
Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

1 © Andrew Davison 2011

Kinect Chapter 5. Viewing Users in 3D

[Note: all the code for this chapter is available online at
http://fivedots.coe.psu.ac.th/~ad/kinect/; only important fragments are described
here.]

This chapter revisits skeletal tracking but this time renders the users in 3D, as shown
in Figure 1.

Figure 1. 3D Skeletal Tracking of Two Users.

The OpenNI aspects of this application (called UsersTracker3D) are much the same as
in the last chapter – the pose detection and skeletal tracking capabilities of a
UserGenerator node are utilized to obtain the users' joint coordinates. In fact, the
OpenNI part of the code is simpler than previously because I've no need to collect and
render depth map information. The main new features are:

 the joints and the limbs are Java 3D shapes (sphere and cylinders
respectively), which move and rotate to match the movement of the users);

 OpenNI observers (listeners) deal with a user temporarily moving out of range
of the Kinect sensor and returning (the user's skeleton disappears during that
time);

 joints are positioned using averaged coordinate values, collected over several
sensor updates. This reduces the 'shuddering' of joints, at the cost of reducing
the responsiveness of a skeleton to sudden user movement;

 each joint and limb that be made invisible independently of the rest of the
skeleton. This allows the application to deal with joints going out of sensor
range by making only those parts of the skeleton invisible;

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

2 © Andrew Davison 2011

 the 3D scene is essentially unchanged from the Java 3D code used in chapter 3
for the point cloud (i.e. a checkerboard floor, blue sky, lighting, and a
moveable camera). Figure 2 shows a user standing facing the Kinect, but with
the Java 3D camera rotated to the left.

Figure 2. A Single User Viewed from the Left.

Figure 3 shows the class diagrams for the UsersViewer3D application, with only the
class names listed.

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

3 © Andrew Davison 2011

Figure 3. Class Diagrams for UsersViewer3D.

UsersViewer3D builds the application window by employing an instance of
TrackerPanel3D as a panel. TrackerPanel3D's main task is to create the Java 3D
scene, in a very similar way to Points3DPanel in the points cloud example in chapter
3. It builds the scene graph in Figure 4.

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

4 © Andrew Davison 2011

Figure 4. Scene Graph Created by TrackerPanel3D.

TrackerPanel3D employs the CheckerFloor and ColouredTiles classes to create the
floor (as in chapter 3), and passes a sceneBG reference to SkelsManager.

TrackerPanel3D also creates a Kinect sensor context and passes user generator
information down to SkelsManager, which manages the creation, deletion, and the
visibility of user skeletons. Figure 3 shows that SkelsManager uses seven observers,
three more than TrackerPanel in the ArniesTracker application. The additional
observers are for noticing when a user temporarily exits the scene
(ExitUserObserver), when the user re-enters (ReEnterUserObserver), and when
skeleton calibration starts (CalibrationStartObserver).

The creation of a 3D Skeleton (a Skeleton Branch box in Figure 4) is handled by a
Skeleton3D object, which creates the 3D joints and limbs (i.e. spheres and cylinders)
using instances of the Joint3D and Limb3D classes.

One of the novel elements of this application is the use of average joint positions to
make the skeletons less prone to shuddering. The averaging is carried out by the
SmoothPosition class.

1. The Tracker Panel
TrackerPanel3D has two main tasks: to create the Java 3D scene graph shown in
Figure 4 and to set up the OpenNI context.

As in the points cloud example, the scene consists of a dark green and blue tiled
surface with labels along the X and Z axes, a blue background, lit from two directions.

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

5 © Andrew Davison 2011

The user can guide a camera through the scene by moving the mouse. I won't be
explaining these details again; please look back at Points3DPanel in chapter 3.

The new 3D features are the user skeletons; they're managed by the SkelsManager
class which I explain below.

The OpenNI context, the UserGenerator node, and a SkelsManager object are created
inside TrackerPanel3D.configOpenNI():

// globals
private Context context;
private UserGenerator userGen;
private BranchGroup sceneBG;
private SkelsManager skels; // the skeletons manager

private void configOpenNI()
// create context, user generator, and skeletons
{
 try {
 context = new Context();

 // add the NITE Licence
 License licence = new License("PrimeSense",
 "0KOIk2JeIBYClPWVnMoRKn5cdY4=");
 context.addLicense(licence);
 context.setGlobalMirror(true); // set mirror mode

 userGen = UserGenerator.create(context);
 skels = new SkelsManager(userGen, sceneBG);

 context.startGeneratingAll();
 System.out.println("Started context generating...");
 }
 catch (Exception e) {
 System.out.println(e);
 System.exit(1);
 }
} // end of configOpenNI()

Depth information isn't needed, so there's no need to create DepthGenerator and
DepthMapData objects in configOpenNI().

