-hand side of the GUI is managed by an ImagePanel instance, which 

calls getGDispMap() in DepthCalc to get the current image, and getDepth() to get the 

depth at a particular (x, y) coordinate on the image. 

I'll spend most of this chapter talking about DepthCalc, which is where the interesting 

computer vision code is located.  
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4. Calibrating the Depth Viewer 

The DepthViewer application can be started in one of two modes, either for 

calibration or for depth processing. An example command line call that starts the 

calibration process is: 

>  run DepthViewer –n 40 

This causes DepthViewer to load 40 image pairs from a calibration subdirectory, The 

images are assumed to be labeled "left" and "right" and be numbered from 0 up to 39. 

These pairs are used to create a variety of calibration matrices, which are saved back 

to the local directory for use during depth processing. The main calibration steps are 

illustrated in Figure 14. 

 

Figure 14. The Calibration Stages in DepthViewer. 
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The steps shown in Figure 14 are carried out by DepthCalc, starting in its 

calibrateCams() method. 

 

// globals 

// number of INTERIOR corners in board along its rows and columns 

private static final int CORNERS_ROWS = 6;  

private static final int CORNERS_COLS = 9; 

private static final int NUM_CORNS = CORNERS_ROWS * CORNERS_COLS; 

 

private int totPoints; 

 

 

private void calibrateCams(int maxPairs) 

{ 

  totPoints = maxPairs * NUM_CORNS; 

 

  CvMat objPts = CvMat.create(1, totPoints, CV_32F, 3); 

  FloatBuffer objPtsBuf = objPts.getFloatBuffer(); 

      // corner coords for an image, repeated maxPairs times 

 

  CvMat nPts = CvMat.create(1, maxPairs, CV_32S, 1); 

  IntBuffer nPtsBuf = nPts.getIntBuffer(); 

      // number of corners in an image, repeated maxPairs times 

 

  CvMat imPts1 = CvMat.create(1, totPoints, CV_32F, 2); 

  FloatBuffer imPts1Buf  = imPts1.getFloatBuffer(); 

 

  CvMat imPts2 = CvMat.create(1, totPoints, CV_32F, 2); 

  FloatBuffer imPts2Buf  = imPts2.getFloatBuffer(); 

      // holds the pixel coordinates of corners in each image 

      // in the same order as the corners in objPts 

 

  loadPairs(objPtsBuf, nPtsBuf, imPts1Buf, imPts2Buf, maxPairs); 

  calibrateWithPairs(objPts, nPts, imPts1, imPts2); 

}  // end of calibrateCams() 

 

calibrateCams()'s main job is the creation of four matrices and corresponding Buffer 

objects which allows Java to fill the matrices efficiently. The four matrices are: 

 objPts: this matrix specifies the order of the interior chessboard corners for an 

image, repeated once for each image pair. A possible ordering for the points in 

one of my images is shown in Figure 15. The corners are ordered row-by-row 

from 0 up to 53 since there are 9x6 interior corners. 

Since my calibration uses 40 image pairs, then objPts will repeat the corner 

points ordering 40 times. This means that the matrix must be big enough to 

hold  a total of 40x9x6 (2160) elements. This value is store in the global 

variable totPoints in the calibrateCams() method.  
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Figure 15. A Board with Numbered Interior Points. 

 nPts: this matrix specifies the number of interior corners in a chessboard, and 

is repeated for each image pair. Thus, in my code, nPts is a 1-by-40 element 

matrix, with each element containing the value 54 (the number of corners). 

 imPts1 and imPts2: these hold the corner points that are actually detected by 

the calibration process in the image pairs. imPts1 holds the corner points for 

all the left images, and imPts2 all the right image corners.  

In my code, 9x6 corners should be detected in a left image and in a right 

image, and this success should be repeated 40 times for all the pairs. Therefore 

imPts1 and imPts2 should be big enough to each store a total of 40x9x6 

corners. 

To keep things simple (!), if my calibration code doesn't find this total number 

of corners, then the program exits after alerting the user about which image 

pairs have too few points. 

 

DepthCalc.loadPairs() loads all the image pairs inside a loop, calling findCorners() to 

find each pair's interior corners: 

 

// globals 

private static final int LEFT = 0; 

private static final int RIGHT = 1; 

 

 

private void loadPairs(FloatBuffer objPtsBuf, IntBuffer nPtsBuf, 

                       FloatBuffer imPts1Buf,  

                       FloatBuffer imPts2Buf, int maxPairs) 

{ 

  IplImage[] images = new IplImage[2];   // left and right images 

  CvPoint2D32f[] cornsPair =  new CvPoint2D32f[2];     

                // for corner pts found in left and right images 

 

  // read in image pairs, finding chessboards corners in each 

  int numPairs =  0; 

  for(int i=0; i < maxPairs; i++) { 
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    System.out.println("Loading left & right images with ID " + i); 

    images[LEFT] = cvLoadImage( makeName("left", i), 0); 

    images[RIGHT] = cvLoadImage(makeName("right", i), 0); 

 

    if ((images[LEFT] == null) || (images[RIGHT] == null)) 

      System.out.println("  One of the images is null;  

                                           not adding pair"); 

    else if (!isRightSize(images[LEFT]) ||  

             !isRightSize(images[LEFT])) 

        System.out.println("  One of the images is the wrong size;  

                                          not adding pair"); 

    else { 

      cornsPair[LEFT] = findCorners("left" + i, images[LEFT]); 

      cornsPair[RIGHT] = findCorners("right" + i, images[RIGHT]); 

 

      if ((cornsPair[LEFT] != null) && (cornsPair[RIGHT] != null)) { 

        addCornersPair(cornsPair, objPtsBuf, nPtsBuf,  

                                  imPts1Buf, imPts2Buf); 

        numPairs++; 

      } 

    } 

  } 

 

  System.out.println("No. of valid image pairs: " + numPairs); 

  if (numPairs < maxPairs) {     

    // give up if there were any errors during the loading 

    System.out.println("Please fix " + (maxPairs - numPairs) + "  

                                             invalid pairs"); 

    System.exit(1); 

  } 

}  // end of loadPairs() 

 

loadPairs() finishes by checking if all the pairs had enough corners. If not then the 

calibration is terminated. When that occurs, the user should replace the offending 

image pairs with new pairs where the chessboard is clearer.  

 

4.1. Finding the Chessboards 

findCorners() utilizes the OpenCV cvFindChessboardCorners() function for detecting 

the chessboard corner points in an image. The best source for information of this 

function (and the other calibration functions we'll encounter) is the Willow Garage 

documentation on camera calibration and 3D reconstruction at 

http://opencv.willowgarage.com/documentation/camera_calibration_and_3d_reconstr

uction.html. A more verbose explanation of many of these functions can be found in 

chapters 11 and 12 of Learning OpenCV by Bradski and Kaehler. 

findCorners() uses cvFindChessboardCorners() to scan the image for the 54 corners, 

and cvFindCornerSubPix() to improve the pixel resolution of the detected 

coordinates.  

