
Java Prog. Techniques for Games.Kinect Chapter 13. Body Gestures Draft #1 (28th Dec. 2011)

1 © Andrew Davison 2011

Kinect Chapter 13. FAAST-style Body Gestures

[Note: all the code for this chapter is available online at
http://fivedots.coe.psu.ac.th/~ad/kinect/; only important fragments are described
here.]

The ArniesTracker application from Chapter 4 illustrates how to program with
OpenNI's skeletal tracking, rendering each skeleton as connected colored lines (with
an attached Arnies head). Figure 1 is a reminder of how things look.

Figure 1. An Arnie Being Tracked.

The crucial data structure is a HashMap of skeletons called userSkels, which maps
user IDs to skeletons made up of joints. The collection of joints for a given skeleton
are represented by another HashMap which pairs joint names (SkeletonJoint values)
with their (x, y, z) coordinates (SkeletonJointPosition objects). The userSkels
declaration:

private HashMap<Integer,
 HashMap<SkeletonJoint, SkeletonJointPosition>> userSkels;

When a new user is detected, a ID-skeleton mapping is added to userSkels, which is
updated as the user moves, and deleted when the person leaves the scene.

This data structure is utilized in the ArniesTracker application of Chapter 4 to draw
the skeletons. This chapter explores its use for detecting body gestures, such as lifting
an arm, bringing both hands together, and waving a hand up and down.

To give credit where it's due, this chapter was inspired by the FAAST library
(http://projects.ict.usc.edu/mxr/faast/). FAAST, short for Flexible Action and
Articulated Skeleton Toolkit, allows a programmer to add full-body control to games
and VR applications. It's built on top of OpenNI and NITE on a Windows platform,

Java Prog. Techniques for Games.Kinect Chapter 13. Body Gestures Draft #1 (28th Dec. 2011)

2 © Andrew Davison 2011

and makes it very easy to map gestures to keyboard and mouse controls, thereby
allowing conventional software to be controlled by gesturing. FAAST also includes
network support so skeletal information can be transported between machines. The
application in this chapter is much less capable, only calling a print method when a
body gesture is detected.

1. Extending ArniesTracker
Graphically, the new version of ArniesTracker is unchanged from Figure 1, but now
prints gesture detection details to standard output. For example, Figure 2 shows the
user turning their body to the left.

Figure 2. Turning to the Left.

The resulting print-out includes the following lines:

 :
TURN_LEFT 1 on
LEAN_LEFT 1 on
 TURN_LEFT 1 off
TURN_LEFT 1 on
 LEAN_LEFT 1 off
 TURN_LEFT 1 off
 :

This text is reporting two gestures – turning left and leaning left. An "on" message is
printed when a gesture starts, and the "off" messages report when the gestures ends.

The application detects two kinds of gesture: basic ones which correspond to the user
placing their body in a certain position (e.g. a raised hand, bending to the left), and
gesture sequences which are more complex moves made up of a series of basic
gestures. An example is horizontal waving which consists of a user moving their hand
to the left and right several times.

Java Prog. Techniques for Games.Kinect Chapter 13. Body Gestures Draft #1 (28th Dec. 2011)

3 © Andrew Davison 2011

Figure 3 shows the user with their right arm lowered, which occurs at the end of a
series of up and down movements.

Figure 3. Vertical Waving.

The output is a mixture of basic gestures, and a vertical waving message which is
reported when a sequence of raised and lowered arm gestures are observed.

 :
RH_DOWN 1 on
 RH_DOWN 1 off
RH_FWD 1 on
RH_UP 1 on
 RH_UP 1 off
 RH_FWD 1 off
RH_DOWN 1 on
RH_FWD 1 on
 RH_DOWN 1 off
RH_UP 1 on
 RH_UP 1 off
 RH_FWD 1 off
RH_DOWN 1 on
VERT_WAVE 1 on
RH_FWD 1 on
 RH_DOWN 1 off
 :

The RH prefix on most of the messages stands for "Right Hand". The vertical wave
gesture is represented by the VERT_WAVE output which appears after several up
and down swipes of the right hand. Note that the up and down gestures are
interspersed with RH_FWD messages which signal that the right hand is forward of
the torso. This position often occurs as the user moves their hand up and down, but
the waving gesture is still reported.