The SkelsManager object is passed two arguments: the UserGenerator so that its pose
detection and skeleton tracking capabilities can be accessed, and the sceneBG
BranchGroup so that skeletons can be attached to the scene graph (as in Figure 4).

TrackerPanel3D is threaded so that it can execute a wait-update loop for Kinect
sensor information:

// globals
private volatile boolean isRunning;
private Context context;
private SkelsManager skels; // the skeletons manager

public void run()

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

6 © Andrew Davison 2011

{
 isRunning = true;
 while (isRunning) {
 try {
 context.waitAnyUpdateAll();
 }
 catch(StatusException e)
 { System.out.println(e);
 System.exit(1);
 }
 skels.update(); // skeletons manager carries out updates
 }
 // close down
 try {
 context.stopGeneratingAll();
 }
 catch (StatusException e) {}
 context.release();
 System.exit(0);
} // end of run()

2. Managing the Skeletons
The SkelsManager class has three main duties:

 it initializes the user generator 's pose and skeleton detection capabilities;

 it sets up seven observers (listeners) which manage the creation, deletion and
visibility of a user skeleton

 it's update() method is periodically called by TrackerPanel3D so the position
and orientation of the user skeletons can be refreshed with the Kinect's
skeleton data.

2.1. Configuring the UserGenerator
The initialization of the pose and skeleton detection capabilities, and the invocation of
the listeners, is carried out by SkelsManager.configure():

// globals
private UserGenerator userGen;

// capabilities used by UserGenerator
private SkeletonCapability skelCap;
 // to output skeletal data, including location of joints

private PoseDetectionCapability poseDetectionCap;
 // to recognize when the user is in a specific position

private String calibPose = null;

private void configure()
{
 try {
 // setup UserGenerator pose and skeleton detection caps;
 poseDetectionCap = userGen.getPoseDetectionCapability();

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

7 © Andrew Davison 2011

 skelCap = userGen.getSkeletonCapability();
 calibPose = skelCap.getSkeletonCalibrationPose(); // 'psi' pose
 skelCap.setSkeletonProfile(SkeletonProfile.ALL);

 // set up 7 observers
 userGen.getNewUserEvent().addObserver(new NewUserObserver());
 // new user found

 userGen.getLostUserEvent().addObserver(new LostUserObserver());
 // lost a user

 userGen.getUserExitEvent().addObserver(new ExitUserObserver());
 // user has exited (but may re-enter)

 userGen.getUserReenterEvent().addObserver(
 new ReEnterUserObserver());
 // user has re-entered

 poseDetectionCap.getPoseDetectedEvent().addObserver(
 new PoseDetectedObserver());
 // for when a pose is detected

 skelCap.getCalibrationStartEvent().addObserver(
 new CalibrationStartObserver());
 // calibration is starting

 skelCap.getCalibrationCompleteEvent().addObserver(
 new CalibrationCompleteObserver());
 // for when skeleton calibration is completed,
 // and tracking starts
 }
 catch (Exception e) {
 System.out.println(e);
 System.exit(1);
 }
} // end of configure()

2.2. The Observers
The purpose of the seven observers can best be understood by looking at the stages in
Figure 5 that constitute user pose detection and skeleton tracking.

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

8 © Andrew Davison 2011

Figure 5. Pose Detection and Skeletal Tracking Stages.

When a new user is detected, the standard user pose is detected so the user's skeleton
can be calibrated and tracked.

The start of tracking triggers the creation of a new Java 3D skeleton, and its
attachment to the scene graph.

The skeleton is made invisible when the user leaves the Kinect's view, and visible
again when it returns. If the user remains out of sight for several seconds, then the
user is considered lost and his skeleton is deleted from the scene graph.

A New User
When a new user is detected, the NewUserObserver listener is invoked:

// globals
private PoseDetectionCapability poseDetectionCap;
private String calibPose = null;

class NewUserObserver implements IObserver<UserEventArgs>
{
 public void update(IObservable<UserEventArgs> observable,
 UserEventArgs args)
 {
 System.out.println("Detected new user " + args.getId());
 try {
 // try to detect a pose for the new user
 poseDetectionCap.StartPoseDetection(calibPose, args.getId());
 }
 catch (StatusException e)
 { e.printStackTrace(); }
 }
} // end of NewUserObserver inner class

NewUserObserver starts looking for the pose stored in calibPose (the 'psi' position,
where the user has both hands raised).

