
Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 1 © Andrew Davison 2014

NUI Chapter 15. The Wiimote, the PC, and Java

The wiimote (or more formally, the Wii Remote) is best known as a controller for

Nintendo's Wii console, but I'll be using it as an IO device for a Window's PC, and

access its features via Java. Here's a brief list of topics:

 button detection (e.g. presses, releases, and held buttons);

 motion sensing, which supplies the wiimote's orientation and acceleration along

three axes. I'll also convert the accelerometer information into basic flick gestures;

 IR tracking to locate the wiimote in 3D. An important element of successfully

utilizing IR is calibrating the software;

 the Nunchuk attachment: its joystick, motion sensors, and buttons;

 a full-screen Swing application that employs the Wiimote as the input device.

I'll use the wiiuseJ library (http://code.google.com/p/wiiusej/) to implement these

examples, and the commercial BlueSoleil Bluetooth stack

(http://www.bluesoleil.com/) running on Windows 7 (both 32- and 64-bit) to connect

to the wiimote.

1. The Wii Remote and Associated Hardware

Figure 1 shows the wiimote's buttons, arrow keys and LEDs, but its real novelty is its

3-axis accelerometer, an infrared (IR) optical sensor on its front, a rumbler for

vibrating the device, a built-in speaker, and expansion plug. It utilizes Bluetooth to

communicate with the Wii console (no cables required), and I'll use the same

communication approach to link it to the PC.

Figure 1. The Wiimote.

Figure 2 shows the top and bottom of the internals of a wiimote.

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 2 © Andrew Davison 2014

Figure 2. The Wiimote's Internals.

The expansion plug allows a range of different devices to be attached, turning the

wiimote into a 'gun' (the Wii Zapper), a 'steering wheel' (the Wii Wheel), a balance

board, and many others (gloves, swords, a snooker cue). Probably, the most common

expansion device is the Nunchuk (shown in Figure 3).

Figure 3. The Nunchuk.

The Nunchuk comes with its own accelerometer, joystick, and two buttons.

The wiimote's IR sensor can be utilized with any source of infrared, but Nintendo

recommends the Wii Sensor Bar (Figure 4).

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 3 © Andrew Davison 2014

Figure 4. The Sensor Bar.

The bar is about 20 cm long and features ten infrared LEDs, five at each end. The

LEDs at the two ends are pointed slightly outwards, and the ones closest to the center

are aimed slightly inwards. The IR light is invisible to the human eye, but can be seen

in camera images.

A sensor bar like the one in Figure 4 allows the 3D position of the wiimote to be

calculated, which turns out to be extremely useful, and the basis of many of the

famous wiimote hacks. For example, Johnny Chung Lee's demos employ IR tracking

to implement head and finger tracking, and a multipoint interactive whiteboard (as

explained at http://johnnylee.net/projects/wii/).

The wiimote was praised at its release in 2006, but users began to notice that its

functionality was sometimes unpredictable, especially in applications utilizing its

accelerometer and IR tracking. These issues could be programmed around by using

software calibration, and techniques such as data smoothing and weighting, and a

slew of different APIs appeared for reading and manipulated the wiimote. A

comprehensive list can be found at the WiiBrew website, at

http://wiibrew.org/wiki/Wiimote_Driver.

Aside from software solutions, Nintendo released the Wii MotionPlus expansion

device (Figure 5) in the middle of 2009.

Figure 5. The Wii MotionPlus attached to the base of the wiimote.

The MotionPlus contains a gyroscope for supplying more accurate rotational

information. This can be used by programmers to augment (i.e. improve) the

accelerometer and IR position data generated by the wiimote. The usefulness of this

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 4 © Andrew Davison 2014

extra hardware led eventually (at the end of 2010) to its incorporation inside the

wiimote, now renamed as the Wii Remote Plus, which is shown in Figure 6.

Figure 6. The Wii Remote Plus.

The only obvious external difference between the original wiimote (Figure 1) and the

Wii Remote Plus are the words "Wii MotionPlus INSIDE" printed on the device

below the "Wii" label, as in Figure 7.

Figure 7. Which Wiimote is it?

In addition, the original wiimote is model number RVL-003, but the Wii Remote Plus

is RVL-036, which is printed on the end of the device (see Figure 8) and inside the

battery pack area.

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 5 © Andrew Davison 2014

Figure 8. The Wiimote's Model Number (RVL-003).

Internally there were so many changes between the wiimote and the Wiimote Remote

Plus, that most programming libraries (including wiiuseJ) don't work with the Remote

Plus. This incompatibility has a good and a bad side. Fortunately, original wiimotes

can be obtained cheaply: I bought one on eBay for about US $15, with a Nunchuk

included in the deal. I must also mention that the wiimote is a common counterfeit

item on eBay. Always buy from a seller with a good reputation, and closely study the

wording used in the advert and any pictures of the device. If the seller uses the phrase

"Wii compatible", then the device is almost certainly a copy. Make sure that the

pictures show the name "Wii' on the front of the device, and Nintendo on the back (as

in Figure 9).

Figure 9. A Wiimote (probably) made by Nintendo.

You don't need to purchase a Wii MotionPlus (Figure 5), the gyroscope expansion

device. Most software libraries don't support it, or contain warnings about their

support being not fully tested. This means that when you're wiimote buying on eBay,

if you encounter the word "Plus", either in "Wii MotionPlus" or in "Wii Remote

Plus", that means "don’t buy". The original wiimote (full name: "Wii Remote")

doesn't use a "Plus".

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 6 © Andrew Davison 2014

There are two great sources of information on the wiimote hardware. One is the

overview offered by Wikipedia at http://en.wikipedia.org/wiki/Wii_Remote, which

links to many other pages related to the Wii console, games, and extensions. A more

detailed hardware overview can be found at the WiiBrew site

(http://wiibrew.org/wiki/Wiimote). WiiBrew has separate pages for wiimote

expansion gear, such as the Nunchuk

(http://wiibrew.org/wiki/Wiimote/Extension_Controllers/Nunchuk) and the

MotionPlus

(http://wiibrew.org/wiki/Wiimote/Extension_Controllers/Wii_Motion_Plus).

2. The Wiimote and the PC

Before I start programming, the wiimote must be connected to the PC, which turns out

to be a tricky proposition. The various elements involved are shown in Figure 10.

Figure 10. Linking a Wiimote to a PC and Java.

Windows 7 comes with a Bluetooth stack, but on both my test machines it only

partially detected the wiimote, treating it as a mouse-like HID device. This meant that

button presses could be detected, but not its motion sensing or IR tracking.

A good discussion of the various Windows Bluetooth stacks suited for the wiimote

can be found at the Wiimote Project site (http://www.wiimoteproject.com//bluetooth-

and-connectivity-knowledge-center/a-summary-of-windows-bluetooth-stacks-and-

their-connection).

My solution involves a standard USB Bluetooth dongle and the BlueSoleil stack

(http://www.bluesoleil.com/). BlueSoleil is a commercial product, with the current

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 7 © Andrew Davison 2014

version 10 selling for around US$30, but it's reliable, with great documentation, and

seems to handle a much wider range of 'non-standard' Bluetooth devices than the

stack that comes with Windows 7. Incidentally, I'm using version 6.2 of BlueSoleil,

which deals fine with the wiimote.

Aside from installing BlueSoleil, I also disabled Window's Bluetooth device installer

software (bth.inf and bth.pnf in C:\Windows\inf\) by renaming (I added "BAK" to the

extensions). I rebooted the PC, and only then plugged in the Bluetooth dongle, which

duly became a device managed by BlueSoleil.

The Wiimote Project webpage mentioned above, and several blogs around the Web,

claim success with other Bluetooth stacks, such as those for Dell and Toshiba or the

Widcomm stack. I've no experience of using those, so can't comment on their

capabilities.

The wiimote must be made 'discoverable' to the Bluetooth dongle, which can be done

most easily by holding down the wiimote's "1" and "2" buttons simultaneously. Keep

pressing those button during the following steps. Now turn to the PC, and access

BlueSoleil's Classic View via its tray icon. Right click on the orange 'sun' in the center

of the window, and select "Search Devices". A 'constellation' of discovered devices

will appear, like those in Figure 11.

Figure 11. Search Results in BlueSoleil Classic View.

The joystick icon indicates a HID device, which is probably the wiimote. Right click

on the icon, and select "Get Device Name", and the hexadecimal string label will be

replaced by the name "Nintendo RVL-CNT-01", which you can confirm by right

clicking on the icon and selecting "Properties".

The wiimote has been discovered, but there's no communication link between the

wiimote and PC yet. Bluetooth pairing isn't required for the wiimote (so ignore the

"Pair" menu item when right clicking on the joystick icon. Instead, press the "Search

Services" item, and after a few seconds a new menu item will appear, "Connect

Bluetooth Human Interface Device" (see Figure 12).

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 8 © Andrew Davison 2014

Figure 12. About to Connect the Wiimote to the PC.