 

// globals 

private static final int CORNERS_ROWS = 6;   

private static final int CORNERS_COLS = 9; 

private static final int NUM_CORNS = CORNERS_ROWS * CORNERS_COLS; 

private static final CvSize BOARD_SZ =  

                          cvSize(CORNERS_ROWS, CORNERS_COLS); 
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private CvPoint2D32f findCorners(String fnm, IplImage im) 

{ 

  int[] cornerCount = new int[1]; 

  cornerCount[0] = 0; 

  CvPoint2D32f corners = new CvPoint2D32f(NUM_CORNS); 

 

  // find the chessboards and its corners points 

  int result = cvFindChessboardCorners(im, BOARD_SZ,  

                          corners, cornerCount, 

                          CV_CALIB_CB_ADAPTIVE_THRESH |  

                          CV_CALIB_CB_NORMALIZE_IMAGE); 

 

  if (result != 1) { 

    System.out.println("Could not find chessboard image in " + fnm); 

    return null; 

  } 

 

  if (cornerCount[0] != NUM_CORNS) { 

    System.out.println("The chessboard image in " + 

                       fnm + " has the wrong number of corners"); 

    return null; 

  } 

 

  // improve corner locations by using subpixel interpolation 

  cvFindCornerSubPix(im, corners, cornerCount[0], 

                        cvSize(11, 11), cvSize(-1,-1), 

       cvTermCriteria(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS, 30, 0.01)); 

                    

  if (drawChessboards) { 

    // draw chessboard with found corners 

    IplImage colImg = cvCreateImage(cvGetSize(im), 8, 3); 

    cvCvtColor(im, colImg, CV_GRAY2BGR); 

    cvDrawChessboardCorners(colImg, BOARD_SZ, corners,  

                                       cornerCount[0], result); 

    if (displayFrame == null) 

      displayFrame = new CanvasFrame("Chessboard " + fnm); 

    else 

      displayFrame.setTitle("Chessboard " + fnm); 

    displayFrame.showImage(colImg); 

    enterPause(); 

  } 

 

  return corners; 

}  // end of findCorners() 

 

When the DepthViewer application is first called, a "draw" argument turns on the 

drawChessboards flag. Inside findCorners(), this allows cvDrawChessboardCorners() 

to draw each analyzed image in a temporary window, which remains on-screen until 

the user types <enter>. This slows down the calibration process considerably, but is 

useful for visually checking if all the corners were detected in the correct row-by-row 

order. A typical chessboard drawing is shown in Figure 16. 
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Figure 16. OpenCV Drawing of a Chessboard Corners. 

 

I've cropped and enlarged the image in Figure 16 to show that although 54 corners 

were found, some of them are in the wrong position. For example, the third point of 

the top row and the fourth point of the bottom row. This will reduce the final quality 

of the calibration matrices, so the user should consider replacing image pairs like this 

one.  

Although it's hard to see if you not viewing Figure 16 in color, each row of corners is 

painted in a different color. If some corners aren't found, then the remaining points are 

drawn in red. 

Each successful call to findCorners() results in loadPairs() adding  the detected 

corners information to the four matrices (objPts, nPts, imPts1, and imPts2). This is 

done indirectly by having addCornerPairs() write to their Buffer objects.   

 

4.2. Stereo Calibration 

The stereo calibration stage shown in Figure 13 begins in 

DepthCalc.calibrateWithPairs(). The crucial OpenCV method is cvStereoCalibrate() 

which returns a bewildering amount of information about the two cameras. The 

method signature is: 

 

double cvStereoCalibrate( 

        CvMat objPts, CvMat imPts1, CvMat imPts2, CvMat nPts,  

        CvMat M1, CvMat D1, CvMat M2, CvMat D2, CvSize imageSize,  

        CvMat R, CvMat T, CvMat E, CvMat F,  

        CvTermCriteria term_crit, int flags)¶ 

 

The objPts, imPts1, imPts2, and nPts matrices are inputs, which were filled with 

chessboard corners information during the previous stage. The output matrices are 

M1, D1, M2, D2, R, T, E, and F.  
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Initially cvStereoCalibrate() examines the sequence of left and right images separately 

to calibrate each camera in terms of an intrinsic matrix (usually called M1 for the left 

camera, M2 for the right), and a distortion matrix (D1 and D2). 

An intrinsic matrix contains information about the focal length and the optical center 

of a camera relative to the image. The matrix has the form: 

M = [
     
     
   

] 

fx and fy are the focal lengths along the x- and y- axes, and cx and cy are the 

coordinates of the optical center inside the image.   

Since the two webcams are identical, and were previously focused on a common spot, 

then the focal lengths in M1 and M2 should be nearly identical. Also, since the 

cameras are pointing straight down the z-axis, cx and cy for both cameras should be 

near the center of the image. We can check out these values by printing the M1 and 

M2 matrices returned by cvStereoCalibrate(). 

A distortion matrix contains coefficients related to the radial and tangential distortion 

of the lens. Radial effects make the image bulge, producing a fish-eye shaped picture. 

Tangential distortion is caused by a misaligned lens which warps the image. Figure 17 

shows how radial and tangential distortion can affect an image. 

 

 

Figure 17. Radial and Tangential Distortion. 

 

Once cvStereoCalibrate() has determined each camera's characteristics, it turns to 

computing the relationship between the cameras in terms of a rotation matrix R and a 

translation matrix T, These specify the right camera's projection plane relative to the 

left camera's plane (see Figure 18) 
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Figure 18. Rotating and Translation the Right Camera Relative to the Left. 

 

Figure 18 exaggerates the angle between the two planes. In practice, the cameras will 

be nearly parallel to each other, and so the rotation matrix R should be very close to 

identity (i.e. no rotation is needed). The translation vector (a 3x1 matrix) should also 

be fairly simple since the two cameras are positioned side-by-side. The only large 

translation should be in the x-direction, which is called the baseline distance between 

the webcams. We can check out these values by printing the R and T matrices 

returned by cvStereoCalibrate(). 

The other two output matrices are the essential matrix E and the fundamental matrix 

F. E combines the translation and rotation between the two camera which we can 

access more easily via the separate T and R matrices. The F matrix combines the 

information from E with the intrinsic matrices M1 and M2, which means that the 

rotation and translation are expressed in terms of image coordinates. F is used for the 

calculation of epipolar lines and the reprojection matrix Q.  

DepthCalc.calibrateWithPairs() calls cvStereoCalibrate(): 

 

private void calibrateWithPairs(CvMat objPts, CvMat nPts,  

                                  CvMat imPts1, CvMat imPts2) 

{ 

  System.out.println("\nStarting calibration of two cameras ..."); 

  long startTime = System.currentTimeMillis(); 

 

  // initialize the camera intrinsics matrices 

  CvMat M1 = cvCreateMat(3, 3, CV_64F);    // for left camera image 

  cvSetIdentity(M1); 

  CvMat M2 = cvCreateMat(3, 3, CV_64F);    // right camera 

  cvSetIdentity(M2); 

 

  // initialize the distortion coefficients matrices 

  CvMat D1 = cvCreateMat(1, 5, CV_64F); 

  cvZero(D1); 

  CvMat D2 = cvCreateMat(1, 5, CV_64F); 

  cvZero(D2); 
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  CvMat R = cvCreateMat(3, 3, CV_64F);   // the rotation matrix 

  CvMat T = cvCreateMat(3, 1, CV_64F);   // the translation vector 

 

  CvMat E = cvCreateMat(3, 3, CV_64F);   // the 'essential' matrix 

  CvMat F = cvCreateMat(3, 3, CV_64F);   // the fundamental matrix 

  CvSize imSize = cvSize(IM_HEIGHT, IM_WIDTH); 

 

  double rms = cvStereoCalibrate(objPts, imPts1, imPts2, nPts, 

                           M1, D1, M2, D2, 

                           imSize, R, T, E, F, 

       cvTermCriteria(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS, 100, 1e-5), 

                           CV_CALIB_FIX_ASPECT_RATIO);  

 

  System.out.println("Calibration took " +  

                (System.currentTimeMillis() - startTime) + " ms");  

  System.out.printf( "RMS reprojection error: %.3f\n", rms); 

 

  printMatrix("M1", M1); 

  printMatrix("M2", M2); 

  printMatrix("D1", D1); 

  printMatrix("D2", D2); 

  printMatrix("Rotation Matrix R:", R); 

  printMatrix("Translation Matrix T:", T); 

 

  System.out.println("Undistorting image points..."); 

  cvUndistortPoints( imPts1, imPts1, M1, D1, null, M1); 

  cvUndistortPoints( imPts2, imPts2, M2, D2, null, M2); 

                      // intrinsic matrices also adjusted 

 

  // check calibration quality 

  showEpipolarError(imPts1, imPts2, F); 

 

  // rectification using Hartley's method 

  System.out.println("Calculating homography matrices..."); 

  CvMat H1 = cvCreateMat(3, 3, CV_64F); 

  CvMat H2 = cvCreateMat(3, 3, CV_64F); 

  cvStereoRectifyUncalibrated( imPts1, imPts2, F, imSize, H1, H2, 3); 

  calculateLookupMaps(M1, M2, D1, D2, H1, H2); 

 

  calculateQ(M1, M2, D1, D2, imSize, R, T); 

}  // end of calibrateWithPairs() 

 

The new matrices are created in the first half of calibrateWithPairs().  