Pose Detection

When pose detection comes to an end, PoseDetectedObserver is invoked:

// globals
private PoseDetectionCapability poseDetectionCap;
private SkeletonCapability skelCap;

class PoseDetectedObserver implements
 IObserver<PoseDetectionEventArgs>
{
 public void update(IObservable<PoseDetectionEventArgs> observable,
 PoseDetectionEventArgs args)
 {

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

9 © Andrew Davison 2011

 int userID = args.getUser();
 System.out.println(args.getPose() +
 " pose detected for user " + userID);
 try {
 // finished pose detection; switch to skeleton calibration
 poseDetectionCap.StopPoseDetection(userID);
 skelCap.requestSkeletonCalibration(userID, true);
 }
 catch (StatusException e)
 { e.printStackTrace(); }
 }
} // end of PoseDetectedObserver inner class

The pose detector is stopped, and skeleton calibration started.

The Start of Skeleton Calibration
When calibration commences, CalibrationStartObserver is called:

class CalibrationStartObserver implements
 IObserver<CalibrationStartEventArgs>
{
 public void update(
 IObservable<CalibrationStartEventArgs> observable,
 CalibrationStartEventArgs args)
 { System.out.println("Calibration started for user " +
 args.getUser()); }
} // end of CalibrationStartObserver inner class

To be honest, this method does nothing useful; I included it to show how skeletal
calibration can be monitored.

The End of Skeletal Calibration
When the calibration comes to a close, CalibrationCompleteObserver is invoked:

// globals
private SkeletonCapability skelCap;

private HashMap<Integer, Skeleton3D> userSkels3D;
 // maps user IDs --> a 3D skeleton

private BranchGroup sceneBG; // the scene graph

class CalibrationCompleteObserver implements
 IObserver<CalibrationProgressEventArgs>
{
 public void update(
 IObservable<CalibrationProgressEventArgs> observable,
 CalibrationProgressEventArgs args)
 {
 int userID = args.getUser();
 System.out.println("Calibration status: " +
 args.getStatus() + " for user " + userID);

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

10 © Andrew Davison 2011

 try {
 if (args.getStatus() == CalibrationProgressStatus.OK) {
 // calibration succeeeded; move to skeleton tracking
 System.out.println("Starting tracking user " + userID);
 skelCap.startTracking(userID);

 // create skeleton3D in userSkels3D, and add to scene
 Skeleton3D skel = new Skeleton3D(userID, skelCap);
 userSkels3D.put(userID, skel);
 sceneBG.addChild(skel.getBG());
 }
 else // calibration failed; return to pose detection
 poseDetectionCap.StartPoseDetection(calibPose, userID);
 }
 catch (StatusException e)
 { e.printStackTrace(); }
 }
} // end of CalibrationCompleteObserver inner class

As Figure 5 indicates, there are two paths out of this state: if the calibration was
successful then skeletal tracking is started by calling
SkeletonCapability.startTracking(). Calibration failure means a return to pose
detection for another attempt at finding the psi pose.

When tracking starts, a 3D skeleton is created by instantiating a Skeleton3D object.
This is stored in a HashMap, using the user ID as a key. A reference to the top
BranchGroup node of the skeleton graph is obtained via Skeleton3D.getBG(), and
attached to the scene as a child of sceneBG (see Figure 4 for an illustration).

A User Exits
If the Kinect loses track of a user, OpenNI wakes up the ExitUserObserver:

// global
private HashMap<Integer, Skeleton3D> userSkels3D;

class ExitUserObserver implements IObserver<UserEventArgs>
{
 public void update(IObservable<UserEventArgs> observable,
 UserEventArgs args)
 {
 int userID = args.getId();
 System.out.println("Exit of user " + userID);

 // make 3D skeleton invisible when user exits
 Skeleton3D skel = userSkels3D.get(userID);
 if (skel == null)
 return;
 skel.setVisibility(false);
 }
} // end of ExitUserObserver inner class

The user's 3D skeleton is made invisible by calling Skeleton3D.setVisibility(). The
correct Skeleton3D object is found by looking in the userSkels3D HashMap using the
user ID as a key.

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

11 © Andrew Davison 2011

A User Re-enters
If the user reappears within a certain time period, then ReEnterUserObserver is called:

// global
private HashMap<Integer, Skeleton3D> userSkels3D;

class ReEnterUserObserver implements IObserver<UserEventArgs>
{
 public void update(IObservable<UserEventArgs> observable,
 UserEventArgs args)
 {
 int userID = args.getId();
 System.out.println("Reentry of user " + userID);

 // make 3D skeleton visible when user re-enters
 Skeleton3D skel = userSkels3D.get(userID);
 if (skel == null)
 return;
 skel.setVisibility(true);
 }
} // end of ReEnterUserObserver inner class

ReEnterUserObserver looks up the user's Skeleton3D object and makes it visible.