Java Prog. Techniques for Games.Kinect Chapter 13. Body Gestures Draft #1 (28th Dec. 2011)

4 © Andrew Davison 2011

2. An Overview of the New ArniesTracker
The ArniesTracker class diagrams in Figure 4 include thick green borders around the
new classes.

Figure 4. Class Diagrams for the New ArniesTracker.

The new classes are SkeletonsGestures and GestureSequences, and an interface called
GesturesWatcher. SkeletonsGestures examines the skeletons data (i.e. the userSkels
HashMap) and reports basic gestures. These gestures are also stored in a list processed
by GestureSequences which looks for subsequences corresponding to complex
gestures (e.g. vertical waving).

Both basic and complex gestures are reported by calling the GesturesWatcher.pose()
method, which is implemented in TrackerPanel.

The Skeletons class is slightly modified from the version in the earlier ArniesTracker,
and there are minor changes to the CalibrationCompleteObserver and
LostUserObserver callbacks, as explained in the following subsections.

2.1. Creating the Gesture Detectors
The Skeletons constructor creates the userSkels data structure for the user skeletons,
and also initializes the SkeletonsGestures and GestureSequences detectors.

// globals
private HashMap<Integer, HashMap<SkeletonJoint,
 SkeletonJointPosition>> userSkels;
/* userSkels maps user IDs --> a joints map (i.e. a skeleton)
 skeleton maps joints --> positions */

Java Prog. Techniques for Games.Kinect Chapter 13. Body Gestures Draft #1 (28th Dec. 2011)

5 © Andrew Davison 2011

// gesture detectors
private GestureSequences gestSeqs;
private SkeletonsGestures skelsGests;

public Skeletons(UserGenerator userGen, DepthGenerator depthGen,
 GesturesWatcher watcher)
{ this.userGen = userGen;
 this.depthGen = depthGen;

 headImage = loadImage(HEAD_FNM);
 configure();
 userSkels = new HashMap<Integer,
 HashMap<SkeletonJoint, SkeletonJointPosition>>();

 /* create the two gesture detectors, and tell them
 who to notify */
 gestSeqs = new GestureSequences(watcher);
 skelsGests = new SkeletonsGestures(watcher, userSkels, gestSeqs);
} // end of Skeletons()

The constructor's GesturesWatcher argument refers to the TracksPanel object, which
implements the GesturesWatcher interface. The detectors are passed copies of this
reference so they can notify TracksPanel by calling its GesturesWatcher.pose()
method.

The SkeletonsGestures object is instantiated with a reference to the userSkels data
structure, which is examined for body gestures. It is also assigned a reference to the
GestureSequences object so detected basic gestures can be passed to it.

2.2. Updating the Skeleton (and Detectors)
A call to Skeletons.update() updates the joint positions for each user's skeleton. It's
also necessary to pass the skeleton's userID to the two detectors, so that they can
perform gesture analysis on that user's skeleton.

public void update()
{
 try {
 int[] userIDs = userGen.getUsers();
 // there may be many users in the scene
 for (int i = 0; i < userIDs.length; ++i) {
 int userID = userIDs[i];
 if (skelCap.isSkeletonCalibrating(userID))
 continue;
 if (skelCap.isSkeletonTracking(userID)) {
 updateJoints(userID);

 /* when a skeleton changes, have the
 detectors look for gestures */
 gestSeqs.checkSeqs(userID);
 skelsGests.checkGests(userID);
 }
 }
 }
 catch (StatusException e)
 { System.out.println(e); }

Java Prog. Techniques for Games.Kinect Chapter 13. Body Gestures Draft #1 (28th Dec. 2011)

6 © Andrew Davison 2011

} // end of update()

2.3. The Observers
The Skeletons class sets up four 'observers' (listeners) so when a new user is detected
in the scene his skeleton can be calibrated in a standard pose, and then tracked. Of
these observers, CalibrationCompleteObserver and LostUserObserver are modified to
add and remove users to/from the detectors.