Select that "Connect" menu item, and a communications link will be created,

indicating by a dotted line with a moving red ball (Figure 13).

Figure 13. Wiimote and PC are Connected.

At this stage you can stop pressing the "1" and "2" buttons on the wiimote (which

you've been holding down since before Figure 11).

The wiimote name displayed by BlueSoleil ("Nintendo RVL-CNT-01") is another

way of confirming that you have an original wiimote. If the name is "Nintendo RVL-

CNT-01-TR" then you've got the Wii Remote Plus, which most wiimote libraries

(including wiiuseJ) can not communicate with.

2.1. Testing the Wiimote's Capabilities

Although the wiimote is connected to your PC, there's still the question of whether all

of its capabilities are available (e.g. buttons, motion sensing, IR tracking, the rumbler,

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 9 © Andrew Davison 2014

sound generator, and the LEDs). A simple way of checking these is to download the

WiinRemote tool from http://onakasuita.org/wii/index-e.html; you should select the

latest version, which is currently WiinRemote_v2007.1.13.zip. It allows you to test

the wiimote without having to write any code. Its GUI is shown in Figure 14.

Figure 14. The WiinRemote Tool.

Incidentally, wiinRemote doesn't support the wiimote's sound generator, so there's no

way to make it play a tune. That's also a common restriction of most wiimote

libraries, including wiiuseJ.

2.2. WiiuseJ

WiiuseJ (http://code.google.com/p/wiiusej/) is a Java API built on top of the popular

wiiuse C library, and offers versions for Windows (32- and 64- bit) and Linux. It can

access almost all of the wiimote, except for the sound generator. Only three expansion

devices are recognized: the Nunchuk, the Classic Controller, and the Guitar Hero 3

Controller. Most notably absent is support for the Motion Plus attachment (the

gyroscope).

WiiuseJ employs version 0.12 of the wiiuse C library, which is maintained at

http://sourceforge.net/projects/wiiuse/. There's no need to download wiiuse since

wiiuseJ already contains copies of its libraries compiled for different versions of

Windows and Linux. The original developer of wiiuse, Michael Laforest, stopped

working on it at version 0.12 in 2008, but several people created forks and have

carried on its development, including Ryan Pavlik at

https://github.com/rpavlik/wiiuse. The current version contains support for the Mac,

and extensions such as the Motion Plus and the Wii Balance Board. Unfortunately,

wiiuseJ hasn't 'followed' the fork and made these features accessible from Java.

The wiiuseJ website includes API documentation and a small example. However, the

best overview of the library is a hard-to-find web page explaining the internals of the

wiiuse C library. Although it describes the data structures and events employed by

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 10 © Andrew Davison 2014

wiiuse, almost all of it is useful for understanding wiiuseJ. The page is available

through the Wayback Machine at http://web.archive.org/web/*/http://wiiuse.net/, but

I've also saved a PDF copy at http://fivedots.coe.psu.ac.th/~ad/jg/nui15a/.

The main difference between wiiuseJ and wiiuse (aside from the obvious one of

language) is that wiiuse uses non-blocking polling to check a wiimote for data. while

wiiuseJ is built around a WiimoteListener interface. The programmer implements the

listener, coding methods for the events that he wants to process. I'll explain the details

in the examples in the rest of this chapter.

WiiuseJ comes as a JAR file (wiiusej.jar), which implements the API and contains

three test programs. One of them is a GUI application, similar to the wiinRemote tool,

and is shown in Figure 15.

Figure 15. The WiiuseJ GUI Test Program.

If a Nunchuk is connected to the wiimote, then a Nunchuk tab appears in the GUI,

which when selected displays its joystick, accelerometer, and button details (see

Figure 16).

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 11 © Andrew Davison 2014

Figure 16. Testing the Nunchuk with WiiuseJ.

The readme file included with my code examples explains how to start this GUI

application.

The source code can be downloaded from the WiiuseJ website, as part of the source

for the wiiuseJ JAR. It contains several JPanel subclasses for displaying the IR,

orientation, and acceleration information (in "WiiuseJ 0.12b

src\Java\src\wiiusej\utils\"), which can be useful if you want to graphically display

wiimote data in your code.

The JAR also includes a non-GUI test program that writes to standard output, and an

application for testing the Classic Controller expansion device.

3. Overview of my Examples

In the rest of this chapter, I'll go through examples that show how to use different

features of the wiimote (and the Nunchuk). I'll start by briefly listing each one:

 WiiSimple.java: a basic example of how to use the WiimoteListener interface.

Most of the other examples are based on this one.

 Buttons.java: demonstrates wiimote button usage, and how to activate the

rumbler and LEDs.

 Motion.java: shows how to access motion information (the wiimote's current

orientation and acceleration along the x-, y-, and z- axes). It also implements flick

detection.

 Nunchuk.java: captures Nunchuk information (i.e. its button states, joystick, and

motion).

 IRTracker.java: demonstrates the wiimote's IR tracking. You'll need a sensor bar

for this and the next example.

 WiiPosition.java: shows how to calibrate the wiimote's viewing range for the

sensor bar. The code is embedded in a Swing application to illustrate how the

wiimote can be used as an input device for a GUI program.

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 12 © Andrew Davison 2014

4. The Wiimote Simply

All my examples subclass wiiuseJ's WiimoteListener interface. The following

WiiSimple class illustrates the coding approach:

public class WiiSimple implements WiimoteListener

{

 static { // attempt to load the wiiuse library (wiiuse.dll)

 try {

 System.loadLibrary("wiiuse");

 }

 catch (UnsatisfiedLinkError e) {

 System.err.println("wiiuse library failed to load\n" + e);

 System.exit(1);

 }

 }

 private Wiimote wiimote;

 private boolean showStatus = true;

 // flag for showing status info only once

 private int eventCount = 0;

 // for labeling event print-outs

 public WiiSimple()

 {

 // look for a Bluetooth connected wiimote

 Wiimote[] wiimotes = WiiUseApiManager.getWiimotes(1, false);

 // "false" means do not trigger a rumble on connection

 if ((wiimotes == null) || (wiimotes.length == 0)){

 System.out.println("No wiimote found");

 return;

 }

 else

 System.out.println("No. of wiimotes found: " +

 wiimotes.length);

 wiimote = wiimotes[0];

 wiimote.setTimeout((short)20, (short)20);

 // default of 10 causes packet timeouts

 // wiimote.activateMotionSensing();

 // uncomment this for motion sensing

 // wiimote.activateMotionSensing();

 // uncomment this for IR tracking

 wiimote.addWiiMoteEventListeners(this);

 wiimote.getStatus(); // trigger a status event

 } // end of WiiSimple()

 public void onStatusEvent(StatusEvent e)

 { if (showStatus) { // show status event once

 System.out.println("\n" + e);

 showStatus = false;

 }

 } // end of onStatusEvent

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 13 © Andrew Davison 2014

 public void onButtonsEvent(WiimoteButtonsEvent e)

 { // processes button events, such as...

 System.out.println("Button event (" + (eventCount++) +

 "): " + e);

 // exit using an "A" button press

 if (e.isButtonAPressed()) {

 WiiUseApiManager.shutdown();

 System.out.println("\nWiimote (" + e.getWiimoteId() +

 ") shutdown");

 System.exit(1);

 }

 } // end of onButtonsEvent()

 public void onDisconnectionEvent(DisconnectionEvent e)

 { System.out.println("\nDisconnection): " + e);

 /* should be activated when wiimote is disconnected,

 but isn't */

 }

 public void onMotionSensingEvent(MotionSensingEvent e)

 { /* process motion events (if motion sensing is activated */ }

 public void onIrEvent(IREvent e)

 { /* process IR events (if IR tracking sensing is activated */ }

 public void onExpansionEvent(ExpansionEvent e)

 { /* called if expansion plugin is being used */ }

 // insertion/removal events for three expansion devices

 public void onClassicControllerInsertedEvent(

 ClassicControllerInsertedEvent e) {}

 public void onClassicControllerRemovedEvent(

 ClassicControllerRemovedEvent e) {}

 public void onGuitarHeroInsertedEvent(GuitarHeroInsertedEvent e) {}

 public void onGuitarHeroRemovedEvent(GuitarHeroRemovedEvent e) {}

 public void onNunchukInsertedEvent(NunchukInsertedEvent e) {}

 public void onNunchukRemovedEvent(NunchukRemovedEvent e) {}

 // ----------------

 public static void main(String[] args)

 { new WiiSimple(); }

} // end of WiiSimple class

The class starts with a static block that attempts to load the wiiuse library (wiiuse.dll

on Windows) utilized by the wiiuseJ JAR.

The WiiSimple constructor begins by looking for a Bluetooth connected wiimote.

WiiuseJ can handle multiple wiimotes at once, but I've not had the opportunity to test

that feature.

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 14 © Andrew Davison 2014

The wiimote automatically delivers button events, but if motion sensing or IR

tracking is required then their event handling must be explicitly activated. The code

for doing that is commented out in WiiSimple().