A User is Lost
If a user stays out of range of the Kinect for too long, then LostUserObserver is
woken up:

// global
private HashMap<Integer, Skeleton3D> userSkels3D;

class LostUserObserver implements IObserver<UserEventArgs>
{
 public void update(IObservable<UserEventArgs> observable,
 UserEventArgs args)
 {
 int userID = args.getId();
 System.out.println("Lost track of user " + userID);

 // delete skeleton from userSkels3D and the scene graph
 Skeleton3D skel = userSkels3D.remove(userID);
 if (skel == null)
 return;
 skel.delete();
 }
} // end of LostUserObserver inner class

The user's Skeleton3D object is removed from the userSkels3D HashMap, and
Skeleton3D.delete() called. As we'll see, delete() detaches the skeleton's subgraph
from the scene.

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

12 © Andrew Davison 2011

2.3. Updating the Skeletons
CalibrationCompleteObserver starts tracking a new user by creating a
UserID/Skeleton3D entry in the userSkel3D HashMap. When SkelsManager.update()
is called, it's task is to update all those skeletons which are still being tracked.

// globals
private UserGenerator userGen;
private SkeletonCapability skelCap;
private HashMap<Integer, Skeleton3D> userSkels3D;

public void update()
// update skeleton of each user being tracked
{
 try {
 int[] userIDs = userGen.getUsers(); // may be many users
 for (int i = 0; i < userIDs.length; i++) {
 int userID = userIDs[i];
 if (skelCap.isSkeletonCalibrating(userID))
 continue;
 if (skelCap.isSkeletonTracking(userID))
 userSkels3D.get(userID).update();
 }
 }
 catch (StatusException e)
 { System.out.println(e); }
} // end of update()

The UserGenerator is queried to obtain a list of IDs, and the SkeletonCapability
object is employed to find which of those are being tracked, and Skeleton3D.update()
is called for their skeletons.

3. Bringing a Skeleton to Life
The primary tasks of a Skeleton3D object are to:

 create a scene graph for a skeleton;

 update the position and orientation of the skeleton when update() is called;

 make the skeleton invisible or visible (when a user exits or re-enters the scene);

 delete the skeleton from the scene when the user is deemed lost.

3.1. Creating a Skeleton Scene Graph

The skeletons in Figures 1 and 2 appear quite complex, but they're only made from
two types of shape, spheres representing skeletal joints, and cylinders for the limbs
connecting the joints.

The joints and limbs are represented by Joint3D and Limb3D objects, which manage
the creation of the Java 3D spheres and cylinders, and their movement and rotation.

The scene graph for a skeleton is shown in Figure 6.

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

13 © Andrew Davison 2011

Figure 6. The Scene Graph for a Skeleton.

Figure 6 corresponds to a "Skeleton Branch" box in Figure 4, with the skelBG
BranchGroup being connected to the sceneBG node of the 3D scene.

The Switch node (called visSW) controls the rendering of the subgraph below it,
allowing the skeleton to be made invisible.

The moveTG TransformGroup is employed to position the skeleton so its 'feet' rest on
the checkerboard floor.

The partsBG BranchGroup is used to group the limbs and joint subgraphs. The details
of "Joint Branch" and "Limb Branch" will be explained when I discuss the Joint3D
and Limb3D classes.

It is possible to use less graph nodes to create the skeleton. However, multiple nodes
allow a cleaner separation of concerns, with one node doing one task (e.g. visibility,
positioning, grouping). The subgraph is compiled after it is constructed, which allows
Java 3D to optimize the graph, perhaps combining several nodes together.

The number of joint and limb branches depends on the skeletal model. I'll be reusing
the one from the previous chapter, shown again in Figure 7.

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

14 © Andrew Davison 2011

Figure 7. The Skeletal Model of Joints and Limbs.

Figure 7 utilizes 15 joints (the circles) and 16 limbs (the lines connecting the circles),
replicated in the code with 15 Joint3D and 16 Limb3D objects. The resulting scene
graph for a skeleton appears in Figure 8.

Figure 8. A Java 3D Skeleton.

Note that the head joint in Figure 8 is a little larger than the other joints to make it
look more like a head.

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

15 © Andrew Davison 2011

The Skeleton3D constructor builds the scene graph in Figure 6.

// globals
// collections of joints and limbs making up the skeleton
private ArrayList<Joint3D> joints3D;
private ArrayList<Limb3D> limbs;

public Skeleton3D(int userID, SkeletonCapability skelCap)
{
 // create top of scene graph for the skeleton
 BranchGroup partsBG = buildSkelGraph();
 // all the joints and limbs are attached to partsBG

 HashMap<SkeletonJoint, Joint3D> jointsMap =
 new HashMap<SkeletonJoint, Joint3D>();
 // used for accessing joints when I create the limbs

 // build joints
 joints3D = new ArrayList<Joint3D>();
 buildJoints(joints3D, userID, skelCap, partsBG, jointsMap);

 // build limbs
 limbs = new ArrayList<Limb3D>();
 buildLimbs(limbs, partsBG, jointsMap);

 skelBG.compile();
} // end of Skeleton3D()

Three data structures are created in the constructor – a list of Joint3D objects
(joints3D) for the skeleton's joints, a list of Limb3D objects (limbs) for the skeleton's
limbs, and a HashMap. The HashMap is a temporary structure which maps OpenNI
SkeletonJoints to their corresponding Joint3D objects. The map is built by
buildJoints(), and used inside buildLimbs().