The cvStereoCalibrate() call includes a cvTermCriteria() value which dictates how 

accurately the computed matrix parameters should be before the function returns. The 

CV_CALIB_FIX_ASPECT_RATIO flag lets the calibration process assume that the 

fx and fy focal lengths have a fixed ratio. 

Another way of calling cvStereoCalibrate() is to pass it already-computed M1, M2, 

D1, and D2 matrices, and set flags to indicate that the function should use those for 

calculating the R, T, E and F matrices. The M and D matrices for a camera can be 

obtained through a separate calibration process aimed at a single camera (see chapter 

11 of Learning OpenCV for how this is performed). This approach is useful because it 

lets cvStereoCalibrate() concentrate on the stereo calibration between cameras.  

Where possible, additional flags should be added to the 

CV_CALIB_FIX_ASPECT_RATIO setting in cvStereoCalibrate() in order to 

simplify the calibration task. Including CV_CALIB_SAME_FOCAL_LENGTH and 
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CV_CALIB_ZERO_TANGENT_DIST is quite common because they specify that the 

fx and fy lengths are the same for both cameras and the cameras don't suffer from 

tangential distortion. 

When cvStereoCalibrate() returns, calibrateWithPairs() prints its result (RMS) and 

some of the generated matrices, so we can check on the quality of the calibration. The 

following was printed after calibrating using 40 image pairs: 

 

RMS reprojection error: 0.468 

 

M1 

|  690.698   0.000   332.098 | 

|  0.000   690.698   223.154 | 

|  0.000     0.000     1.000 | 

 

M2 

|  698.122   0.000   304.415 | 

|  0.000   698.122   238.133 | 

|  0.000     0.000     1.000 | 

 

D1 

|  0.212  -0.547   0.007  -0.005  -0.815 | 

 

D2 

|  0.321  -1.756   0.003  -0.001   2.628 | 

 

Rotation Matrix R: 

|  0.997   0.003  -0.075 | 

| -0.004   1.000  -0.011 | 

|  0.075   0.012   0.997 | 

 

Translation Matrix T: 

| -3.017 | 

| -0.024 | 

| -0.239 | 

 

The RMS (root mean square) reprojection error returned by cvStereoCalibrate() 

should fall between 0.1 and 1, with a value closer to 0.1 being better; a result of 0.468 

is acceptable. 

The M1 and M2 matrices show that the focal lengths for the two cameras are almost 

identical: M1's fx = fy = 690.698, and M2's fx = fy = 698.122. This suggests that the 

calibration might be improved by setting the CV_CALIB_SAME_FOCAL_LENGTH 

flag. 

If the webcams have reasonably undistorted lens, then the optical centers in M1 and 

M2 should be close to the middle of the image, i.e. at (320, 240) in an 640x480 

picture. The reported values are near: M1's (cx, cy) = (332, 223) and M2's (cx, cy) = 

(304, 238).  

The rotation R should be an identity matrix, and the translation T should be along the 

x-axis only, and the printed values are both fairly close to those. The x-axis distance 

can be converted to a real-world measurement by multiplying it by the size of a 

square in the printed chessboard. The squares on my board are 27x27 mm
2
, and so 

OpenCV believes the offset between the cameras is about -3 x 27 = -81 mm. This can 

be checked by measuring the distance with a ruler, and my cameras are 80 mm apart. 
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One confusing aspect of the T vector is that its x-axis offset is negative (-3.017 units). 

It should be positive, since the right camera's translation is specified relative to the left 

camera, and so should be a vector pointing along the +x axis. 

The two distortion matrices, D1 and D2 arrange their parameters so radial values fill 

the first, second, and fifth arguments, while the tangential distortions are the third and 

fourth values. The results above show that the tangential values are very close to 0, 

and so it might benefit the calibration to add the 

CV_CALIB_ZERO_TANGENT_DIST flag to the cvStereoCalibrate() call. 

 

4.3. Undistorting the Points 

The D1 and D2 matrices are utilized by cvUndistortPoints() to cancel out any 

distortion effects on the chessboard corner points and intrinsic matrices. 

cvUndistortPoints() is called twice, for the points and intrinsic of each camera: 

 

// inside calibrateWithPairs() 

cvUndistortPoints( imPts1, imPts1, M1, D1, null, M1); 

cvUndistortPoints( imPts2, imPts2, M2, D2, null, M2); 

 

The calibration quality can be checked using these undistorted coordinates by 

analyzing how close the corner points in one image are to their matching epipolar 

lines in the other image. I'll explain what 'epipolar lines' means by referring to Figure 

19. 

 

Figure 19. Epipoles and Epipolar Lines. 

 

When the right-hand webcam records the user at P, the point is projected onto the 

webcam's projective plane, becoming pr. The user may be located anywhere on the 

line linking the camera to pr.  
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If this line is projected onto the left webcam's projective plane, the result is the 

epipolar line. This line goes through pl and the el point (called the epipole).el is 

important because it intersects the line linking the two cameras. 

The same argument can be applied the opposite way: the left webcam maps P onto pl, 

which defines a line for the user's location. This line becomes the epipolar line linking 

pr and er on the right webcam's projective plane. er also falls on the line linking the 

two cameras. 

Why are epipolar lines useful? One answer is that any given point in an image (e.g. pl 

in the left webcam) will appear on the corresponding epipolar line on the other image. 

These epipolar lines can be computed by the OpenCV function 

cvComputeCorrespondEpilines(), with the help of the fundamental matrix F. If the 

calibration is good enough, every point in a webcam image should lie on its 

corresponding epipolar line in the other webcam's image. This matching is carried out 

by DepthCalc by calling showEpipolarError(): 

 

private void showEpipolarError(CvMat imPts1, CvMat imPts2, CvMat F) 

{ 

  CvMat L1 = CvMat.create(1, totPoints, CV_32F, 3); //epipolar lines 

  CvMat L2 = CvMat.create(1, totPoints, CV_32F, 3); 

  cvComputeCorrespondEpilines(imPts1, 1, F, L1); 

  cvComputeCorrespondEpilines(imPts2, 2, F, L2); 

 

  double avgErr = 0; 

  for(int i = 0; i < totPoints; i++) { 

      double err = Math.abs((imPts1.get(0,i,0) * L2.get(0,i,0)) + 

                            (imPts1.get(0,i,1) * L2.get(0,i,1)) +  

                            L2.get(0,i,2)) + 

                   Math.abs((imPts2.get(0,i,0) * L1.get(0,i,0)) + 

                            (imPts2.get(0,i,1) * L1.get(0,i,1)) +  

                            L1.get(0,i,2)); 

      avgErr += err; 

  } 

  System.out.printf("Calibration average error: %.4f\n",  

                                         avgErr/totPoints);   

}  // end of showEpipolarError() 

 

cvComputeCorrespondEpilines() represents each epipolar line as a vector of three 

parameters (a, b, c) such that the line is defined by the equation: 

ax + by + c = 0 

Inside showEpipolarError()'s for-loop, each (x, y) point in one image is plugged into 

the corresponding epipolar line equation in the other image, and the result is summed 

in avgErr. If the calibration is good then the average equation result should be 0; for 

my image pairs the output was: 

Calibration average error: 0.6096 

This confirms that the calibration is satisfactory. 
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4.4. Hartley's Rectification 

Rectification is the adjustment of the cameras' projection planes so they have the same 

position and orientation. This will mean that the boards inside the paired images will 

be aligned with each other.  