WiiSimple implements the WiimoteListener interface, which contains 12 abstract

event-handling methods:

public abstract void onStatusEvent(StatusEvent e);

public abstract void onDisconnectionEvent(DisconnectionEvent e);

public abstract void onButtonsEvent(WiimoteButtonsEvent e);

public abstract void onMotionSensingEvent(MotionSensingEvent e);

public abstract void onIrEvent(IREvent e);

public abstract void onExpansionEvent(ExpansionEvent e);

public abstract void onNunchukInsertedEvent(NunchukInsertedEvent e);

public abstract void onNunchukRemovedEvent(NunchukRemovedEvent e);

public abstract void onGuitarHeroInsertedEvent(

 GuitarHeroInsertedEvent e);

public abstract void onGuitarHeroRemovedEvent(

 GuitarHeroRemovedEvent e);

public abstract void onClassicControllerInsertedEvent(

 ClassicControllerInsertedEvent e);

public abstract void onClassicControllerRemovedEvent(

 ClassicControllerRemovedEvent e);

WiiSimple uses onStatusEvent(), onButtonsEvent(), and onDisconnectionEvent(), but

the other methods have empty bodies because WiiSimple isn't listening for motion or

IR events, and isn't utilizing the wiimote's expansion plugin. Later examples will

show how those features are employed.

A status event is triggered by calling Wiimote.getStatus() at the end of the

constructor. This prints information like the following:

/*********** STATUS EVENT : WIIMOTE ID :1 ********/

--- connected : true

--- Battery level : 0.58

--- Leds : 1

--- Speaker enabled : false

--- Attachment ? : 0

--- Rumble ? : false

--- Continuous ? : false

--- IR active ? : false

--- Motion sensing active ? : false

It shows that the wiimote has been correctly initialized (e.g. IR and motion sensing

are inactive). The setting of the showStatus boolean to false disables further printing

by onStatusEvent().

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 15 © Andrew Davison 2014

4.1. Polling Timeouts

Although wiiuseJ implements a listener interface, the underlying wiiuse C library

utilizes non-blocking polling – a wiiuse programmer is expected to write a loop which

periodically calls a wiiuse_poll() function to read a new event sent by the connected

wiimotes. The code might look something like:

/* C code: not Java */

while(1) {

 if wiiuse_poll(wiimotes, 1)) {

 /* poll the wiimote (assuming there's only 1) */

 switch(wiimotes[0]->event) {

 /* process the event */

 }

 }

}

The default polling frequency is every 10 ms for wiiuseJ, which seems to be too fast

since many 'packet timeouts' error messages are reported. This problem is greatly

reduced by increasing the timeout period to 20 ms by calling Wiimote.setTimeout() in

WiiSimple().

You may be wondering why Wiimote.setTimeout() has two 20 ms arguments? The

first is the timeout for wiimote polling (shown above), and the second is for polling

expansion units connected to the wiimote.

4.2. Reporting a Button Event

The onButtonsEvent() method is called whenever the state of a button changes, which

occurs when one is pressed, released, or held down. For example, when I press the

wiimote's "1" button, the contents of the WiimoteButtonsEvent object are printed:

Button (0): /******** Buttons for Wiimote generic Event ********/

/******** Buttons ********/

--- Buttons just pressed : 2

--- Buttons just released : 0

--- Buttons held : 0

Nothing more is output until the buttons state changes again, which occurs when I

release the "1" button, and there's a new call to onButtonsEvent():

Button (1): /******** Buttons for Wiimote generic Event ********/

/******** Buttons ********/

--- Buttons just pressed : 0

--- Buttons just released : 2

--- Buttons held : 0

The number 2 in the two reports is the

WiimoteButtonsEvent.WIIMOTE_BUTTON_ONE constant, representing the "1"

button. Unfortunately wiiuseJ's API documentation doesn't explicitly state the values

for these button constants, for which you'll need to examine the WiimoteButtonsEvent

source code. Table 1 lists their hexadecimal values.

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 16 © Andrew Davison 2014

WiimoteButtonEvent Name Value

WIIMOTE_BUTTON_TWO 0x0001

WIIMOTE_BUTTON_ONE 0x0002

WIIMOTE_BUTTON_B 0x0004

WIIMOTE_BUTTON_A 0x0008

WIIMOTE_BUTTON_MINUS 0x0010

WIIMOTE_BUTTON_ZACCEL_BIT6 0x0020

WIIMOTE_BUTTON_ZACCEL_BIT7 0x0040

WIIMOTE_BUTTON_HOME 0x0080

WIIMOTE_BUTTON_LEFT 0x0100

WIIMOTE_BUTTON_RIGHT 0x0200

WIIMOTE_BUTTON_DOWN 0x0400

WIIMOTE_BUTTON_UP 0x0800

WIIMOTE_BUTTON_PLUS 0x1000

WIIMOTE_BUTTON_ZACCEL_BIT4 0x2000

WIIMOTE_BUTTON_ZACCEL_BIT5 0x4000

WIIMOTE_BUTTON_UNKNOWN 0x8000

WIIMOTE_BUTTON_ALL 0x1F9F

Table 1. Button Constants and their Values.

Figure 17 shows a wiimote with its buttons labeled.

Figure 17. Wiimote Button Names.

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 17 © Andrew Davison 2014

A comparison of Figure 17 with Table 1 raises the question of what the four ZACCEL

constant are for? I've no idea, and can't find anywhere that these values are used in

wiiuseJ.

The hexadecimal values were chosen so they could be combined, which occurs if

more than one button is used at once. For example, if I press the "1" and "2" buttons

together , then onButtonsEvent() reports:

Button (3): /******** Buttons for Wiimote generic Event ********/

/******** Buttons ********/

--- Buttons just pressed : 3

--- Buttons just released : 0

--- Buttons held : 0

The 3 combines the button constant values for the "1" and "2" buttons.

The onButtonsEvent() method in WiiSimple.java also calls

WiimoteButtonsEvent.isButtonAPressed() which returns true if the wiimote's "A"

button is pressed. This test is used to close the wiimote link, which should trigger a

call to the onDisconnectionEvent() method, but is never called in my tests. According

to the wiiuse documentation, a disconnection event can occur in three ways: when the

Bluetooth link is lost, when the wiimote's power button is held down for a short time

to switch off the device, or when the battery fails (or is removed from the device).

None of these cause onDisconnectionEvent() to be called in wiiuseJ.

5. More Complex Button State Processing

The Buttons.java example illustrates how different button states can be examined, and

how the rumbler and LEDs can be activated.

The program is similar to WiiSimple, so I'll only discuss the differences which occur

in onButtonsEvent(). The method uses the "A" button to exit the application as before,

but examines the buttons states in more detail:

public void onButtonsEvent(WiimoteButtonsEvent e)

// in Buttons.java

{

 if (haveButtonsChanged(e)) {

 buttonAction(e);

 lightsAction(e);

 rumbleAction(e);

 }

 // say goodbye using "A"

 if (e.isButtonAPressed()) {

 WiiUseApiManager.shutdown();

 System.out.println("Wiimote shutdown");

 System.exit(1);

 }

} // end of onButtonsEvent()

haveButtonsChanged() checks that there really has been a button change:

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 18 © Andrew Davison 2014

private boolean haveButtonsChanged(ButtonsEvent e)

{

 return ((e.getButtonsJustPressed() != 0) ||

 (e.getButtonsJustReleased() != 0) ||

 (e.getButtonsHeld() != 0));

}

The wiiuse library supports four different states for each button: "just pressed", "just

released", "held" and "currently pressed". This last state can be viewed as a

combination of the "just pressed" and "held" states. This separation appears as four

state-testing methods in ButtonsEvent: isButtonJustPressed(), isButtonJustReleased(),

isButtonHeld(), and isButtonPressed(). I don't need to call e.isButtonPressed()

because e.getButtonsJustPressed() and e.getButtonsHeld() already deal with the two

possible cases.

Why is a call to haveButtonsChanged() needed at all? Surely onButtonsEvent() is

only called when there's a button event, which means that some buttons have

changed? This is true when the wiimote is used without expansion devices, but

something strange happens when a Nunchuk is plugged in. Even if the wiimote and

Nunchuk are left completely alone, a stream of button events is generated. If one of

these events is printed it looks like:

Button (0): /******** Buttons for Wiimote generic Event ********/

/******** Buttons ********/

--- Buttons just pressed : 0

--- Buttons just released : 0

--- Buttons held : 0

Why this occurs is a mystery, but haveButtonsChanged() performs the useful service

of filtering out these 'empty' button events.