class CalibrationCompleteObserver implements
 IObserver<CalibrationProgressEventArgs>
{
 public void update(
 IObservable<CalibrationProgressEventArgs> observable,
 CalibrationProgressEventArgs args)
 {
 int userID = args.getUser();
 System.out.println("Calibration status: " + args.getStatus() +
 " for user " + userID);
 try {
 if (args.getStatus() == CalibrationProgressStatus.OK) {
 // calibration succeeded; move to skeleton tracking
 System.out.println("Starting tracking user " + userID);
 skelCap.startTracking(userID);

 // add user to the gesture detectors
 userSkels.put(new Integer(userID),
 new HashMap<SkeletonJoint, SkeletonJointPosition>());
 // create new skeleton map for the user
 gestSeqs.addUser(userID);
 }
 else // calibration failed; return to pose detection
 poseDetectionCap.StartPoseDetection(calibPoseName, userID);
 }
 catch (StatusException e)
 { e.printStackTrace(); }
 }
} // end of CalibrationCompleteObserver inner class

class LostUserObserver implements IObserver<UserEventArgs>
{
 public void update(IObservable<UserEventArgs> observable,
 UserEventArgs args)
 { int userID = args.getId();
 System.out.println("Lost track of user " + userID);

 // remove user from the gesture detectors
 userSkels.remove(userID);
 gestSeqs.removeUser(userID);
 }
} // end of LostUserObserver inner class

The code shows that only the GestureSequences object is explicitly contacted. There's
no need to call SkeletonsGesture since it employs the userSkels object for all its

Java Prog. Techniques for Games.Kinect Chapter 13. Body Gestures Draft #1 (28th Dec. 2011)

7 © Andrew Davison 2011

analyses. As a consequence, only that data structure needs to be modified in order to
affect the SkeletonsGestures object.

4. A Skeletal Reminder
Before I explain how basic gestures are detected by SkeletonsGestures, Figure 5
offers a quick reminder of the OpenNI skeleton joints.

Figure 5. A Skeleton and its Joints.

OpenNI currently reports the positions for 15 joints, although the framework has
labels for another nine (such as the waist and wrists).

Since ArniesTracker draws skeletons on the screen, joint positions are stored in screen
coordinates, not as real-world values. As Figure 5 indicates, this means that the
positive y-axis runs down the screen, and the positive z-axis is directed into the scene
(i.e. away from the Kinect's camera).

The transformation from real-world to screen coordinates is carried out inside
Skeletons.updateJoint() using DepthGenerator.convertRealWorldToProjective(); the
crucial few lines are:

SkeletonJointPosition jPos = null;
 :
jPos = new SkeletonJointPosition(
 depthGen.convertRealWorldToProjective(pos.getPosition()),

Java Prog. Techniques for Games.Kinect Chapter 13. Body Gestures Draft #1 (28th Dec. 2011)

8 © Andrew Davison 2011

 pos.getConfidence());
 :
skel.put(joint, jPos);

skel is the HashMap of joints for a particular user.

Using screen coordinates for the joints has an unfortunate effect on the gesture
calculations, which I'll explain shortly. It appears that the FAAST system uses real-
world coordinates for its calculations, although I haven't looked at their code to check.

5. Detecting Basic Gestures
The SkeletonsGestures class carries out basic gesture detection by examining pairs of
skeleton joints looking for different kinds of poses, such as right hand raised or hands
close together. Each gesture is reported twice, when it first starts and when it ends. An
alternative strategy would be to generate a gesture-occurring event during every
update of the skeleton, until the gesture stops.

A gesture event is reported by calling the GesturesWatcher.pose() method in the
designated watcher. The call includes the user ID of the skeleton, a GestureName
value, and a boolean denoting if the gesture has just started or finished.

GestureName is the enum:

enum GestureName {
 HORIZ_WAVE, VERT_WAVE, // waving
 HANDS_NEAR, // two hands
 LEAN_LEFT, LEAN_RIGHT, LEAN_FWD, LEAN_BACK, // leaning
 TURN_RIGHT, TURN_LEFT, // turning
 LH_LHIP, RH_RHIP, // touching
 RH_UP, RH_FWD, RH_OUT, RH_IN, RH_DOWN, // righ hand position
 LH_UP // left hand position
}

The names are divided into seven informal groups (denoted by comments in the
code), and many more names could be added. For example, all the right hand
positions could be duplicated for the left hand in addition to the current up position
(LH_UP). A good source of ideas is the FAAST documentation at
http://projects.ict.usc.edu/mxr/faast/. For instance, FAAST also recognizes a variety
of left and right foot gestures.