The DepthCalc class uses Hartley's rectification method which begins by calculating 

homography matrices for the two cameras. A homograph is a mapping which sends a 

webcam's projective plane to a new orientation and position. The relevant lines in 

DepthCalc.calibrateWithPairs() are: 

 
CvMat H1 = cvCreateMat(3, 3, CV_64F); 

CvMat H2 = cvCreateMat(3, 3, CV_64F); 

cvStereoRectifyUncalibrated( imPts1, imPts2, F, imSize, H1, H2, 3); 

 

The name of the OpenCV cvStereoRectifyUncalibrated() function is a bit misleading 

since it isn't performing rectification, but generating the homography matrices, H1 

and H2, for the webcams. Rectification matricies are computed using these 

homographs, which are encoded as four lookup maps. All this is done in  

calculateLookupMaps(): 

 

private void calculateLookupMaps(CvMat M1, CvMat M2,  

                   CvMat D1, CvMat D2, CvMat H1, CvMat H2) 

{ 

  System.out.println("Calculating rectification matrices..."); 

  CvMat Re1 = cvCreateMat(3, 3, CV_64F); 

  CvMat Re2 = cvCreateMat(3, 3, CV_64F); 

  CvMat iM = cvCreateMat(3, 3, CV_64F); 

  cvInvert(M1, iM); 

  cvMatMul(H1, M1, Re1); 

  cvMatMul(iM, Re1, Re1);   // Re1 =  iM1 * H1 * M1 

  cvInvert(M2, iM); 

  cvMatMul(H2, M2, Re2); 

  cvMatMul(iM, Re2, Re2);   // Re2 =  iM2 * H2 * M2 

 

  System.out.println("Calculating undistortion/rectification  

                                                 lookup maps..."); 

  mx1 = cvCreateMat( IM_HEIGHT, IM_WIDTH, CV_32F); 

  my1 = cvCreateMat( IM_HEIGHT, IM_WIDTH, CV_32F); 

  mx2 = cvCreateMat( IM_HEIGHT, IM_WIDTH, CV_32F); 

  my2 = cvCreateMat( IM_HEIGHT, IM_WIDTH, CV_32F); 

  cvInitUndistortRectifyMap(M1, D1, Re1, M1, mx1, my1);   // left 

  cvInitUndistortRectifyMap(M2, D2, Re2, M2, mx2, my2);   // right 

 

  System.out.println("Saving maps"); 

  saveMatrix(STEREO_DIR + "mx1.txt", mx1); 

  saveMatrix(STEREO_DIR + "my1.txt", my1); 

  saveMatrix(STEREO_DIR + "mx2.txt", mx2); 

  saveMatrix(STEREO_DIR + "my2.txt", my2); 

}  // end of calculateLookupMaps() 

 

The first few lines of calculateLookupMaps() convert the homographs into 

rectification matrices by incorporating the intrinsic properties of the cameras like so: 

Re = M-1 H M 
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The second half of the method calculates undistortion and rectification transformation 

for the cameras, as four lookup maps. The use of separate maps for the x- and y- 

values makes it easier to apply the transformations in the cvRemap() method later. 

The remap matrices are saved to files, so they can be loaded by subsequent calls to 

DepthViewer that depth process an image pair. 

 

4.5. Bouquet's Rectification 

Figure 14 includes one more task before the calibration is finished: the calculation of 

the rectification transforms again, this time with Bouquet's method. This may seem a 

little pointless, and it is possible to skip this stage since the calibration process already 

has enough information from the other matrices it has generated.  

One reason for performing rectification again is that it provides an easy, fast way to 

double-check the existing results. 

calculateQ() generates the reprojection matrix Q, which contains the left camera's 

focal length and the baseline distance between the cameras. In detail Q is: 

Q = 

[
 
 
 
      
      
    

             
     ]

 
 
 
 

 

The focal length, f, is in cell Q[2][3], and Tx is -1/(Q[3][2]). 

cx and cy are the optical center of the left camera, while c'x is the optical x-coordinate 

of the right image. If the cameras are parallel to the z-axis then cx and c'x should be 

equal. 

What are the differences between Hartley's and Bouquet's methods? Hartley's 

approach relies on matching common points in the image pairs, and so can be utilized 

in situations where calibration patterns, such as chessboards, aren't available. For 

example, Hartley's method can be applied to consecutive video frames recorded by a 

single camera.  

The OpenCV function that implements Hartley, cvStereoRectifyUncalibrated(), only 

needs the fundamental matrix F as input in addition to the points information. 

Although I didn't do so in this chapter, F can be computed using point matching 

between two pictures in the scene (with the cvFindFundamentalMat() function). This 

explains why the word "uncalibrated" appears in the cvStereoRectifyUncalibrated() 

name. 

Bouquet's method is implemented by cvStereoRectify() which requires several 

matrices generated during the calibration phase, including the rotation and translation 

(R and T) relating the right-hand webcam to the left. cvStereoRectify() also employs 

the webcams' intrinsic and distortion matrices. All this extra information simplifies 

the rectification task carried out by Bouquet's algorithm, and allows it to produce 

more accurate results. 

The calculateQ() method: 

 

// globals 
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private CvMat Q; 

private double focalLength, baselineDist;    

           // parts of the reprojection matrix, Q 

 

 

private void calculateQ(CvMat M1, CvMat M2, CvMat D1, CvMat D2, 

                        CvSize imSize, CvMat R, CvMat T) 

{   

  // the rectification matrices using Bouquet 

  CvMat Reb1 = cvCreateMat(3, 3, CV_64F); 

  CvMat Reb2 = cvCreateMat(3, 3, CV_64F); 

 

  // projection matrices in the rectified coordinate system 

  CvMat P1 = cvCreateMat(3, 4, CV_64F); 

  CvMat P2 = cvCreateMat(3, 4, CV_64F); 

 

  // Q is the 4x4 reprojection matrix 

  Q = cvCreateMat(4, 4, CV_64F); 

  cvStereoRectify(M1, M2, D1, D2, imSize, R, T, Reb1, Reb2, P1, P2, 

                   Q, CV_CALIB_ZERO_DISPARITY, -1,  

                   cvSize(0,0), null, null); 

  printMatrix("Reprojection Matrix Q:", Q); 

 

  // save focal length and baseline distance in globals 

  focalLength = Q.get(2,3);) 

  baselineDist = -1.0/Q.get(3,2); 

  System.out.printf("Focal length: %.4f\n", focalLength); 

  System.out.printf("Baseline distance: %.4f\n", baselineDist); 

 

  System.out.println("Saving reprojection matrix"); 

  saveMatrix(STEREO_DIR + "q.txt", Q); 

 

/* 

  CvMat diff = cvCreateMat(3, 3, CV_64F); 

  cvSub(Reb1, Re1, diff, null);   // diff = Reb1 – Re1 

  printMatrix("Rectification difference for camera 1:", diff); 

  cvSub(Reb2, Re2, diff, null);   // diff = Reb2 - Re2 

  printMatrix("Rectification difference for camera 2:", diff); 

*/ 

}  // end of calculateQ() 

 

cvStereoRectify() computes two rectification matrices, Reb1 and Reb2, which could 

be compared with the rectifications generated by Hartley's method (Re1 and Re2 in 

calculateLookupMaps()). Commented-out code for doing this appears at the end of 

calculateQ(). 

Q's focal length and baseline values are stored in globals, so they will be available 

during depth processing later. Q can also be used for generating a point cloud, 

although I don't use that approach. 