The three highlighted methods in the constructor are buildSkelGraph(), buildJoints()
and buildLimbs(). buildSkelGraph() creates the top part of the scene graph in Figure
6, buildJoints() creates the Joint branches, and buildLimbs() the Limb branches.

The buildSkelGraph() code:

// globals
private static final float Y_OFFSET = 2.5f;
private static final float Z_OFFSET = 5.0f;

private BranchGroup skelBG; // top of the skeleton graph
private Switch visSW; // for skeleton visibility
private boolean isVisible;

private BranchGroup buildSkelGraph()
{
 // skelBG-->visSW-->moveTG-->partsBG
 BranchGroup partsBG = new BranchGroup();
 partsBG.setCapability(BranchGroup.ALLOW_CHILDREN_READ);
 partsBG.setCapability(BranchGroup.ALLOW_CHILDREN_WRITE);

 Transform3D t3d = new Transform3D();

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

16 © Andrew Davison 2011

 t3d.set(new Vector3f(0, Y_OFFSET, Z_OFFSET)); // so feet on floor
 TransformGroup moveTG = new TransformGroup(t3d);
 moveTG.addChild(partsBG);

 // create switch for visibility
 visSW = new Switch();
 visSW.setCapability(Switch.ALLOW_SWITCH_WRITE);
 visSW.addChild(moveTG);
 visSW.setWhichChild(Switch.CHILD_ALL); // visible initially
 isVisible = true;

 skelBG = new BranchGroup();
 skelBG.setCapability(BranchGroup.ALLOW_DETACH);
 // so skeleton can be deleted from the scene
 skelBG.addChild(visSW);

 return partsBG; // where all the joints and limbs are attached
} // end of buildSkelGraph()

Of special note are the calls to SceneGraphObject.setCapability() which assign
important properties to the nodes.

The skelBG BranchGroup is made detachable (ALLOW_DETACH) which permits
the skeleton subgraph to be removed from the scene, effectively deleting it. This
feature is employed when LostUserObserver decides that the skeleton's user is lost.

The visSW Switch node is made writable (ALLOW_SWITCH_WRITE) allowing
rendering to be switched off and on as often as necessary. This capability is utilized
by ExitUserObserver and ReEntryUserObserver when the user exits and re-enters the
scene.

The partsBG node's children are made readable and writable
(ALLOW_CHILDREN_READ, ALLOW_CHILDREN_WRITE). Its children are the
joint and limb subgraphs which need to be translated, rotated, scaled, and perhaps
turned invisible at run time.

The moveTG TransformGroup is used to move the skeleton up the y-axis by an offset
of Y_OFFSET (2.5 units) to make all of the skeleton visible, and have its feet joints
rest on the floor. This value was arrived at by a process of trial-and-error. The
Z_OFFSET is used to move the skeletons nearer the camera.

3.2. Building Joints

The joints are built by iterating through the SkeletonJoint enumeration, and creating a
Joint3D object for each value. The Joint3D scene graphs are added to the skeleton at
partsBG.

// global
private ArrayList<Joint3D> joints3D;

private void buildJoints(ArrayList<Joint3D> joints3D, int userID,
 SkeletonCapability skelCap,
 BranchGroup partsBG,
 HashMap<SkeletonJoint, Joint3D> jointsMap)
{

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

17 © Andrew Davison 2011

 Joint3D j3d;
 for(SkeletonJoint joint : SkeletonJoint.values()) {
 j3d = buildJoint3D(joint, userID, skelCap);
 if (j3d != null) {
 partsBG.addChild(j3d.getTG());
 joints3D.add(j3d);
 jointsMap.put(joint, j3d); // build map for later
 }
 }
} // end of buildJoints()

The jointsMap is used as a handy way of remembering which SkeletonJoint is
represented by which Joint3D object. Each Joint3D object is also added to the global
joints3D list.

buildJoint3D() creates a Joint3D object after checking that the SkeletonJoint value is
valid (in the current version of OpenNI some joints named in SkeletonJoint aren't
accessible).