If haveButtonsChanged () succeeds then buttonAction() tests the button event in

detail.

private void buttonAction(WiimoteButtonsEvent e)

{

 if (e.isButtonOneJustPressed())

 System.out.println("One pressed");

 if (e.isButtonOneHeld())

 System.out.println("+ One held");

 if (e.isButtonOneJustReleased())

 System.out.println(" One released");

 if (e.isButtonTwoJustPressed())

 System.out.println("Two pressed");

 if (e.isButtonTwoHeld())

 System.out.println("+ Two held");

 if (e.isButtonTwoJustReleased())

 System.out.println(" Two released");

 /* more of the same, for the other 9 wiimote buttons

 shown in Figure 17 */

 // :

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 19 © Andrew Davison 2014

} // end of buttonAction()

Note the WiimoteButtonsEvent type of the buttonAction() argument, which is a

subclass of the ButtonsEvent type employed by haveButtonsChanged(). There are

four button subtypes in wiiuseJ: for the wiimote, Nunchuk, Classic Controller, and

Guitar Hero. I'll use Nunchuk button events in the Nunchuk example later.

Inside buttonAction(), the incoming event is tested to see what button it represents

(there are 11 different ones on the wiimote, as can be counted in Figure 17). For each

button, there are three if-tests for three of the four possible states of a button ("just

pressed", "held", "just released"). I don't bother calling

WiimoteButtonsEvent.isButtonOnePressed() because "currently pressed" is already

covered by the "just pressed" and "held" states which are tested.

The output generated by buttonAction() when I press and release the "1" button

followed by the "2" is:

One pressed

 One released

Two pressed

 Two released

One problem is the calculation of the "held" state for a button. If I press, hold, and

release a single button (such as "1"), the "held" state is never detected, only "just

pressed" and "just released":

One pressed

 One released

A "held" state is only identified when a different wiimote event occurs at the same

time. For instance, if I press and hold "1", and then press a different button (e.g."2"),

then its "just pressed" event will allow an "held" event for "1" to be reported:

One pressed

+ One held

Two pressed

"+ One held" is only printed when I press another button, or some other event occurs

in the wiimote.

There is a "continuous" flag which can be set for the wiimote, by calling:

wiimote.activateContinuous();

This should cause events to be generated in each polling cycle even when the

wiimote's state hasn't changed. This method does not seem to work, although the

wiimote status report says that "continuous" is set to true.

As a consequence, I wouldn't suggest the use of "held" button states in wiiuseJ

programming, unless there's going to be a steady stream of events from the wiimote.

Such a stream is generated when motion sensing and/or IR tracking is switched on,

but not when only button states are being monitored.

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 20 © Andrew Davison 2014

Activating the Lights and Rumbler

The lightsAction() and rumbleAction() methods in Buttons.java switch on/off the

LEDs and rumbler depending on which buttons have just been pressed.

lightsAction() uses the wiimote's arrow keys to decide which LEDs to light up:

private void lightsAction(WiimoteButtonsEvent e)

// use the arrow keys to affect the LEDs

{

 if (e.isButtonLeftJustPressed())

 wiimote.setLeds(true, false, false, false);

 if (e.isButtonRightJustPressed())

 wiimote.setLeds(false, false, false, true);

 if (e.isButtonUpJustPressed())

 wiimote.setLeds(false, true, false, false);

 if (e.isButtonDownJustPressed())

 wiimote.setLeds(false, false, true, false);

} // end of lightsAction()

Wiimote.setLeds() allows multiple LEDs to be on (i.e. set to true) at once.

rumbleAction() employs the "+" and "-" buttons to activate and deactivate the

rumbler.

private void rumbleAction(WiimoteButtonsEvent e)

// use the +/- buttons to switch rumbler on/off

{

 if (e.isButtonPlusJustPressed()) {

 System.out.println("Rumble activated");

 wiimote.activateRumble();

 }

 if (e.isButtonMinusJustPressed()) {

 System.out.println("Rumble deactivated");

 wiimote.deactivateRumble();

 }

} // end of rumbleAction()

For some reason, Wiimote.deactivateRumble() becomes 'buggy' if an arrow key is

pressed while the rumbler is on. Subsequently, the "-" button's deactivateRumble()

call has no effect until another arrow key is pressed.

6. Motion Sensing

Motion sensing must be enabled explicitly, which is done in the constructor of the

Motion.java example:

wiimote.activateMotionSensing();

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 21 © Andrew Davison 2014

This starts sending a stream of MotionSensingEvent objects to

onMotionSensingEvent(). Each event has three main parts: the wiimote's current

orientation, g-force accelerations, and integer accelerations.

The wiimote's accelerometer is very sensitive, so wiiuseJ offers several methods for

adjusting its settings. For example, an orientation change of just 0.5 degrees will

trigger a motion event, but this can be changed by calling

Wiimote.setOrientationThreshold(). There's a similar method for adjusting the

acceleration reporting threshold, called Wiimote.setAccelerationThreshold(). Also,

the acceleration values can be smoothed with Wiimote.setAlphaSmoothingValue(). It

employs an exponential moving average with a default value of 0.07, which can range

between 0 and 1.

I included the following in the constructor for the Motion class:

wiimote.setOrientationThreshold(3.0f); // was 0.5 degrees

wiimote.setAccelerationThreshold(10);

 // range is 0-255; default threshold is 5

wiimote.activateSmoothing();

wiimote.setAlphaSmoothingValue(0.2f);

 // Accelerometer smoothing [0-1]; was 0.07

onMotionSensingEvent() reports a deluge of data, of three types: orientations about

three axes, g-forces around those axes, and the raw, unsmoothed integer

accelerometer data. In practice, if you want to study how a particular value changes

then it's a good idea to comment out all the other prints in the following code.

public void onMotionSensingEvent(MotionSensingEvent e)

{

 if (showMotionSettings) { // report only at start-up

 reportMotionSettings(e);

 showMotionSettings = false;

 }

 Orientation ori = e.getOrientation();

 System.out.printf("%d. Pitch(x): %.1f Roll(y): %.1f

 Yaw(z): %.1f\n",

 eventCount++, ori.getPitch(), ori.getRoll(), ori.getYaw());

 GForce gforce = e.getGforce();

 System.out.printf(" %d. Gravity x: %.2f y: %.2f z: %.2f\n",

 eventCount++, gforce.getX(), gforce.getY(), gforce.getZ());

 reportFlicks(gforce);

 RawAcceleration ra = e.getRawAcceleration();

 System.out.println(" " + ra);

} // end of onMotionSensingEvent()

When the application first starts, reportMotionSettings() reports the orientation and

acceleration thresholds:

private void reportMotionSettings(MotionSensingEvent e)

{

 System.out.println("===== Motion Sensing Settings ======");

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 22 © Andrew Davison 2014

 System.out.println("Orientation threshold: " +

 e.getOrientationThreshold());

 System.out.println("Acceleration threshold: " +

 e.getAccelerationThreshold());

 if (e.isSmoothingActive())

 System.out.println("Alpha smoothing: " +

 e.getAlphaSmoothing());

 else

 System.out.println("Smoothing not active");

 System.out.println();

} // end of reportMotionSettings()

The wiimote orientation information is specified around its x-, y-, and z- axes, as

illustrated in Figure 18.

Figure 18. The Orientation Axes of the Wiimote.

The y-axis runs forwards-backwards, with forwards typically pointing towards the PC

screen. The rotation (the roll) around the axis can vary between -180 and 180 degrees

with the wiimote starting at 0 degrees when lying flat in the user's hand. A roll to the

right is positive, a roll to the left is negative.

The z-axis runs upwards-downwards, with its rotation (the yaw) values varying from

about -26 to 26 degrees as the user turns the wiimote to the left and right. Yaw is not

calculated by the accelerometer, but derived from IR tracking data. This means that if

you don't have IR tracking activated, and don't have a sensor bar to point the wiimote

at, then the yaw will always be 0. I'll discuss IR tracking in a later section, but

activating it requires a one line addition to the Motion() constructor:

wiimote.activateIRTRacking();

The x-axis runs left-to-right, usually parallel to the monitor, and its rotation (the pitch)

values can vary between -180 and 180 degrees. If the wiimote is rotated upwards then

the angle becomes negative, while aiming the wiimote downwards creates a positive

pitch.

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 23 © Andrew Davison 2014

The wiimote reports acceleration as gravity forces (g-forces), along each axis, as in

Figure 19.

Figure 19. The G-Force Axes of the Wiimote.

The forces can range between -3 and +3. Along the y-axis, a positive g-force is

generated when you lunge towards the screen. A positive x-axis g-force occurs when

you quickly wave your wiimote to the right. The z-axis g-force is a little different in

that even when the wiimote is at rest, it contributes a downwards g-force of 1g, due to

gravity. If you quickly lower the wiimote, this value will increase.

There's no need to activate IR tracking in order to generate any of these g-force

readings.

It's also possible to read the accelerometer data in an integer form. as in Figure 20.

Figure 20. Raw Acceleration Axes of the Wiimote.

The accelerations are returned as integers ranging between 0 and 255. Rather

confusingly, 0 does not mean "no acceleration", but a maximum acceleration

backwards (along the y-axis), to the left (for the x-axis), and upwards (for the z-axis).