When this part of DepthViewer is executed, the following results are printed: 

 

Reprojection Matrix Q: 

|  1.000   0.000   0.000  -292.396 | 

|  0.000   1.000   0.000  -209.151 | 

|  0.000   0.000   0.000   690.698 | 

|  0.000   0.000   0.330    -0.000 | 

 

Focal length: 690.6976 
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Baseline distance: -3.0261 

 

The focal length of the left camera has already been calculated, as the fx and fy values 

in the M1 matrix. The baseline was also previously computed in the T matrix, as its x-

value. That offset can be converted to real-world units by multiplying it by the size of 

a chessboard square (27 mm), producing a camera separation distance of about -82 

mm, which is very close to the actual distance (80 mm). 

Although calculateQ() isn't that useful, I've left it in the program as an example of 

how to use Bouquet's method. It's presence only adds a small execution overhead to 

the calibration. 

 

 

5. Depth Processing 

After calculateQ() returns, the DepthCalc constructor switches to the depth processing 

of the first image pair. It does this to test the quality of the four lookup maps in mx1, 

my1, mx2, and my2, and the Q matrix. 

It's also possible to start DepthCalc directly in depth-processing mode, where it 

bypasses the calibration steps and attempts to load previously saved lookup maps. The 

user supplies an image pair ID on the command line, and those images are analyzed. 

For example: 

> run DepthViewer –p 7 

will initiate depth processing on image pair number 7. 

Figure 20 shows a flowchart of the main steps involved in depth processing. 
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Figure 20. The Depth Processing Steps. 

 

The choice of left and right images depends on their ID, which is passed to the 

depthProcessing() method: 

 

// globals 

private IplImage[] imagesRectified = null;     

             // rectified image pair being depth processed 

 

private CvMat normalizedDisp;          

            // disparity data used for depth calculations 

 

// private CvMat xyzMat; 

 

 

private void depthProcessing(int ID) 

{ 

  imagesRectified = rectify(ID); 
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  showRectifiedImages(imagesRectified);     

  showAnaglyph(imagesRectified); 

  normalizedDisp = createDisparityMaps(imagesRectified); 

 

/* System.out.println("Generating point cloud"); 

  xyzMat = cvCreateMat(IM_HEIGHT, IM_WIDTH, CV_32FC3); 

  cvReprojectImageTo3D(normalizedDisp, xyzMat, Q, 0); 

*/ 

}  // end of depthProcessing() 

 

depthProcessing() originally called the OpenCV cvReprojectImageTo3D() function to 

create the depth data for the point cloud. The code is commented out since I decided 

to generate my own point cloud, which makes it easier to filter and scale the data, and 

add color information. In addition, DepthViewer only creates a point cloud when the 

user clicks on the application's close box. The details are explained in section 6. 

 

5.1. Rectification 

rectify() uses the lookup maps to undistort and rectify the image pair. 

 

// globals 

private CvMat mx1, my1, mx2, my2;      

                // lookup maps for the left and right cameras 

 

 

private IplImage[] rectify(int ID) 

{ 

  System.out.println("\nDepth processing image pair " + ID + "..."); 

 

  IplImage leftIm = cvLoadImage(makeName("left", ID), 0); 

  IplImage rightIm = cvLoadImage(makeName("right", ID), 0); 

  if ((leftIm == null) || (rightIm == null)) { 

    System.out.println("Error loading image pair " + ID); 

    System.exit(1); 

  } 

 

  // undistort and rectify the images 

  IplImage[] imagesRectified = new IplImage[2]; 

  imagesRectified[LEFT] =  

       IplImage.create(cvGetSize(leftIm), IPL_DEPTH_8U, 1); 

  imagesRectified[RIGHT] =  

       IplImage.create(cvGetSize(rightIm), IPL_DEPTH_8U, 1); 

  cvRemap(leftIm, imagesRectified[LEFT], mx1, my1, 

                    CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS,  

                    CvScalar.ZERO); 

  cvRemap(rightIm, imagesRectified[RIGHT], mx2, my2, 

                    CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS,  

                    CvScalar.ZERO); 

  return imagesRectified; 

}  // end of rectify() 

 

The images are distorted so the chessboards fall into alignment. Rectification doesn't 

mean that the chessboards are twisted back into rectangular shape; instead, it aligns 

the board rows so they're parallel, but perhaps still at an angle relative to the image 

borders. Any chessboard lines which were radially distorted in the original should be 

straightened. 
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The rectified images are displayed side-by-side by showRectifiedImages(). It also 

draws colored lines across the images to help with the comparison, as in Figure 21. 

 

 

Figure 21. Rectified Images with Lines. 

 

The showRectifiedImages() code: 
 

// globals 

private static final int IM_WIDTH = 640; 

private static final int IM_HEIGHT = 480; 

 

private CanvasFrame displayFrame;    

          // used to display chessboard points and rectified images 

 

 

private void showRectifiedImages(IplImage[] imagesRectified) 

{ 

  IplImage imPair =  

       IplImage.create(IM_WIDTH*2, IM_HEIGHT, IPL_DEPTH_8U, 3);   

            // a color image big enough for both input images 

  IplImage colTemp =  

       IplImage.create(IM_WIDTH, IM_HEIGHT, IPL_DEPTH_8U, 3); 

            // temporary color image object 

 

  // copy left image to left side 

  cvCvtColor(imagesRectified[LEFT], colTemp, CV_GRAY2RGB); 

  cvSetImageROI(imPair, cvRect(0, 0, IM_WIDTH, IM_HEIGHT)); 

  cvCopy(colTemp, imPair); 

 

  // copy right image to right side 

  cvCvtColor(imagesRectified[RIGHT], colTemp, CV_GRAY2RGB); 

  cvSetImageROI(imPair, cvRect(IM_WIDTH, 0 , IM_WIDTH*2, IM_HEIGHT)); 

  cvCopy(colTemp, imPair); 

 

  // reset large image's Region Of Interest 

  cvResetImageROI(imPair); 

 

  // draw yellow and blue lines across the images 

  CvScalar color; 

  int count = 0; 

  for(int i = 0; i < IM_HEIGHT; i += 16) { 

    color = (count%2 == 0) ? CvScalar.BLUE : CvScalar.YELLOW; 
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    cvLine(imPair, cvPoint(0,i), cvPoint(IM_WIDTH*2, i),  

                                          color, 1, CV_AA, 0); 

    count++; 

  } 

 

  // display the result 

  if (displayFrame == null) 

    displayFrame = new CanvasFrame("Rectified Pair"); 

  else { 

    displayFrame.setTitle("Rectified Pair"); 

    displayFrame.setSize(IM_WIDTH*2, IM_HEIGHT); 

  } 

 

  displayFrame.showImage(imPair);  

}  // end of showRectifiedImages() 

 

 

5.2. Creating an Anaglyph 

An anaglyph is made from combining two colored-filtered images for the left and 

right eye. Typical filters are red and cyan (a greenish-blue), and the resulting image 

should be viewed through glasses that have a red filter over the left eye and a cyan 

one over the right (see Figure 22). 

 

Figure 22. Viewing an Anaglyph. 