The SkeletonsGestures constructor is passed a reference to the watcher object
(TrackerPanel in this application), the user skeletons HashMap, and a
GestureSequences object.

// globals
private GesturesWatcher watcher;
private HashMap<Integer,
 HashMap<SkeletonJoint, SkeletonJointPosition>> userSkels;
private GestureSequences gestSeqs;

public SkeletonsGestures(GesturesWatcher aw,

Java Prog. Techniques for Games.Kinect Chapter 13. Body Gestures Draft #1 (28th Dec. 2011)

9 © Andrew Davison 2011

 HashMap<Integer,
 HashMap<SkeletonJoint, SkeletonJointPosition>> uSkels,
 GestureSequences gSeqs)
{ watcher = aw;
 userSkels = uSkels;
 gestSeqs = gSeqs;
} // end of SkeletonsGestures()

The GestureSequences object will store basic gesture sequences for each user, and
look for complex gestures made of sub-sequences. SkeletonsGestures sends gesture
detection information to GestureSequences at run time.

5.1. Checking For Gestures
The only public method in SkeletonsGestures (aside from the constructor) is
checkGests(), which is called whenever a skeleton is updated. It checks the updated
skeleton joints to decide which gestures have just started or finished, and notifies the
watcher.

public void checkGests(int userID)
{
 HashMap<SkeletonJoint, SkeletonJointPosition> skel =
 userSkels.get(userID);
 if (skel == null)
 return;

 calcSkelLengths(skel);

 // uncomment the detectors for the gestures you want...

 // twoHandsNear(userID, skel);

 leanLeft(userID, skel);
 leanRight(userID, skel);
 leanFwd(userID, skel);
 leanBack(userID, skel);

 turnLeft(userID, skel);
 turnRight(userID, skel);
/*
 leftHandTouchHip(userID, skel);
 rightHandTouchHip(userID, skel);

 rightHandUp(userID, skel);
 rightHandFwd(userID, skel);
 rightHandOut(userID, skel);
 rightHandIn(userID, skel);
 rightHandDown(userID, skel);

 leftHandUp(userID, skel);
*/
} // end of checkGests()

checkGests() is passed the user ID of the skeleton that was just updated in the
Skeletons object, and uses it to access the user's HashMap of joints. Useful skeleton

Java Prog. Techniques for Games.Kinect Chapter 13. Body Gestures Draft #1 (28th Dec. 2011)

10 © Andrew Davison 2011

lengths are calculated in calcSkelLengths(), and then a lengthy series of methods are
called, each one checking for a different gesture.

If I uncomment all the gesture detecting methods, the output from ArniesTracker can
become overwhelming. Therefore, most of the methods are commented out in the
code apart from those looking for leaning and turning gestures.

5.2. Calculating Skeleton Lengths
calcSkelLengths() calculate lengths between three joint pairs in the skeleton. These
lengths are used later by some of the detectors to judge the distances between joints.

Unfortunately, these length calculations have to be done repeatedly since the on-
screen dimensions of a skeleton will change as the user moves closer to or further
away from the Kinect. This overhead would disappear if the joints information was
stored in real-world coordinates, since the real-world lengths between joint pairs don't
vary.

// globals
// standard skeleton lengths
private static final float NECK_LEN = 50.0f;
private static final float LOWER_ARM_LEN = 150.0f;
private static final float ARM_LEN = 400.0f;

private float neckLength = NECK_LEN; // neck to shoulder len
private float lowerArmLength = LOWER_ARM_LEN; // hand to elbow len
private float armLength = ARM_LEN; // hand to shoulder len

private void calcSkelLengths(HashMap<SkeletonJoint,
 SkeletonJointPosition> skel)
{ Point3D neckPt = getJointPos(skel, SkeletonJoint.NECK);
 Point3D shoulderPt = getJointPos(skel,
 SkeletonJoint.RIGHT_SHOULDER);
 Point3D handPt = getJointPos(skel, SkeletonJoint.RIGHT_HAND);
 Point3D elbowPt = getJointPos(skel, SkeletonJoint.RIGHT_ELBOW);