// globals
// scaling from Kinect coords to 3D scene coords
private static final float XY_SCALE = 1/500.0f;
private static final float Z_SCALE = -1/1000.0f;

private Joint3D buildJoint3D(SkeletonJoint joint, int userID,
 SkeletonCapability skelCap)
{
 if (!skelCap.isJointAvailable(joint) ||
 !skelCap.isJointActive(joint)) {
 /* To deal with the absence of WAIST,
 LEFT_COLLAR, LEFT_WRIST, LEFT_FINGER_TIP, LEFT_ANKLE,
 RIGHT_COLLAR, RIGHT_WRIST, RIGHT_FINGER_TIP, RIGHT_ANKLE
 */
 return null;
 }

 Joint3D j3d;
 if (joint == SkeletonJoint.HEAD)
 j3d = new Joint3D(joint, 0.22f, XY_SCALE, Z_SCALE,
 userID, skelCap); // bigger head
 else
 j3d = new Joint3D(joint, XY_SCALE, Z_SCALE, userID, skelCap);

 return j3d;
} // end of buildJoint3D()

The Joint3D object is passed scaling factors (XY_SCALE, Z_SCALE) which are
employed to convert Kinect (x, y, z) coordinates into values suitable for plotting
inside the Java 3D scene. These scale factors were arrived at by trial-and-error. Note
that the Z_SCALE scale is twice that used in the x- and y- directions. It's also
negative so that the Java 3D z-values become negative, and so are placed along the z-
axis going away from the camera).

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

18 © Andrew Davison 2011

3.3. Building Limbs
Each limb connects two joints (see Figure 7), and so limb creation requires a mapping
from two SkeletonJoints (e.g. HEAD and NECK) to their corresponding Joint3D
objects. References to these are stored in each Limb3D object so that when the joints
change (e.g. move, turn), then the limb can be modified as well.

The mapping from SkeletonJoint to Joint3D uses two data structures. First the pair of
SkeletonJoints for a limb are looked up inside the jointPairs[] array, and then each one
is mapped to its Joint3D version using the jointsMap HashMap.

// globals
private static final float LIMB_RADIUS = 0.1f;

/* the skeleton is a series of limbs;
 a limb is defined by a pair of joints which are
 listed in jointPairs[]
*/
private SkeletonJoint[] jointPairs =
 { SkeletonJoint.LEFT_SHOULDER, SkeletonJoint.LEFT_ELBOW,
 SkeletonJoint.LEFT_ELBOW, SkeletonJoint.LEFT_HAND, // left arm

 SkeletonJoint.RIGHT_SHOULDER, SkeletonJoint.RIGHT_ELBOW,
 SkeletonJoint.RIGHT_ELBOW, SkeletonJoint.RIGHT_HAND,//right arm

 SkeletonJoint.HEAD, SkeletonJoint.NECK,
 SkeletonJoint.NECK, SkeletonJoint.LEFT_SHOULDER,
 SkeletonJoint.NECK, SkeletonJoint.RIGHT_SHOULDER, // upper body

 SkeletonJoint.LEFT_SHOULDER, SkeletonJoint.TORSO,
 SkeletonJoint.RIGHT_SHOULDER, SkeletonJoint.TORSO, // torso
 SkeletonJoint.LEFT_HIP, SkeletonJoint.TORSO,
 SkeletonJoint.RIGHT_HIP, SkeletonJoint.TORSO,

 SkeletonJoint.LEFT_HIP, SkeletonJoint.RIGHT_HIP, // across hips

 SkeletonJoint.LEFT_HIP, SkeletonJoint.LEFT_KNEE,
 SkeletonJoint.LEFT_KNEE, SkeletonJoint.LEFT_FOOT, // left leg

 SkeletonJoint.RIGHT_HIP, SkeletonJoint.RIGHT_KNEE,
 SkeletonJoint.RIGHT_KNEE, SkeletonJoint.RIGHT_FOOT //right leg
 };

private ArrayList<Limb3D> limbs;

private void buildLimbs(ArrayList<Limb3D> limbs,
 BranchGroup partsBG,
 HashMap<SkeletonJoint, Joint3D> jointsMap)
{
 Limb3D limb;
 Joint3D startJ3d, endJ3d;
 for (int i=0; i < jointPairs.length; i=i+2) {
 startJ3d = getJoint3D(jointPairs[i], jointsMap);
 endJ3d = getJoint3D(jointPairs[i+1], jointsMap);
 if ((startJ3d != null) && (endJ3d != null)) {
 limb = new Limb3D(startJ3d, endJ3d, LIMB_RADIUS);
 partsBG.addChild(limb.getTG());
 limbs.add(limb);
 }

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

19 © Andrew Davison 2011

 }
} // end of buildLimbs()

private Joint3D getJoint3D(SkeletonJoint joint,
 HashMap<SkeletonJoint, Joint3D> jointsMap)
{
 Joint3D j3d = jointsMap.get(joint);
 if (j3d == null) {
 System.out.println("Undefined " + joint);
 return null;
 }
 return j3d;
} // end of getJoint3D()

The resulting Limb3D object is stored in a global list for later updating, and the limbs
Java 3D subgraph is attached to the partsBG BranchGroup.