 

The filtering means that the red component of the anaglyph will be most visible to the 

left eye and the cyan component most visible to the right eye. Therefore, to create the 

stereo effect,  the image for the left eye should be encoded using red and the right eye 

image in cyan. This is easy to implement in OpenCV by using cvMerge() to fill the 

red, green, and blue channels of a new IplImage object. The only tricky aspect is 

remembering that IplImage encodes its channels in BGR order (e.g. channel 0 is for 

blue). The resulting code is in DepthCalc.showAnaglyph(): 
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// globals 

private static final int LEFT = 0; 

private static final int RIGHT = 1; 

 

private static final int IM_WIDTH = 640; 

private static final int IM_HEIGHT = 480; 

 

private static final String ANA_FNM = "anaglyph.jpg"; 

 

 

private void showAnaglyph(IplImage[] imagesRectified) 

{ 

  IplImage anaImg =  

     IplImage.create(IM_WIDTH, IM_HEIGHT, IPL_DEPTH_8U, 3); 

             // color image object with BGR channel ordering 

 

  cvMerge(imagesRectified[RIGHT], imagesRectified[RIGHT],  

                          imagesRectified[LEFT], null, anaImg); 

     // BGR: (blue, green) = cyan = right image;  red = left image 

    

  // display the result 

  CanvasFrame anaFrame = new CanvasFrame("Anaglyph"); 

  anaFrame.showImage(anaImg);  

 

  System.out.println("Saving anaglyph to " + ANA_FNM); 

  cvSaveImage(ANA_FNM, anaImg); 

}  // end of showAnaglyph() 

 

 

5.3. Finding Stereo Correspondences 

Stereo correspondence is the calculation of disparities (offsets) between common 

points that appear in both the left and right images. A disparity can easily be 

converted into a depth measurement since disparity  1/depth. 

We use disparity calculations all the time when we judge distances. Objects that are 

close to us have a large disparity while those further away have a smaller disparity. 

You can see this by looking at something near to you, first with your left eye, then 

your right. The object appears to jump to the left (relative to your eye's field of view) 

when you switch to your right eye. The jump is much less noticeable if you focus on 

something in the mid-distance, and the disparity drops to 0 for objects far away. 

The same technique can be applied to the left and right rectified images in an efficient 

manner because of their alignment. It means that a point at (x, y) in the left image will 

be located somewhere to the left of that position in the right image. The idea is 

illustrated in Figure 23. 
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Figure 23. Finding the Disparity for a Point in Two Images. 

 

yl and yr will be the same (due to rectification), so the disparity is (xl – xr).  

When disparities are calculated for all the points in the scene, the largest will occur 

for objects close to the cameras, and smaller disparities will be apparent for things 

that are further away, as shown in Figure 24.  

 

 

Figure 24. Disparity values Relative to the Cameras. 

 

The inverse relationship between disparities and depths means that large disparities  

(i.e. objects close to the camera) have small depths, while small disparities (i.e. 

objects far away) have large depths, as illustrated by Figure 25. 
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Figure 25. Disparity and Depth Inverse Relationship. 

 

The inverse relationship also means that depths calculated from disparities are only 

accurate for objects close to the camera. Once an object is a reasonable distance away, 

a small error in its disparity can introduce a large change in its depth. 

OpenCV offers a few functions for calculating stereo correspondences. The most 

popular is cvFindStereoCorrespondenceBM() (BM stands for block-matching) which 

is fast, and explained in excellent detail in Learning OpenCV.  

Another function is cvFindStereoCorrespondenceGC() (GC stands for graph-cut), 

which is more accurate but too slow for most real-time computer vision applications. 

It has been replaced in newer versions of OpenCV by a function using semi-global 

block matching, a fast variant of cvFindStereoCorrespondenceBM(). It is used in the 

stereo_match.cpp example that come in the OpenCV download.  

I've utilized cvFindStereoCorrespondenceBM(), which is fast enough to be adjusted at 

run-time via the sliders in DepthViewer's GUI (see the left of Figure 3). 

The block-matching parameters used by cvFindStereoCorrespondenceBM() are both 

numerous and fairly confusing since the algorithm passes through three stages: 

1. Prefiltering. The input images' brightnesses are normalized, and texturing is 

enhanced using a moving window of a specified pixel block size. 

2. Correspondence search. The disparities between common points are calculated 

using a moving SAD (sum of absolute differences) window which looks for matching, 

points as in Figure 23. To speed things up, SAD matches blocks of pixels (hence, the 

algorithm's name), with larger windows being faster and more resistant to noise but 

also creating blurrier disparity data. 

There are many parameters for controlling where the search begins on the right-hand 

image's row, and how much of the row to search.  

3. Postfiltering. Poor matches are removed using a uniqueness ratio, texture 

thresholding, and speckle size to separate noise from the true texture matches.  

The computed disparities are stored as integers after being multiplied by 16 and 

rounded; actual disparities are retrieved by dividing by 16. 
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5.4. Producing Disparity Maps 

Initial block-matching parameters are passed to the DepthCalc object when it's created 

in the DepthViewer class: 

 

// in the DepthViewer class 

int preFilterSize = 31;  

int prefilterCap = 31; 

int sadSize = 15;  

 

int minDisp = -100;  

int numDisp = 128; 

 

int uniqRatio = 15; 

int texThresh = 10; 

int specSize = 100; 

int specRange = 4; 

 

depthCalc = new DepthCalc(val, isCalibrating, drawChessboards, 

                        preFilterSize, prefilterCap, sadSize, 

                        minDisp, numDisp, uniqRatio, 

                        texThresh, specSize, specRange); 

 

I based these values on those in the cvFindStereoCorrespondenceBM() example in 

Learning OpenCV (p.451) and other online programs. They are also used to initialize 

the GUI's sliders.  

The DepthCalc constructor creates a CvStereoBMState object which is used by 

cvFindStereoCorrespondenceBM() later: 

 

// globals 

private CvStereoBMState bmState; 

 

// in DepthCalc() 

bmState = cvCreateStereoBMState(CV_STEREO_BM_BASIC, 0); 

bmState.preFilterSize(preFilterSize);    // prefilters 

bmState.preFilterCap(prefilterCap); 

 

bmState.SADWindowSize(sadSize);          // SAD-related 

 

bmState.minDisparity(minDisp); 

bmState.numberOfDisparities(numDisp);    // postfilters 

bmState.textureThreshold(texThresh); 

bmState.uniquenessRatio(uniqRatio); 

bmState.speckleWindowSize(specSize); 

bmState.speckleRange(specRange); 

 

DepthCalc.createDisparityMaps() creates a disparity matrix by calling 

cvFindStereoCorrespondenceBM(): 

 

// globals 

private IplImage gDispMap;         // grayscale disparity image 

private CvMat normalizedDisp;       

                   // disparities used for depth calculations 
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private CvMat createDisparityMaps(IplImage[] imagesRectified) 

{ 

  CvSize imSize = cvGetSize(imagesRectified[LEFT]); 

 

  IplImage disparityMap = IplImage.create(imSize, IPL_DEPTH_16S, 1); 

  cvFindStereoCorrespondenceBM(imagesRectified[LEFT],  

                               imagesRectified[RIGHT], 

                               disparityMap, bmState); 

 

  // convert disparity map to a grayscale disparity image 

  gDispMap = IplImage.create(imSize, IPL_DEPTH_8U, 1); 

  cvNormalize(disparityMap, gDispMap, 0, 255, CV_MINMAX, null); 

 

  // normalize the disparity map; use this for depth calculations 

  CvMat normalizedDisp = cvCreateMat(IM_HEIGHT, IM_WIDTH, CV_32F); 

  cvConvertScale(disparityMap, normalizedDisp, 1.0/16, 0); 

 

  if (minVal[0]*maxVal[0] < 0) // is there a sign change?   

    cvConvertScale(normalizedDisp, normalizedDisp, 1, -minVal[0]);     

                                // move to be all positive 

  return normalizedDisp; 

}  // end of createDisparityMaps() 

 

The disparity matrix created by cvFindStereoCorrespondenceBM() is stored as an 

IplImage object, but this is just a convenience for the creation of the grayscale 

disparity image at the next stage of the method. cvNormalize() scales the disparity 

data so it ranges between 0 and 255, thereby allowing the values to be treated as 

grayscales. The resulting global grayscale image, gDispMap, can be accessed via the 

top-level DepthViewer application, and drawn in its right-hand panel, as shown in 

Figure 3. 