 if ((neckPt != null) && (shoulderPt != null) &&
 (handPt != null) && (elbowPt != null)) {
 neckLength = distApart(neckPt, shoulderPt);
 armLength = distApart(handPt, shoulderPt);
 lowerArmLength = distApart(handPt, elbowPt);
 }
} // end of calcSkelLengths()

private float distApart(Point3D p1, Point3D p2)
// the Euclidian distance between two points
{
 float dist = (float) Math.sqrt(
 (p1.getX() - p2.getX())*(p1.getX() - p2.getX()) +
 (p1.getY() - p2.getY())*(p1.getY() - p2.getY()) +
 (p1.getZ() - p2.getZ())*(p1.getZ() - p2.getZ()));
 return dist;
} // end of distApart()

Java Prog. Techniques for Games.Kinect Chapter 13. Body Gestures Draft #1 (28th Dec. 2011)

11 © Andrew Davison 2011

Lengths are calculated between the neck and shoulder, hand and elbow, and hand and
shoulder, and stored in the globals neckLength, lowerArmLength, and armLength.
These measurements were chosen since they offer a range of human-specific lengths
ranging from a short amount (neck to shoulder) to long (hand to shoulder).

getJointPos() is called by calcSkelLengths() to return the current screen coordinates of
a joint as a Point3D object, or null if the joint hasn't a value.

private Point3D getJointPos(
 HashMap<SkeletonJoint, SkeletonJointPosition> skel,
 SkeletonJoint j)
{ SkeletonJointPosition pos = skel.get(j);
 if (pos == null)
 return null;

 if (pos.getConfidence() == 0)
 return null;

 return pos.getPosition();
} // end of getJointPos()

Common reasons for a null joint position is if the joint is out of range of the Kinect
camera (e.g. too near to it) or is obscured by another part of the body or an object in
the scene.

5.3. Checking a Gesture
As will become clear as I explain some of the gesture checking methods, they're all
coded in a similar way. A gesture is detected by comparing the positions of two joints.
If the positions are sufficiently close, then a global boolean is set to true and the
watcher is notified that the gesture has started.

If the positions aren't close enough, and the global boolean is true, then the boolean is
set to false, and the watcher is notified that the gesture has ended.

For example, the "hands together" gesture is shown in Figure 6.

Java Prog. Techniques for Games.Kinect Chapter 13. Body Gestures Draft #1 (28th Dec. 2011)

12 © Andrew Davison 2011

Figure 6. The "Hands Together" Gesture.

If I assume that the gesture is only performed while the user is facing the camera, then
the left and right hands will be "close together" when the distance between their x-
coordinates is small. This is implemented in the twoHandsNear() method:

// global
private float neckLength; // neck to shoulder length
private boolean areHandsNear = false;
private GesturesWatcher watcher;

private void twoHandsNear(int userID,
 HashMap<SkeletonJoint, SkeletonJointPosition> skel)
// are the user's hand close together on the x-axis?
{
 Point3D leftHandPt = getJointPos(skel, SkeletonJoint.LEFT_HAND);
 Point3D rightHandPt = getJointPos(skel, SkeletonJoint.RIGHT_HAND);
 if ((leftHandPt == null) || (rightHandPt == null))
 return;

 float xDiff = rightHandPt.getX() - leftHandPt.getX();
 if (xDiff < neckLength) { // near
 if (!areHandsNear) {
 watcher.pose(userID, GestureName.HANDS_NEAR, true); //started
 areHandsNear = true;
 }
 }
 else { // not near
 if (areHandsNear) {
 watcher.pose(userID, GestureName.HANDS_NEAR, false); //stopped
 areHandsNear = false;
 }
 }
} // end of twoHandsNear()

The xDiff value should be a small positive value since I'm subtracting the left hand's
x-coordinate from the right and, as shown in Figure 5, the left hand has a smaller x-
value Of course the hands may be crossed but that will only make xDiff even smaller
(i.e. negative).