No acceleration is represented by the mid-range value, 128. When the wiimote is at

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 24 © Andrew Davison 2014

rest, there is a downwards acceleration due to gravity, which my wiimote reports as

about 154. This is somewhat surprising since I was expecting that accelerations were

linearly mapped to g-forces, which suggests that the value should be around 170.

We've already seen this integer way of specifying acceleration back in the Motion()

constructor, when I set the acceleration threshold:

wiimote.setAccelerationThreshold(10);

 // range is 0-255; default threshold is 5

This thresholding applies both to the integer accelerations and g-forces.

The Basics of Flick Gestures

The g-force information (or integer accelerations) can be easily transformed into

gesture information, based on the directions shown in Figure 19. reportFlicks()

examines the g-forces along the three axes, and if they exceed hardwired positive or

negative thresholds then a direction string is printed.

private void reportFlicks(GForce gf)

{

 float xForce = gf.getX();

 if (xForce > 1.5f)

 System.out.println("Right");

 else if (xForce < -1.5f)

 System.out.println("Left");

 float yForce = gf.getY();

 if (yForce > 1.5f)

 System.out.println(" Forward");

 else if (yForce < -1.5f)

 System.out.println(" Back");

 float zForce = gf.getZ();

 if (zForce > 1.8f)

 System.out.println(" Down");

 else if (zForce < -1.0f)

 System.out.println(" Up");

} // end of reportFlicks()

Note that the thresholds for the z-axis g-force are a little different from those for the

x- and y- axes, since the z-axis always has a constant 1g downward force due to

gravity.

Typical output is:

Right

Right

Right

Right

Right

 Forward

Left

Left

Left

Left

Left

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 25 © Andrew Davison 2014

Left

 Forward

 Forward

 Forward

 Forward

 Forward

The series of "Left" and "Right" reports occur when the user swings the wiimote to

the left and right. The "Forward" messages indicate that the user has jumped towards

the screen.

7. The Nunchuk

The Nunchuk (see Figure 3) adds several features to the basic wiimote, including: two

buttons (called "C" and "Z"), a joystick, and its own motion sensing information (i.e.

its own orientation and accelerometer values along three axes).

From a programming viewpoint, three listener methods come into play for the first

time:

 onNunchukInsertedEvent(), called when the Nunchuk is plugged into the

wiimote's expansion slot;

 onNunchukRemovedEvent(), triggered when the Nunchuk is removed from the

slot;

 onExpansionEvent(), activated whenever an event is sent from an expansion

device.

One confusing aspect of Nunchuk programming is that its button and motion sensing

data do not arrive via the WiimoteListener's onButtonsEvent() and

onMotionSensingEvent() methods but through onExpansionEvent(). Also, it's

unnecessary to activate Nunchuk motion sensing by calling:

wiimote.activateMotionSensing(); // not needed

Nunchuk motion detection is on by default.

The Nunchuk also has its own orientation and acceleration threshold settings:

wiimote.setNunchukOrientationThreshold(3.0f); // was 0.5 degrees

wiimote.setNunchukAccelerationThreshold(10); // default is 5

The complicated part of Nunchuk.java is the coding of onExpansionEvent(). Since

every expansion device delivers events to this listener method, it's necessary to do

some checking of the event to decide how to process it:

public void onExpansionEvent(ExpansionEvent e)

// cast expansion event to a Nunchuk event, then process it

{

 if (e instanceof NunchukEvent)

 processNunchuk((NunchukEvent) e);

 else

 System.out.println("Unknown Expansion Event: " + e);

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 26 © Andrew Davison 2014

} // end of onExpansionEvent()

The available subclasses of ExpansionEvent are NunchukEvent,

ClassicControllerEvent, and GuitarHeroEvent.

processNunchuk() examines the NunchukEvent object passed to it, processing the

joystick, button, and motion information separately.

private void processNunchuk(NunchukEvent ne)

{

 if (ne.isThereNunchukJoystickEvent()) { // joystick

 JoystickEvent je = ne.getNunchukJoystickEvent();

 float magnitude = je.getMagnitude();

 if (magnitude > 0.1)

 System.out.printf("Joystick angle %.1f; magnitude: %.2f\n",

 je.getAngle(), magnitude);

 }

 NunchukButtonsEvent nbe = ne.getButtonsEvent(); // button

 if (haveButtonsChanged(nbe))

 nunchukButtons(nbe);

 if (ne.isThereMotionSensingEvent()) { // motion

 MotionSensingEvent nme = ne.getNunchukMotionSensingEvent();

 Orientation ori = nme.getOrientation();

 // System.out.printf("%d. Pitch(x): %.1f Roll(y): %.1f

 Yaw(z): %.1f\n",

 // eventCount++, ori.getPitch(), ori.getRoll(), ori.getYaw());

 // yaw is always 0 for the nunchuk

 GForce gforce = nme.getGforce();

 // System.out.printf("%d. Gravity x: %.2f y: %.2f z: %.2f\n",

 // eventCount++, gforce.getX(), gforce.getY(), gforce.getZ());

 RawAcceleration ra = nme.getRawAcceleration();

 // System.out.println(" " + ra);

 }

} // end of processNunchuk()

The joystick returns angle and magnitude data depending on its position, as shown in

Figure 21.

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 27 © Andrew Davison 2014

Figure 21. The Nunchuk Joystick.

The angle can range between 0 and 360 degrees, but may also be undefined if the

joystick isn't currently being touched. This explains the if-test of the magnitude in

processNunchuk() before printing out the data; if the magnitude is close to 0 (0.01 in

the code above) then it probably means that the joystick is not being pressed. Also

note that all the joystick code is surrounded by a

NunchukEvent.isThereNunchukJoystickEvent() call since the Nunchuk event may not

contain joystick information at all.

The Nunchuk's "C" and "Z" buttons (which are on its front) are dealt with by

nunchukButtons():

private void nunchukButtons(NunchukButtonsEvent e)

{

 if (e.isButtonCJustPressed())

 System.out.println("C pressed");

 if (e.isButtonCHeld())

 System.out.println("+ C held");

 if (e.isButtonCJustReleased())

 System.out.println(" C released");

 if (e.isButtonZJustPressed())

 System.out.println("Z pressed");

 if (e.isButtonZeHeld()) // note spelling mistake

 System.out.println("+ Z held");

 if (e.isButtonZJustReleased())

 System.out.println(" Z released");

} // end of nunchukButtons()

The coding style is the same as the button processing in my earlier Buttons.java

example. One difference is that "held" events are correctly generated by the Nunchuk.

For example, if I press, hold and release the "C" button, then the following is

reported:

C pressed

+ C held

 C released

This improved behavior is probably because the Nunchuk is also generating a nearly

continual stream of motion events, allowing "held" states to be correctly calculated.

The motion sensing offered by the Nunchuk is very similar (but not exactly the same)

as the wiimote's. processNunchuk() can print the orientation information around the 3

axes, the g-forces, and the integer acceleration. The prints are commented out inside

my method simply to reduce the volume of data that's dumped to the screen.

The format of the Nunchuk's orientation data is just like the wiimote's shown in

Figure 18 – but replace the wiimote by a Nunchuk pointing at the screen. One

difference is that the Nunchuk always reports a yaw of 0 degrees, and switching on IR

tracking makes no difference.

The Nunchuk's g-forces are reported as in Figure 22 (which is similar to the wiimote's

g-forces diagram in Figure 19).

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 28 © Andrew Davison 2014

Figure 22. The G-Force Axes of the Nunchuk.

The range goes between -1 and 1 rather than -3 to 3, and the at-rest downward z-axis

g-force appears to be about 1/3 of 1g.

The integer accelerations for the Nunchuk are almost identical to the wiimote's

accelerations shown in Figure 20. However, the at-rest z-axis acceleration for the

Nunchuk is about 170 units, which corresponds to 1g in g-forces.

For those interested in technical details about the Nunchuk, a good overview can be

found in the "Nunchuk" section of the wiimote Wikipedia page

(http://en.wikipedia.org/wiki/Wii_Remote#Nunchuk), and there's more technical

information at WiiBrew

(http://wiibrew.org/wiki/Wiimote/Extension_Controllers/Nunchuk).

8. IR Tracking

Wiimote IR tracking requires a sensor bar, such as the one in Figure 4. The 'sensor'

part of the name is a bit misleading since the device is really just a source of infrared

(IR) light. The imposing USB cable that links the Nintendo Sensor Bar to your PC is

only a power source, and you can achieve much the same functionality with a couple

of IR LEDs and a battery, or even two candles! Several instruction guides are

available online, including at Instrutables.com

(http://www.instructables.com/id/Cheapest-and-easiest-wii-sensor-bar/) and WikiHow

(http://www.wikihow.com/Make-a-Sensor-Bar).

In retrospect, I wished I'd taken the maker approach, but I bought a sensor bar 'clone'

on eBay instead. When I finally got a chance to examine it through a camera, I

discovered that it only had 3 LEDs at each end (see Figure 23), and was missing the

slightly outward facing and inward facing lights of the Nintendo device. The LEDs

also seem a bit dim.