A second disparity map, called normalizedDisp, is also created, as the first step in 

calculating the depth data for the point cloud. As I mentioned above, disparities are 

stored as integers after being multiplied by 16 and rounded, and so normalizedDisp 

stores the true disparities by dividing the data by 16. 

While I was debugging this code, I included println() calls to report on the minimum 

and maximum values in the matrices and maps. To my surprise, the disparity maps 

included negative values. For example, the following code fragment: 

 

CvMat normalizedDisp = cvCreateMat(IM_HEIGHT, IM_WIDTH, CV_32F); 

cvConvertScale(disparityMap, normalizedDisp, 1.0/16, 0); 

 

// debugging code 

double[] minVal = new double[1]; 

double[] maxVal = new double[1]; 

cvMinMaxLoc(normalizedDisp, minVal, maxVal); 

System.out.println("Normalized disparity map range: " +  

                                    minVal[0] + " - " + maxVal[0]); 

 

produces the output: 

Normalized disparity map range: -101.0 - 10.75 
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The usual reason for negative disparities is that the webcams aren’t aligned in parallel, 

instead pointing slightly towards each other. I decided to fix the problem with a hack 

involving a data shift: 

 

if (minVal[0]*maxVal[0] < 0)  // is there a sign change? 

  cvConvertScale(normalizedDisp, normalizedDisp, 1, -minVal[0]); 

 

// debugging code 

cvMinMaxLoc(normalizedDisp, minVal, maxVal); 

System.out.println("Translated norm disparity map range: " +  

                                  minVal[0] + " - " + maxVal[0]); 

 

The effect of the cvConvertScale() call is to shift the data to the right along the x-axis, 

making it all positive. The println() in the above code fragment reports: 

Translated norm disparity map range: 0.0 - 111.75 

This shift is not ideal since the left-most disparity (e.g. at the old disparity of  -101 in 

the example above) is shifted to 0. This means that the corresponding depth is now at 

infinity. 

 

5.5. Calculating Depths 

As seen in Figure 3, a depth value is drawn on top of the grayscale disparity map 

when the user clicks on it. The ImagePanel object obtains the number by calling 

DepthCalc.getDepth() with the (x, y) coordinate where the mouse was pressed: 

 

// global 

private CvMat normalizedDisp; 

 

 

public int getDepth(int x, int y) 

{ 

  if (normalizedDisp == null) 

    return 0; 

  return disparity2Depth( normalizedDisp.get(y,x)); 

}  // end of getDepth() 

 

The normalizedDisp get() call reverses the (x, y) order since OpenCV stores matrices 

in row-column order. 

The disparity-to-depth conversion is performed by disparity2Depth() which 

implements the equation Z = (f*T)/d to convert disparity values (d) into depths (Z); f 

is the focal length and  T the baseline distance, which both come from the 

reproduction matrix Q.  

 

// globals 

private static final int CHESS_SQ_LENGTH = 27;  // mm 

 

private double focalLength, baselineDist;    

        // obtained from the reprojection matrix, Q 

 

 

private int disparity2Depth(double disp) 

{ if (disp == 0)    // an infinite depth 
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    return 0; 

  else 

    return -(int)Math.round(( 

              focalLength*baselineDist)/disp*CHESS_SQ_LENGTH); 

}  

 

The CHESS_SQ_LENGTH value comes from measuring the chessboard print-out 

with a ruler, and converts the depth from a value in pixels into millimeters. The depth 

returned by the equation is negative since depths are positioned along the negative z-

axis (see Figure 9). However, it seems less confusing for the user to display the depth 

as a positive, so the number is negated before being returned. In addition, infinite 

depths are represented by 0. 

At this point, an obvious question is whether these depths bear any relationship to 

real-world distances? The good news is that two depths can always be compared since 

a smaller depth does means a point closer to the camera.  

The bad news is that the accuracy of a depth depends on the point's proximity to the 

camera. Points closer to the camera are represented by more disparity values, and so 

their depths will be more accurate. Points further away will be less accurately defined. 

Another problem is the hack I utilized in createDisparityMaps() to make all the 

disparities positive. A side-effect of that numerical shift is the introduction of another 

error into the disparity data. 

 

5.6. Changing the Stereo Correspondence Settings 

Figure 26 shows a close-up of the slider panel in the DepthViewer application. 

 

 

Figure 26. The Slider Controls in DepthViewer. 
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When a slider is moved, the GUI responds by adjusting the corresponding block-

matching parameter, and calling DepthCalc.createDisparityMaps() (and hence 

cvFindStereoCorrespondenceBM()) to recalculate the disparity data. 

There are a few issues with this coding approach. One is that some parameters have 

restrictions on their allowed values. For example, the minimum disparity (i.e. the 

"Min Disparity" slider) must be a multiple of 16, which isn't enforced by the slider 

component itself. It's only in the code triggered by the slider change that the value is 

checked, and possibly corrected. Unfortunately, the GUI doesn't show the corrected 

value, and the user only knows about the change via a warning message printed to 

standard output. 

Another potential problem is that DepthCalc.createDisparityMaps() is called in Java's 

GUI thread, which means that the GUI 'freezes' until the block match has been 

recomputed and createDisparityMaps() returns. This only takes around a second, so 

the delay isn't too severe, but a slower algorithm, such as graph-cut correspondence, 

would cause the GUI to hang for too long. 

 

6. Building a Point Cloud 

The point cloud isn't computed until the user presses the application's close box. The 

reasoning behind this is that the user may want to adjust the disparity data with the 

sliders before generating the final cloud. I'm not really happy with this design since 

the closing action hangs for 1-2 seconds while the point cloud is calculated and 

written out to a file. 

Cloud creation is triggered by a window listener connected to the top-level 

DepthViewer JFrame: 

 

// code fragment in DepthViewer() 

addWindowListener( new WindowAdapter() { 

  public void windowClosing(WindowEvent e) 

  { try { 

      setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR)); 

      depthCalc.storeDepthInfo(); 

    } 

    catch(Exception ie) {} 

    finally { 

      setCursor(Cursor.getDefaultCursor()); 

    } 

    System.exit(0); 

  } 

}); 

 

DepthCalc.storeDepthInfo() writes information to three different files – a PLY point 

cloud is saved, as are the current slider settings and the grayscale disparity image. The 

surrounding calls to setCursor() are meant to change the cursor to a waiting icon to 

suggest that something is happening during the closing delay. However, the cursor 

doesn't change on my test machines. 

The interesting part of storeDepthInfo() is the call to savePly() which builds a 2D 

array of depths, and writes it out in PLY format to a text file: 
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// globals 

private IplImage gDispMap;            // grayscale disparity image 

private CvMat normalizedDisp;          

                     // disparity data used for depth calculations 

 

 

private void savePly(String fnm, CvMat gDispMat) 

{ 

  int rows = gDispMat.rows(); 

  int cols = gDispMat.cols(); 

  int totalVerts = rows*cols; 

  System.out.println(); 

 

  double[][] pclCoords = new double[cols][rows];    // x then y 

  int numZeros = convertDisparities(normalizedDisp,  

                                     pclCoords, rows, cols); 

  if (numZeros > 0) { 

    double percentZeros = 100.0*((double)numZeros)/totalVerts; 

    System.out.printf("No. of vertices with 0 depth:  

                %d (%.1f%%)\n",numZeros, percentZeros); 

  } 

  int dataVerts = totalVerts - numZeros;    

                        // ignore points with 0 depth 

 

  System.out.println("Saving point cloud coordinates to " + fnm); 

  try { 

    PrintWriter out = new PrintWriter(new FileWriter(fnm)); 

 

    out.println("ply"); 

    out.println("format ascii 1.0"); 

    out.println("comment Point Cloud output from DepthCalc"); 

 