The global boolean for twoHandsNear() is areHandsNear, which is used as the third
argument of GesturesWatcher.pose(). pose() could do something complicated with the
gesture information, but TrackerPanel only prints it out:

// in the TrackerPanel class
public void pose(int userID, GestureName gest, boolean isActivated)
// called by the gesture detectors
{
 if (isActivated)
 System.out.println(gest + " " + userID + " on");
 else
 System.out.println(" " + gest + " " + userID + " off");
} // end of pose()

Java Prog. Techniques for Games.Kinect Chapter 13. Body Gestures Draft #1 (28th Dec. 2011)

13 © Andrew Davison 2011

twoHandsNear() compares the x-axis distance between the hands using a short
human-specific length, the neck-to-shoulder distance in neckLength.

I can justify my assumption about a forward facing user in twoHandsNear() by
considering what would happen in other situations. For instance, if the user tries to
perform the gesture while turned away from the Kinect, then it's very likely that one
or more of the joint positions will return null, causing twoHandsNear() to do nothing.
A null position is returned because the joints are obscured by part of the user's body.

This body-hiding problem makes it quite difficult to implement touching gestures,
such as "hand touches head" because if the hand moves in front of the head then the
head joint will be hidden, and its position will be returned as null. The most reliable
forms of touching are when both joints remain visible to the Kinect, such as "hand to
hip". Of course, this assumes that the user is facing the camera.

5.4. Turning to the Left
Turning to the left is illustrated in Figure 2, and is implemented using similar code,
and similar assumptions, as in twoHandsNear(). If the user is facing the Kinect, then a
turn can be detected by examining the relative z-axis positions of the two hips. A left
turn involves the left hip moving further away from the camera, and the right hip
moving towards it. Since the positive z-axis runs into the scene, this offset will be
represented by a positive difference between the left and right hips, which is tested in
turnLeft():

// globals
private float lowerArmLength; // hand to elbow length
private boolean isTurnLeft = false;
private GesturesWatcher watcher;

private void turnLeft(int userID,
 HashMap<SkeletonJoint, SkeletonJointPosition> skel)
// has the user's right hip turned forward of his left hip?
{
 Point3D rightHipPt = getJointPos(skel, SkeletonJoint.RIGHT_HIP);
 Point3D leftHipPt = getJointPos(skel, SkeletonJoint.LEFT_HIP);
 if ((rightHipPt == null) || (leftHipPt == null))
 return;

 float zDiff = leftHipPt.getZ() - rightHipPt.getZ();
 if (zDiff > lowerArmLength) { // right hip is forward
 if (!isTurnLeft) {
 watcher.pose(userID, GestureName.TURN_LEFT, true); //started
 isTurnLeft = true;
 }
 }
 else { // not forward
 if (isTurnLeft) {
 watcher.pose(userID, GestureName.TURN_LEFT, false); //stopped
 isTurnLeft = false;
 }
 }
} // end of turnLeft()

Java Prog. Techniques for Games.Kinect Chapter 13. Body Gestures Draft #1 (28th Dec. 2011)

14 © Andrew Davison 2011

The difference between the hips' z-coordinates is stored in zDiff and compared
against the lower arm length as a way of judging if the offset is large enough. The
global boolean used to record the gesture's state is isTurnLeft.

This implementation may fail if the user turns so they are side-on to the Kinect since
their left side will be hidden from the camera; the joints on that side, such as the left
hip, will return a null position. Also, if the user turns even further to the left, so their
back is towards the Kinect, then the zDiff value will start to decrease. When it drops
below the lowerArmLength value, the gesture will no longer be detected.

5.5. Moving the Right Hand Up and Down
Before talking about right hand vertical waving, a so-called complex gesture, I need
to explain its component basic gestures – raising and lowering the hand.

A simple way of detecting a raised right hand is to compare it's y-axis position with
the user's head, as in rightHandUp():

// globals
private boolean isRightHandUp = false;
private GesturesWatcher watcher;

private GestureSequences gestSeqs;
 /* stores gesture sequences for each user,
 and looks for complex gestures */

private void rightHandUp(int userID,
 HashMap<SkeletonJoint, SkeletonJointPosition> skel)
// is the user's right hand at head level or above?
{
 Point3D rightHandPt = getJointPos(skel, SkeletonJoint.RIGHT_HAND);
 Point3D headPt = getJointPos(skel, SkeletonJoint.HEAD);
 if ((rightHandPt == null) || (headPt == null))
 return;

 if (rightHandPt.getY() <= headPt.getY()) { // above
 if (!isRightHandUp) {
 watcher.pose(userID, GestureName.RH_UP, true); // started
 gestSeqs.addUserGest(userID, GestureName.RH_UP);
 // add to gesture sequence
 isRightHandUp = true;
 }
 }
 else { // not above
 if (isRightHandUp) {
 watcher.pose(userID, GestureName.RH_UP, false); // stopped
 isRightHandUp = false;
 }
 }
} // end of rightHandUp()