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 29 © Andrew Davison 2014

Figure 23. My non-Nintendo Sensor Bar.

The means that my wiimote has some trouble detecting the IR lights in the sensor bar.

But this poor functionality can be seen as an opportunity, since reliable IR tracking

often requires a calibration phase, even when using a Nintendo Sensor Bar.

By calibration, I mean determining the effective viewing range of the wiimote's IR

sensor. For instance, how far can a user stand away from the sensor bar, how close to

it, how far to the left and right?

According to the hardware specs at WiiBrew (http://wiibrew.org/wiki/Wiimote), the

IR camera has an effective field of view of about 33 degrees horizontally and 23

degrees vertically. This is quite a narrow range when the wiimote is being used by

someone sat in front of a large monitor with the sensor bar taped on top. Other

interesting physical constraints are that the camera can only track up to four IR

sources, and enlarges 128x96 resolution images to 1024x768 before generating point

coordinates.

I'll be describing two example programs for IR tracking. The first, IRTracker.java,

shows the standard coding approach. The second, WiiPosition.java, implements some

calibration techniques on top of lower-level IR tracking.

8.1. Tracking with No Extra Frills

IRTracker.java reports the IR settings at start-up time, and then repeatedly prints the

wiimote's calculated IR tracking (x, y, z) position. It also display wiiuseJ's 'absolute'

(x, y) coordinate, and the actual data points detected by the wiimote's IR camera.

Typical output is:

 :

Track: (299, 27, 639); Abs: (291, 203)

 Corr: (483,194); Raw: (525,192); Size: 3

 Corr: (99,213); Raw: (147,125); Size: 4

Track: (299, 27, 639); Abs: (289, 201)

 Corr: (481,192); Raw: (523,189); Size: 3

 Corr: (97,210); Raw: (144,124); Size: 4

Track: (299, 27, 640); Abs: (287, 198)

 Corr: (479,191); Raw: (520,188); Size: 3

 Corr: (96,206); Raw: (142,123); Size: 4

Track: (299, 27, 639); Abs: (284, 198)

 Corr: (476,191); Raw: (516,187); Size: 4

 Corr: (92,205); Raw: (137,123); Size: 4

 :

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 30 © Andrew Davison 2014

The "Track" coordinate is the calculated tracking position, Abs" stands for absolute,

and the original detected points are displayed indented beneath. There may be as

many as four detected points, but it's not unusual to only see one or two. The "Corr"

value is the "Raw" coordinate after automatic smoothing, and "Size" is an indication

of the size of the observed point. According to the documentation, the size can vary

between 1 and 4 (4 being the largest), but I've seen 5's and 6's in some test runs.

The IRTracker() constructor turns on IR tracking, and supplies various settings:

wiimote.activateIRTRacking();

wiimote.activateMotionSensing();

 // IMPORTANT: improves the accuracy

wiimote.setIrSensitivity(5);

 // maximum; ranges between 1-5; default is 3

wiimote.setSensorBarAboveScreen();

wiimote.setScreenAspectRatio169();

 // does not seem to work; aspect ratio still 4:3 in status report

wiimote.setVirtualResolution(1920, 1080); // desktop PC

// wiimote.setVirtualResolution(1366, 768); // laptop

 // do this last, after bar position and aspect ratio

It's important to activate motion sensing as well as IR tracking, since the wiimote uses

movement to improve the accuracy of the IR points it generates.

There are four adjustable IR settings – sensitivity, sensor bar position, screen aspect

ratio, and virtual screen resolution. I increased the sensitivity to the maximum since

my sensor bar produces quite dim IR sources, but there's an increased danger that the

wiimote may start detecting other heat sources behind the PC.

The wiimote can be told that the sensor bar is positioned above the screen (as I have

done), or beneath it, with a call to Wiimote.setSensorBarBelowScreen().

The sensor bar position, aspect ratio, and virtual screen settings apply to the

calculated tracking position (the (x, y, z) coordinate labeled with "Track:" in the

output shown above). The aspect ratio is 4:3 by default, or can be set to 16:9 as I have

done. However, this doesn't seem to have any effect since the printed IR settings

(which I'll show you in a minute) report the ratio as 4:3.

8.2. Reporting IR Events

With IR tracking activated, each IR event will trigger a call to onIrEvent (). That

method's job is to print the information shown in the output on the previous page.

public void onIrEvent(IREvent e)

{

 if (showIRSettings) {

 reportIRSettings(e); // show only at start-up

 showIRSettings = false;

 }

 if ((e.getX() != 0) || (e.getY() != 0)) {

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 31 © Andrew Davison 2014

 // don't print (0, 0, ??) to reduce the output

 System.out.printf("Track: (%d, %d, %.0f); \t",

 e.getX(), e.getY(), e.getZ());

 System.out.print("Abs: (" + e.getAx() + ", " + e.getAy() +")");

 System.out.println();

 IRSource[] irPts = e.getIRPoints();

 reportPts(irPts);

 }

} // end of onIrEvent()

reportIRSettings() reports information about the IR settings:

private void reportIRSettings(IREvent e)

{

 System.out.println("============ IR Settings ================");

 if (e.isScreenAspectRatio169())

 System.out.println("Screen aspect ratio: 16/9");

 else if (e.isScreenAspectRatio43())

 System.out.println("Screen aspect ratio: 4/3");

 System.out.println("Virtual screen res: " + e.getXVRes() +

 "x" + e.getYVRes());

 // is sensor bar above/below the TV/monitor?

 if (e.isSensorBarAbove())

 System.out.println("Sensor bar position: above");

 else if (e.isSensorBarBelow())

 System.out.println("Sensor bar position: below");

 System.out.println("IR (X,Y) correction offsets: (" +

 e.getXOffset() + ", " + e.getYOffset() + ")");

 System.out.println("IR camera sensitivity: " +

 e.getIrSensitivity());

 System.out.println();

} // end of reportIRSettings()

The output on my test machine is:

Screen aspect ratio: 4/3

Virtual screen res: 1919x1079

Sensor bar position: above

IR (X,Y) correction offsets: (0, 110)

IR camera sensitivity: 5

The virtual screen size matches the dimensions of my monitor, but the aspect ratio has

not changed to 16:9. The correction offset is based on Wiimote.
setSensorBarAboveScreen(), although it's unclear how the actual offset numbers are

determined. For instance, I'd expect there to be an x-axis offset since most user's will

position their sensor bar mid-way along the top-edge of the monitor.

Returning to onIrEvent(), there's a few quirks that need explaining.

The output is quite substantial, so it's reduced a little by discarding tracking points at

(0, 0); this is almost always an indication that no point could be calculated.

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 32 © Andrew Davison 2014

The tracking point includes a z-axis coordinate, which appears to be based on the size

integer of the detected IR points. Its accuracy depends greatly on how many points

were detected, and represents the distance of the wiimote from the bar, measured in

millimeters.

The x- and y- tracking point values are positioned relative to the user-specified virtual

screen rectangle (1920, 1080 for my PC), with (0, 0) at the top-left. However, it's

possible for the tracking point to be negative, or bigger than the screen size.

The absolute point (the (x, y) coordinate marked with "Abs" in the output shown

earlier) is not very well documented. There's nothing equivalent to it in the wiiuse

library documentation, and so I've had to make a guess about its role. It appears to be

an average of the detected IR points, which isn't scaled to the virtual screen size. Also,

when no points are detected, the absolute coordinate retains its last value, whereas the

calculated tracking position is set to (0, 0, 0).

reportPts() reports the points detected by the wiimote's IR camera. Each point is

located relative to a fixed virtual screen size of 1024 x 768, with (0,0) at the top-left.

However, I've seen output where the points are negative and/or bigger than the screen

size. The camera can record details about a maximum of four IR sources, but may

also detect nothing. That means that IREvent.getIRPoints() may return a 0-element

array or null, which needs to be handled by reportPts().

private void reportPts(IRSource[] irPts)

{

 if ((irPts != null) && (irPts.length > 0)) {

 for(IRSource ir : irPts) {

 System.out.println(" Corr: (" + ir.getX() + "," + ir.getY() +

 "); Raw: (" + ir.getRx() + "," + ir.getRy() +

 "); Size: " + ir.getSize());

 }

 }

 System.out.println();

} // end of reportPts()

Each detected point is represented in two ways: as a corrected and a raw coordinate.

The corrected value is a smoothed versions of the raw data, and it's these that are used

to calculate the tracking and absolute coordinates.

Since these detected IR points are available, it's possible to implement your own

tracking calculation, which is at the heart of the next IR program.