    // x, y, z coordinate for a point and colors 

    out.println("element vertex " + dataVerts); 

    out.println("property double x");    // vertex coordinates 

    out.println("property double y"); 

    out.println("property double z"); 

    out.println("property uchar red");   // vertex colors 

    out.println("property uchar green"); 

    out.println("property uchar blue"); 

    out.println("end_header"); 

 

    for (int x=0; x < cols; x++) 

      for (int y=0; y < rows; y++) { 

        double depth = (double)pclCoords[x][y]; 

        int gray = (int) gDispMat.get((rows-1-y),x);   // grayscale 

        if (depth != 0)    // do not save vertices with 0 depths 

          out.printf("%d  %d  %.3f  %d  %d  %d\n",  

                            x, y, depth, gray, gray, gray); 

      } 

    out.flush(); 

    out.close(); 

  } 

  catch(IOException ex)  

  {  System.out.println("Unable to save");  } 

}  // end of savePly() 
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The depth information comes from the normalized disparity map, normalizedDisp, 

and also employs the grayscale disparity map in gDispMap to add color (gray levels) 

information 

PLY is a popular text-based format for representing point clouds, and is supported by 

most 3D modeling tools, including the open source MeshLab 

(http://meshlab.sourceforge.net/). Unlike some 3D applications, MeshLab is relatively 

simple to use, since it focuses on the editing of triangular meshes. It's easy to add and 

delete points, reformat the data (e.g. stretch out the z-axis), and move around the point 

cloud (see Figure 4). 

The PLY format is aimed at representing shapes as collections of points and faces 

(http://paulbourke.net/dataformats/ply/), and it's easy to add additional properties such 

as color, textures, transparencies, and normal information. Depending on the shape, 

unnecessary details can be left out – in my case, I don't store face data. 

savePly() writes out a PLY header which describes the element types used by the 

shape. The details include the element name ("vertex"), how many vertices are in the 

cloud, and a list of a vertex's properties. A point cloud vertex has six properties: a (x, 

y, z) position and an RGB color. 

The header in the resulting PLY file looks something like: 

 

ply 

format ascii 1.0 

comment Point Cloud output from DepthCalc 

element vertex 41456 

property double x 

property double y 

property double z 

property uchar red 

property uchar green 

property uchar blue 

end_header 

 

Lines of data follow the header, with one line for each vertex. For instance, the first 

few lines may look like: 

 

34  201  -870.653  187  187  187 

34  206  -878.257  186  186  186 

34  207  -878.257  186  186  186 

34  208  -879.525  186  186  186 

34  209  -880.792  185  185  185 

      : 

 

The first three numbers on a line are the point's (x, y, z) coordinate, and the last three 

define  its RGB color. The color is encoded by repeating the grayscale value for that 

point in the grayscale disparity map.  

Each coordinate comes from the pclCoords[][] 2D array – the  x- and y- values are the 

subscripts of the array while the z-value is that cell's value. pclCoords' depths are 

calculated in convertDisparities() using the disparities from the normalized matrix, 

normalizedDisp. 
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One advantage of this approach is the opportunity to reduce the size of the generated 

point cloud. The grayscale disparity map, such as the one in Figure 2, contains a lot of 

black, which indicates that the disparities at those coordinates couldn't be calculated. 

There's no benefit to including that information in the point cloud, and removing it 

will substantially reduce the size of the file.  

convertDisparities() returns a depth value of 0 for those "black" points, and savePly() 

uses this value to skip the storage of those vertices. The method reports the percentage 

of zero points in the data, which is often very high (75% to 80% is common). The 

resulting point cloud is much smaller, and only points with actual depths are displayed 

(see Figure 4). 

 

6.1. From Disparities to Depths 

convertDisparities() converts the normalized disparity map matrix into a 2D array of 

depths called pclCoords. It also performs several additional transformations, which is 

my reason for implementing convertDisparities() rather than using OpenCV's 

cvReprojectImageTo3D() conversion function. You may recall that I'd commented 

out its call at the end of DepthCalc.depthProcessing(). 

The extra transformations include changing the y-axis so its origin starts at the 

bottom-left rather than the top-left. Also, the array data is re-organized into the more 

familiar column-row order (x then y) rather than the matrix row-column order.  

The hardest transformation is scaling the data so that different depths are clear inside 

the point cloud. The reason for the difficulty is the highly skewed nature of the data, 

with the vast majority of depth measurements clustered near to the camera, and a few 

very large numbers (which are mostly noise). These values mean that scaling based on 

the range of depths (minimum to maximum) would lead to most of the fine-level 

depth differences close to the camera being lost. 

The solution is to base the range on percentiles: the depth data is sorted, and the range 

is limited to span the minimum depth (i.e. the 0th percentile) up to the 98th percentile, 

causing very large data to be excluded. In addition, any depths which exceed the 98th 

percent are set to 0, which allows savePly() to treat them as 'black' points that aren't 

saved in the point cloud file. 

The first half of convertDisparities() applies the axis changes, and the second half 

uses the percentile-based range to scale the depths: 

 

private int convertDisparities(CvMat normalizedDisp, 

                         double[][] pclCoords, int rows, int cols) 

{ 

  System.out.println("Converting disparity map into point cloud"); 

  ArrayList<Integer> depths = new ArrayList<Integer>(); 

 

  // convert disparities to depths 

  int numZeros = 0; 

  int z; 

  for (int i=0; i < rows; i++) { 

    for (int j=0; j < cols; j++) { 

      z = disparity2Depth( normalizedDisp.get(i,j)); 

      if (z == 0) 

        numZeros++; 

        else { 
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        pclCoords[j][rows-1-i] = z;  

               // x-axis goes to the right, y-axis runs up screen 

        depths.add(z); 

      } 

    } 

  } 

 

  // calculate a scale factor  

  Collections.sort(depths); 

  int minDepth = depths.get(0); 

  int maxDepth = findMaxDepth(depths); 

  System.out.println("min - max depth: " +  

                         minDepth + " - " + maxDepth); 

  double scaleFactor = ((double)cols)/(maxDepth - minDepth);    

  System.out.printf("Scale factor: %.3f\n", scaleFactor); 

 

  // scale the depths 

  double pz; 

  for (int x=0; x < cols; x++) { 

    for (int y=0; y < rows; y++) { 

      pz = pclCoords[x][y]; 

      if (pz != 0) { 

        if (pz > maxDepth) {    // ignore depths that are too big 

          pclCoords[x][y] = 0; 

          numZeros++; 

        } 

        else 

          pclCoords[x][y] = -scaleFactor*(pz - (minDepth-10)); 

                      // scale depths along -z axis 

      } 

    } 

  } 

 

  return numZeros; 

}  // end of convertDisparities() 

 

One aspect of the scaling is that the depths will be positive, but they need to be 

converted to negative numbers so they will be correctly ordered along the –z axis. 

findMaxDepth() is passed a sorted list of depths, which allows it to calculate a 

percentile position using getPercentile(): 

 

private int findMaxDepth(ArrayList<Integer> depths) 

{ 

  int dVal = getPercentile(depths, 0.98); 

  int maxMult =  10*depths.get(0);   // large multiple of minimum 

  int maxDepth = (maxMult < dVal) ? maxMult : dVal;    

                 // use smaller of two 

  return maxDepth; 

}  // end of findMaxDepth() 

 

 

private int getPercentile(ArrayList<Integer> list, double percent) 

{ 

  if ((percent < 0) || (percent > 1.0)) { 

    System.out.println("% should be between 0 and 1; using 0.5"); 

    percent = 0.5; 

  } 

  int pcPosn = (int)Math.round(list.size()-1 * percent); 
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  return list.get(pcPosn); 

}  // end of getPercentile() 

 

The choice of 98th percentile was arrived at by testing out multiple disparity maps. As 

a fall-back position, a large multiple of the minimum depth is also calculated, and the 

smaller of the two is used as the maximum depth. 

 

 