3.4. Updating the Skeleton
A skeleton is updated via calls to its update() method which first updates all the
Joint3D objects (with positions obtained from SkeletonCapability), and then updates
all the limbs (which get their coordinates from their Joint3D endpoints).

// globals
private ArrayList<Joint3D> joints3D;
private ArrayList<Limb3D> limbs;

public void update()
{
 if (!isVisible)
 return;

 // update joints
 for(Joint3D j3d : joints3D)
 j3d.update();

 // update limbs
 for(Limb3D limb : limbs)
 limb.update();
} // end of update()

There's no need to update anything if the skeleton is currently invisible.

3.5. Modifying a Skeleton's Visibility
The exit of a user from the scene causes the skeleton to become invisible, via a call to
Skeleton3D.setVisibility(). If the user re-enters the scene soon enough then
setVisibility() will be called again to make the skeleton visible.

// globals
private Switch visSW;
private boolean isVisible;

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

20 © Andrew Davison 2011

public void setVisibility(boolean toVisible)
{
 if (toVisible) {
 visSW.setWhichChild(Switch.CHILD_ALL); // make visible
 isVisible = true;
 }
 else { // make invisible
 visSW.setWhichChild(Switch.CHILD_NONE); // invisible
 isVisible = false;
 }
} // end of setVisibility()

Toggling rendering is a matter of setting the visSW Switch node; the visibility status
is recorded in the isVisible boolean.

3.6. Deleting the Skeleton
If the user is absent from the scene for long enough then the LostUserObserver will
call Skeleton.delete(). This detaches the skeleton (skelBG) from the main scene graph.

// global
private BranchGroup skelBG;

public void delete()
{ skelBG.detach(); }

4. Creating a 3D Joint
Each Joint3D object manages a joint in the 3D scene. which involves three main
tasks:

 initially creating the joint's subgraph;

 updating the joint by moving it to the position supplied by the SkeletonCapability
object;

 making the joint invisible or visible. This may seem a bit superfluous since I've
already got skeleton-level visibility, but it allows finer-level control over what
parts of the skeleton are visible.

4.1. Creating the Joint Subgraph
The joint subgraph created by Joint3D is shown in Figure 9.

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

21 © Andrew Davison 2011

Figure 9. A Joint Branch.

Figure 9 corresponds to the "Joint Branch" box in Figure 6. The dashed rounded
rectangle is a Sphere object. Sphere is a utility class from the
com.sun.j3d.utils.geometry package, consisting of a Group node with a Shape3D
child. A typical invocation is:
Sphere s = new Sphere(radius, flags, appearance)

The Appearance node can hold many kinds of appearance information, including
coloring, transparency, and texture attributes. The Material node allows the lights in
the scene to affect the color of the shape.

The moveTG TransformGroup permits the joint to be moved, and is the connection
point to the 3D scene. The visSW Switch enables the subgraph to be made invisible.

The Joint3D constructor builds the subgraph:

// globals
// sphere colors
private static final Color3f BLACK = new Color3f(0.0f, 0.0f, 0.0f);
private static final Color3f WHITE = new Color3f(0.9f, 0.9f, 0.9f);
private static final Color3f BLUE = new Color3f(0.3f, 0.3f, 0.8f);

private SkeletonCapability skelCap;
private SkeletonJoint joint;

private int userID; // ID of skeleton containing this joint

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

22 © Andrew Davison 2011

// the joint's scene graph: moveTG-->visSW-->sphere
private TransformGroup moveTG;
private Transform3D t3d; // for accessing a TG's transform
private Switch visSW; // for joint visibility
private boolean isVisible;

private SmoothPosition smoothPosns;

private float xyScale;
private float zScale;
 // scaling from Kinect coords to 3D scene coords

public Joint3D(SkeletonJoint j, float radius,
 float xyScale, float zScale,
 int userID, SkeletonCapability skelCap)
{
 joint = j;
 this.xyScale = xyScale;
 this.zScale = zScale;
 this.userID = userID;
 this.skelCap = skelCap;

 smoothPosns = new SmoothPosition();

 Appearance app = new Appearance();

 // assign blue material with lighting
 Material blueMat= new Material(BLUE, BLACK, BLUE, WHITE, 25.0f);
 // sets ambient, emissive, diffuse, specular, shininess
 blueMat.setLightingEnable(true);
 app.setMaterial(blueMat);