9. Calibrating IR Tracking

The second IR tracking example, WiiPosition, has two main purposes. The first is to

demonstrate several tracking calibration techniques, including:

 calculating a IR tracking point from the detected IR sources in the program rather

than relying on the wiimote's algorithm;

 determining the viewing boundaries of the wiimote IR camera relative to the

sensor bar;

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 33 © Andrew Davison 2014

 displaying a detected width for the bar. With a little bit of math, this can be used

to determine the z-axis distance of the wiimote from the screen.

The other aim of WiiPosition is to show how a wiimote can be used as an input device

inside a Swing application. WiiPosition is a full-screen application (see Figure 24),

using a JPanel as a drawing area. Its state is updated and redrawn inside a threaded

loop, utilizing input from the wiimote.

Figure 24. WiiPosition in Action.

The detected IR sources are drawn as gray circles (there are three shown in Figure

24). My code utilizes these points to calculate a tracking position, which is drawn as a

black circle. A green line is drawn between the left and right groups of detected IR

points to represent the width of the sensor bar, which is also written above the black

circle ("713" in Figure 24). The green line is rotated to show the current roll angle of

the wiimote around the z-axis In the figure, the user has turned the wiimote about 45

degrees to the right.

There are four solid red lines drawn on the screen to indicate the viewing boundaries

beyond which the wiimote cannot see the sensor bar. In Figure 24, all four lines are in

their starting positions at the edge of the screen. However, as the user moves the

wiimote towards these boundaries, it will eventually lose sight of the sensor bar. At

that point, the black tracking dot will change color to red, and no gray detected IR

points will be drawn (because none are visible). The user can then use the wiimote

arrow keys to move the red boundary lines to reflect the true viewing range of the

wiimote.

Figure 25 shows a later stage in WiiPosition's execution after the right and bottom

boundaries lines have been moved inwards.

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 34 © Andrew Davison 2014

Figure 25. WiiPosition with Adjusted Boundary Lines.

The diagonal dotted lines make it easier to see the effective viewing area for the

wiimote. If the user moves the wiimote outside of this region then it will lose sight of

the sensor bar.

The green line has also changed between Figure 24 and 25 since the user has rotated

the wiimote to the left so it is almost level. In addition, he has moved further away

from the screen since the width of the line is reported as "443".

When the user wishes to quit, he presses the "A" button on the wiimote. The program

finishes by printing the final tracking location (the black point), the width of the green

line, and the boundary ranges:

IR current location: (661, 354)

Line width: 443

Sensor Bar Views. x-range: 0--1183, y-range: 0—772

9.1. Using the Calibration Data

The boundary ranges show that the wiimote will be unable to move the cursor in a

full-screen application to every point on the screen. For example, a user sat in my

position in front of the monitor will be unable to move the cursor further right than

pixel 1183, and no lower than 772. This can be fixed by scaling the (x, y) data

returned by the wiimote. The dimensions of my screen are 1920x1080, and so the x-

and y- axes scale factors should be set to 1920/1183 and 1080/772 respectively. This

will mean that when the wiimote points at the edges of the viewing region, the cursor

will be positioned at the edges of the screen.

The line width (443, above) can be used to calculate z-axis distances from the screen

for the wiimote. The simplest way is to require the user to employ a tape measure to

find the real-world distance of the wiimote from the screen when the line width is 443

units. I measured this length as 64 cm. There's an inverse relationship between the

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 35 © Andrew Davison 2014

distance-to-screen and the line width – as the width increases, the distance from the

screen will get smaller. This can be expressed as:

distance = k / width

where k is some constant. Since I've measured one point on this curve, I can calculate

k, and use the equation to calculate other distances when the wiimote supplies other

line widths.

Thus, k = 443*64, which means that when the line width is reported as 713 (for

example, in Figure 24), then the wiimote is (443 * 64)/713 ≈ 40 cm from the screen.

9.2. The Wiimote and Swing

The WiiPosition class diagrams in Figure 26 give a good overview of the program's

structure.

Figure 26. Class Diagrams for WiiPosition.

WiiPosition is a subclass of JFrame which creates a full-screen drawing area (a JPanel

subclass), and also hides the cursor. WiiPosPanel starts a threaded loop inside its

run() method which updates the application state, draws onto the JPanel, sleeps for a

short time, and then repeats. WiiPosPanel's run() method:

// globals

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 36 © Andrew Davison 2014

private static final int DELAY = 25; // ms (redraw interval)

private boolean isRunning = false; // used to stop the loop

private WiiReader wiimote;

public void run()

/* Implements the application loop: update / draw / sleep

 The sleep time tries to keep each cycle close to DELAY ms.

*/

{

 long duration;

 isRunning = true;

 while(isRunning && !wiimote.wantsToFinish()) {

 long startTime = System.currentTimeMillis();

 update();

 duration = System.currentTimeMillis() - startTime;

 repaint();

 if (duration < DELAY) {

 try {

 Thread.sleep(DELAY-duration);

 // wait until DELAY time has passed

 }

 catch (Exception ex) {}

 }

 }

 wiimote.closeDown();

 System.exit(0);

} // end of run()

The wiimote is accessed via a WiiReader class. An instance is created in the

WiiPosPanel constructor:

wiimote = new WiiReader(pWidth, pHeight); // start the wiimote

The two arguments are the panel's width and height (the dimensions of the screen),

which are used to initialize the view boundaries (the red lines).

WiiPosPanel utilizes the WiiReader object in four places:

 in the loop condition;

 inside the update() method, to update the application's state;

 inside paintComponent() to draw the WiiReader parts of the display;

 at the end of the loop, to close down the wiimote.

The loop condition uses a call to WiiReader.wantsToFinish() to check if the wiimote

has requested that the application terminates, which occurs when the user presses the

"A" button. Unlike earlier examples, the pressing of this button doesn't immediately

trigger an exit. Instead a flag is set so that run() can clean-up before the program exits.

The update() method in WiiPosPanel is very simple since this application doesn't

really do anything:

private void update()

/* read the wiimote's data, and do something */

{

 System.out.println(wiimote.getRoll());

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 37 © Andrew Davison 2014

} // end of update()

The general purpose of update() is to read the current state of the wiimote (e.g. its

buttons, orientation, or tracking position) and use that information to affect the rest of

the application (e.g. move a game sprite, activate a menu item).

WiiPosPanel requests a redraw by calling repaint() inside run(). Eventually, this will

trigger a call to its paintComponent() method. It renders the graphical state of the

application, and gives the WiiReader object a chance to draw any wiimote-related

elements:

public void paintComponent(Graphics g)

/* draw current state of the application,

 and let WiiReader draw any wiimote-related things */

{

 super.paintComponent(g);

 Graphics2D g2d = (Graphics2D)g;

 // use antialiasing

 g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING,

 RenderingHints.VALUE_ANTIALIAS_ON);

 wiimote.draw(g2d);

} // end of paintComponent()

The current version of paintComponent() doesn't have any application state to draw,

but still calls WiiReader.draw() to let the wiimote's graphical information be rendered.

WiiReader.draw() contains standard Java 2D code for drawing the IR points, green

width line, and red boundary edges seen in Figures 24 and 25.

9.3. Calculating the IR Tracking Location

WiiReader implements WiimoteListener, in a similar way to earlier examples. Its

primary aim is to detect IR sources so it can calculate a tracking location, but it also

collects information about the roll of the wiimote, and listens for an "A" button press

to signal that its time for the application to finish.

WiiReader maintains a variety of global data, much of which is used by its draw()

method. Figure 27 shows a close-up of the WiiPosition window showing most of

what WiiReader renders.

Figure 27. What WiiReader Draws.

Missing from Figure 27 are the four solid red boundary lines, and the two dashed red

diagonal lines between their intersecting corners.

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 38 © Andrew Davison 2014

The black dot is the calculated tracking location, the three gray dots are the detected

IR points, the green line is drawn between two selected IR points representing the two

ends of the sensor bar, and the rotation of the line corresponds to the wiimote's current

roll.

These pieces of information are stored as globals variables in WiiReader:

// globals in WiiReader

private Wiimote wiimote; // wiiuseJ link to the wiimote

private IRSource[] irPts; // detected IR points

private Point leftIR, rightIR;

 /* two IR points that are different from each other, and so

 are assumed to be the IR sources at the

 left and right ends of the sensor bar */

private int widthIR; // distance between leftIR and rightIR points

private Point currLoc; // current IR tracking point

private int xMinView, xMaxView, yMinView, yMaxView;

 // wiimote's view boundaries for the sensor bar

private int rollAngle = 0; // roll detected for wiimote

The irPts[] array holds the detected IR points last read by the wiimote. This array may

be empty or null if no points were observed.

The leftIR and rightIR points are two selected points from the array representing the

two ends of the sensor bar. Some clever coding has to be employed if irPts[] doesn't

contain two suitable points to ensure that leftIR and rightIR always have values.

widthIR is the distance between the leftIR and rightIR points, and currLoc is an

average of the two.

The four 'view' integers represent the two x- axis and two y-axis boundary lines.

rollAngle is the roll angle returned by the wiimote's motion sensor.