This time it's not necessary to employ a body length to judge the difference between
two coordinates. Simply testing if the hand is at the same height (or higher) than the
head is sufficient. Care must be taken to remember that the positive y-axis runs down
the screen, so a raised hand has a smaller y-value than the head.

Java Prog. Techniques for Games.Kinect Chapter 13. Body Gestures Draft #1 (28th Dec. 2011)

15 © Andrew Davison 2011

This gesture uses the global boolean isRightHandUp to record its status.

The new element in this code is the GestureSequences object. When a right-hand-up
gesture is started (labeled as GestureName.RH_UP), it's passed to GestureSequences
where it's added to the gesture sequences list for that userID, and more complex
gestures are detected.

All the gesture methods, such as twoHandsNear() and turnLeft(), should contain
similar calls to GestureSequences.addUserGest() as rightHandUp(), but I've only
implemented code for finding vertical and horizontal waving as yet. As a
consequence, only the gesture methods for right hand positioning (rightHandUp(),
rightHandFwd(), rightHandOut(), rightHandIn(), and rightHandDown()) call
addUserGest().

An example of a lowered right hand is shown in Figure 3, and suggests a simple test –
comparing the hand's y-axis position with the right hip. This is implemented in
rightHandDown():

// globals
private boolean isRightHandDown = false;
private GesturesWatcher watcher;
private GestureSequences gestSeqs;

private void rightHandDown(int userID,
 HashMap<SkeletonJoint, SkeletonJointPosition> skel)
// is the user's right hand at hip level or below?
{
 Point3D rightHandPt = getJointPos(skel, SkeletonJoint.RIGHT_HAND);
 Point3D hipPt = getJointPos(skel, SkeletonJoint.RIGHT_HIP);
 if ((rightHandPt == null) || (hipPt == null))
 return;

 if (rightHandPt.getY() >= hipPt.getY()) { // below
 if (!isRightHandDown) {
 watcher.pose(userID, GestureName.RH_DOWN, true); // started
 gestSeqs.addUserGest(userID, GestureName.RH_DOWN);
 // add to gesture sequence
 isRightHandDown = true;
 }
 }
 else { // not below
 if (isRightHandDown) {
 watcher.pose(userID, GestureName.RH_DOWN, false); // stopped
 isRightHandDown = false;
 }
 }
} // end of rightHandDown()

In this method, GestureName.RH_DOWN is passed to the GestureSequences object
when the gesture starts.

Java Prog. Techniques for Games.Kinect Chapter 13. Body Gestures Draft #1 (28th Dec. 2011)

16 © Andrew Davison 2011

6. Complex Gestures
GestureSequences stores basic gesture sequences for each user, and detects complex
gestures by looking for specified sub-sequences.

The constructor creates the main data structure – a HashMap that maps user IDs to
gesture sequence lists:

// globals
private GesturesWatcher watcher;
private HashMap<Integer, ArrayList<GestureName>> userGestSeqs;

public GestureSequences(GesturesWatcher gw)
{ watcher = gw;
 userGestSeqs = new HashMap<Integer, ArrayList<GestureName>>();
}

The Skeletons class' observers add and remove users to/from the map:
CalibrationCompleteObserver calls GestureSequences.addUser() and
LostUserObserver calls GestureSequences.removeUser().

public void addUser(int userID)
// create a new empty gestures sequence for a user
{ userGestSeqs.put(new Integer(userID),
 new ArrayList<GestureName>()); }

public void removeUser(int userID)
// remove the gesture sequence for this user
{ userGestSeqs.remove(userID); }

A particular user's sequence is extended by SkeletonsGestures calling addUserGest():

public void addUserGest(int userID, GestureName gest)
// add an gesture to the end of a user's sequence
{
 ArrayList<GestureName> gestsSeq = userGestSeqs.get(userID);
 if (gestsSeq == null)
 System.out.println("No gestures sequence for user " + userID);
 else
 gestsSeq.add(gest);
} // end of addUserGest()

As I mentioned in the last section, addUserGest() is currently only called by the right
hand position methods in SkeletonsGestures, so only sequences of right hand gestures
are stored in the GestureSequences object.