9.4. Initializing the Wiimote

The wiimote link is initialized in the usual way, inside an initWimote() method called

from the WiiRemote constructor:

// global

private boolean wantsToFinish = false;

private Wiimote initWiimote(int pWidth, int pHeight)

{

 System.out.println("Initializing wiimote");

 if (WiiUseApiManager.getNbConnectedWiimotes() == 0) {

 System.out.println("No wiimotes connected");

 wantsToFinish = true;

 return null;

 }

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 39 © Andrew Davison 2014

 Wiimote[] wiimotes = WiiUseApiManager.getWiimotes(1, false);

 if ((wiimotes == null) || (wiimotes.length == 0)){

 System.out.println("No wiimote found");

 wantsToFinish = true;

 return null;

 }

 Wiimote wiimote = wiimotes[0];

 wiimote.setTimeout((short)20, (short)20);

 wiimote.activateIRTRacking();

 wiimote.activateMotionSensing();

 wiimote.setIrSensitivity(5);

 wiimote.setSensorBarAboveScreen();

 /* don't both with virtual screen settings since

 only using detected IR points */

 wiimote.setOrientationThreshold(1);

 /* the amount an angle (roll, pitch, or yaw) must change

 before generating an event */

 wiimote.addWiiMoteEventListeners(this);

 wiimote.getStatus();

 return wiimote;

} // end of initWiimote()

Rather than exiting if there's a problem, initWiimote() sets the global wantsToFinish

boolean to true. This flag can be read by the Swing application calling

WiiReader.wantsToFinish():

public boolean wantsToFinish()

{ return wantsToFinish; }

initWiimote() doesn't use virtual screen settings. They're unnecessary since

WiiReader only reads the detected IR points, which use a fixed screen size of 1024 x

768, with (0,0) at the top-left.

9.5. Processing IR Points

When the wiimote's IR camera detects some points, the onIrEvent() method is called:

// globals

private IRSource[] irPts; // detected IR points

private Point currLoc; // current IR tracking point

public void onIrEvent(IREvent e)

{

 irPts = e.getIRPoints();

 Point loc = locateIR(irPts);

 if (loc != null)

 currLoc = loc;

} // end of onIrEvent()

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 40 © Andrew Davison 2014

locateIR() is a complex method since it has to choose two points from the detected IR

sources to represent the two ends of the sensor bar (leftIR and rightIR). These are

used to calculate the tracking point returned by the method.

Part of the method's complexity is dealing with the situation when the irPts[] array

doesn't contain two suitable points. If no points were supplied then leftIR and rightIR

are left unchanged, which leaves the tracking position unchanged. If only one point is

found, then the method utilizes the old leftIR or rightIR to 'guess' at a reasonable

value for the other point. Parts of this algorithm were inspired by a discussion of

sensor bar point calculation at http://wiibrew.org/wiki/Wiimote/Pointing.

The locateIR() code:

// globals

private Point leftIR, rightIR;

private int widthIR; // distance between leftIR and rightIR points

private Point locateIR(IRSource[] irPts)

{

 if ((irPts != null) && (irPts.length > 0)) {

 // there are some IR points to work with

 Point firstPt = new Point(irPts[0].getX(), irPts[0].getY());

 Point secondPt = new Point(0,0); // dummy value

 // find a second point that is not close to the first

 boolean foundPair = false;

 int i=1;

 while (i < irPts.length) {

 secondPt.setLocation(irPts[i].getX(), irPts[i].getY());

 if (!isClose(firstPt, secondPt)) {

 foundPair = true;

 break;

 }

 i++;

 }

 if (foundPair) { // got two different IR points

 if (firstPt.x > secondPt.x) {

 // swap so in left-right order

 Point temp = firstPt;

 firstPt = secondPt;

 secondPt = temp;

 }

 // store the two points in the leftIR and rightIR globals

 leftIR.setLocation(firstPt);

 rightIR.setLocation(secondPt);

 // calculate width between points

 widthIR = (int) Math.round(leftIR.distance(rightIR));

 }

 else { /* did not find a different second point, so try

 guessing based on one of the leftIR/rightIR

 points calculated earlier. Use the movement of

 the first point relative to the IR point to

 update the other point. */

 if (isClose(firstPt, leftIR)) { // guess based on leftIR

 int xOffset = firstPt.x - leftIR.x;

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 41 © Andrew Davison 2014

 int yOffset = firstPt.y - leftIR.y;

 leftIR.setLocation(firstPt);

 rightIR.translate(xOffset, yOffset);

 // apply offset to old rightPt

 widthIR = (int) Math.round(leftIR.distance(rightIR));

 }

 else if (isClose(firstPt, rightIR)) { //guess based on rightIR

 int xOffset = firstPt.x - rightIR.x;

 int yOffset = firstPt.y - rightIR.y;

 rightIR.setLocation(firstPt);

 leftIR.translate(xOffset, yOffset);

 // apply offset to old leftPt

 widthIR = (int) Math.round(leftIR.distance(rightIR));

 }

 }

 }

 return averagePoints(leftIR, rightIR);

} // end of locateIR()

leftIR and rightIR represent the two ends of the sensor bar, and so cannot be too close

together. If two detected points are near to each other then they're probably adjacent

IR LEDs on the same side of the bar. Closeness is defined using isClose():

// global

private static final double POINT_PROXIMITY = 80;

 // pixel distance between two points which is deemed 'close'

private boolean isClose(Point p0, Point p1)

{ return (p0.distance(p1) < POINT_PROXIMITY); }

This approach may fail if the wiimote is a long way from the sensor bar, causing all

the detected IR points to be less than POINT_PROXIMITY (80) pixels apart.

However, my interest is in a user sitting (or standing) close to a PC, and so this

problem is unlikely to occur.

If only one point is found, it is stored in the firstPt variable. This value is compared

with the old values for leftIR and rightIR using isClose() to decide which point is

closest. If leftIR (or rightIR) is closest, then the old rightIR (leftIR) is used for the

other point. In addition, the offset of the new point from leftIR (rightIR) is applied to

rightIR (leftIR).

As a side-effect of updating leftIR and rightIR, the width between them (widthIR) is

re-calculated.

averagePoints() calculates the tracking position as the mid-point between leftIR and

rightIR.

// globals

private int pWidth, pHeight; // panel dimensions

private Point averagePoints(Point p0, Point p1)

{

 int x = (p0.x + p1.x)/2;

 if (x < 0)

 x = 0;

 else if (x > pWidth-1)

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 42 © Andrew Davison 2014

 x = pWidth-1;

 int y = (p0.y + p1.y)/2;

 if (y < 0)

 y = 0;

 else if (y > pHeight-1)

 y = pHeight-1;

 return new Point(x, y);

} // end of averagePoints()

Extra tests are included to ensure that the mid-point cannot be positioned off the

screen.

9.6. Moving the View Boundary Lines

WiiReader monitors the wiimote buttons, so that the viewing boundary lines can be

adjusted, and the user can press "A" to finish:

// globals

private boolean wantsToFinish = false;

private Point currLoc; // current IR tracking point

private int xMinView, xMaxView, yMinView, yMaxView;

 // wiimote's view boundaries for the sensor bar

public void onButtonsEvent(WiimoteButtonsEvent e)

{

 if (e.isButtonLeftPressed())

 xMinView = currLoc.x;

 if (e.isButtonRightPressed())

 xMaxView = currLoc.x;

 if (e.isButtonUpPressed())

 yMinView = currLoc.y;

 if (e.isButtonDownPressed())

 yMaxView = currLoc.y;

 if (e.isButtonAPressed())

 // set wantsToFinish, which is read by the outer Swing app

 wantsToFinish = true;

} // end of onButtonsEvent()

The pressing of an arrow key causes a view boundary to be set to the current tracking

location's x- or y- axis value. The idea is that the user will notice when a boundary

had been reached because no IR sources will be drawn on screen (the gray dots in

Figure 27). If the user doesn't notice their absence, WiiReader.draw() also changes the

drawing color of the tracking point from black to red.

9.7. Roll with the Wiimote

WiiReader monitors the wiimote's orientation, updating the global rollAngle with the

current roll. It is used inside WiiReader.draw() to rotate the green line on screen.

Java Prog. Techniques for Games. NUI Chapter 15. Wiimote Draft #1 (25th June 2014)

 43 © Andrew Davison 2014

// global

private int rollAngle = 0; // roll detected for wiimote

public void onMotionSensingEvent(MotionSensingEvent e)

{

 Orientation ori = e.getOrientation();

 if (ori != null)

 rollAngle = (int)Math.round(ori.getRoll());

 // roll is around y-axis

} // end of onMotionSensingEvent()

rollAngle also has a 'get' method, which allows the angle to be utilized by the wider

application.

public int getRoll()

{ return rollAngle; }

To make more of the wiimote's state visible to the rest of WiiPosition requires the

addition of more 'get' methods for buttons, orientation, and acceleration data.

Typically, they will be called inside WiiPosPanel.update() to update the application's

state.