6.1. Finding a Complex Gesture

Skeletons.update() calls GestureSequences.checkSeq() to search for complex gestures.
At present, only vertical and horizontal waving with the right hand is detected, but the
class' functionality could be easily extended.

The two forms of waving are defined as arrays of basic gestures:

Java Prog. Techniques for Games.Kinect Chapter 13. Body Gestures Draft #1 (28th Dec. 2011)

17 © Andrew Davison 2011

// globals
private final static GestureName[] HORIZ_WAVE =
 { GestureName.RH_OUT, GestureName.RH_IN,
 GestureName.RH_OUT, GestureName.RH_IN };
 // a horizontal wave is two out-in moves of the right hand

private final static GestureName[] VERT_WAVE =
 { GestureName.RH_UP, GestureName.RH_DOWN,
 GestureName.RH_UP, GestureName.RH_DOWN };
 // a vertical wave is two up-down moves of the right hand

checkSeq() looks for the arrays' values in a user's gestures sequence. If a matching
sub-sequence is found, then that part of the user's gesture sequence is deleted.

private void checkSeq(int userID, ArrayList<GestureName> gestsSeq)
{
 int endPos = findSubSeq(gestsSeq, HORIZ_WAVE);
 // look for a horizontal wave
 if (endPos != -1) { // found it
 watcher.pose(userID, GestureName.HORIZ_WAVE, true);
 purgeSeq(gestsSeq, endPos);
 }

 endPos = findSubSeq(gestsSeq, VERT_WAVE);
 // look for a vertical wave
 if (endPos != -1) { // found it
 watcher.pose(userID, GestureName.VERT_WAVE, true);
 purgeSeq(gestsSeq, endPos);
 }
} // end of checkSeq()

checkSeq() only calls GesturesWatcher.pose() with the isActivated boolean argument
set to true. I decided not to notify the watcher when a complex gesture finishes.

findSubSeq() looks for all the array values inside a list, and returns the position after
the last value, or -1. The array elements don't have to be stored contiguously in the
list.

private int findSubSeq(ArrayList<GestureName> gestsSeq,
 GestureName[] gests)
{ int pos = 0;
 for(GestureName gest : gests) { // iterate through array
 while (pos < gestsSeq.size()) { // find gesture in list
 if (gest == gestsSeq.get(pos))
 break;
 pos++;
 }
 if (pos == gestsSeq.size())
 return -1;
 else
 pos++; // carry on, starting with next gesture in list
 }
 return pos;
} // end of findSubSeq()

Java Prog. Techniques for Games.Kinect Chapter 13. Body Gestures Draft #1 (28th Dec. 2011)

18 © Andrew Davison 2011

The non-contiguous condition allows a complex gesture to be mixed in amongst other
gestures. For example, the output for vertical waving shown near to Figure 3 shows
that up and down moves are interspersed with right-hand-forward (RH_FWD)
gestures when the user's hand is forward of the torso. This arm position often occurs
as the user moves their hand up and down, but the waving gesture is still observed.

If a complex gesture sub-sequence is found, it's deleted from the user's sequence by
purgeSeq(), including any other gestures mixed in among the sub-sequence.

private void purgeSeq(ArrayList<GestureName> gestsSeq, int pos)
/* remove all the elements in the seq between the positions
 0 and pos-1 */
{
 for (int i=0; i < pos; i++) {
 if (gestsSeq.isEmpty())
 return;
 gestsSeq.remove(0);
 }
} // end of purgeSeq()

Deletion means that the user's sequence doesn't keep growing without end, but it also
means that a basic gesture can only form part of one complex gesture, after which it is
deleted.

It may be a better coding strategy not to delete all the intervening basic gestures since
this means that it isn't possible to detect two complex gestures (such as right hand
vertical waving and left hand horizontal waving) that are occurring at the same time.