 // make the sphere with normals for lighting
 Sphere sphere = new Sphere(radius, Sphere.GENERATE_NORMALS, app);

 // create switch for visibility
 visSW = new Switch();
 visSW.setCapability(Switch.ALLOW_SWITCH_WRITE);
 visSW.addChild(sphere);
 visSW.setWhichChild(Switch.CHILD_ALL); // visible initially
 isVisible = true;

 // create a transform group for moving the sphere
 t3d = new Transform3D();
 moveTG = new TransformGroup(t3d);
 moveTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 moveTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 moveTG.addChild(visSW);
} // end of Joint3D()

For light to affect the sphere’s color, three conditions must be met:

1. The shape’s geometry must include normals;

2. The shape’s Appearance node must have a Material component;

3. The Material component must enable lighting effects with
setLightingEnable().

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

23 © Andrew Davison 2011

The Sphere class can automatically creates normals by including the
Sphere.GENERATE_NORMALS flag in its constructor, so (1) is easily satisfied. The
Material component controls what color the shape exhibits when lit by different kinds
of lights, and is created like so:

Material mat = new Material(ambientColor, emissiveColor,
 diffuseColor, specularColor, shininess);

The ambient argument specifies the shape’s color when lit by ambient light: this gives
the object a uniform color.

The emissive argument contributes the color that the shape produces itself (as in a
light bulb); frequently, the value is set to black (off).

The diffuse value is the color of the object when lit, with its intensity depending on
the angle the light beams make with the shape’s surface. Often the diffuse and
ambient colors are the same.

The intensity of the specular color parameter is related to how much the shape reflects
from it’s shiny areas. This is combined with the shininess argument which controls
the size of the reflective highlights. Often the specular color is white.

The Joint3D constructor creates the following Material node:
Material blueMat= new Material(BLUE, BLACK, BLUE, WHITE, 25.0f);

The sphere's ambient and diffuse colors are blue, not emissive, and reflects a small
amount of white light. These lighting effects can be seen in the close-up of the head
joint in Figure 10.

Figure 10. Lighting on the Head Joint.

There are two patches of shininess on the head (and the other joints) because the
scene is lit by two directional lights (see Figure 4).

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

24 © Andrew Davison 2011

4.2. Updating the Joint's Position
Joint3D.update() is called when the SkeletonCapability object has new joint position
information. The getKinectPos() method retrieves the data.

// globals
private SkeletonCapability skelCap;
private SkeletonJoint joint;
private int userID; // ID of skeleton containing this joint

public void update()
// called by Skeleton3D
{
 org.OpenNI.Point3D pos = getKinectPos();
 setPos(pos);
}

private org.OpenNI.Point3D getKinectPos()
// query Kinect for position of joint (may be null)
{
 if (!skelCap.isJointAvailable(joint) ||
 !skelCap.isJointActive(joint)) {
 System.out.println(joint + " not available");
 return null;
 }

 SkeletonJointPosition pos = null;
 try {
 pos = skelCap.getSkeletonJointPosition(userID, joint);
 }
 catch(StatusException e) {}
 if (pos == null) {
 System.out.println("No update for " + joint);
 return null;
 }

 if (pos.getConfidence() == 0) {
 // System.out.println("No confidence in " + joint);
 return null;
 }

 return pos.getPosition();
} // end of getKinectPos()

The setPos() method shown next converts the Kinect (x, y, z) coordinate into one
suitable for the 3D scene, and updates the moveTG TransformGroup; the joint sphere
will then be moved to that location by Java 3D

One problem with this approach is the occasional 'shuddering' of joints. This is caused
by the Kinect being uncertain about the position of joints which are partially (or
completely) obscured. Since the joints are being updated so rapidly (perhaps 10 times
per second), any incorrect positions will be corrected quickly, but the user may see the
joints rapidly moving by small amounts (i.e. shuddering).

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

25 © Andrew Davison 2011

My solution is to store recent Kinect positions in a SmoothPosition object, and update
the sphere using an average of those positions. This smoothes away small, brief
movements of the joint.

// globals
private TransformGroup moveTG;
private Transform3D t3d; // for accessing a TG's transform
private SmoothPosition smoothPosns;
private float xyScale, zScale;

private void setPos(org.OpenNI.Point3D pos)
{
 if (pos == null)
 smoothPosns.addPosition(null);
 else { // store a scaled position
 double x = (double) pos.getX()*xyScale;
 double y = (double) pos.getY()*xyScale;
 double z = (double) pos.getZ()*zScale;
 smoothPosns.addPosition(new Vector3d(x, y, z));
 }

 // use the average position to translate the sphere
 Vector3d sPos = smoothPosns.getPosition();
 if (sPos != null) {
 setVisibility(true);
 t3d.set(sPos);
 moveTG.setTransform(t3d);
 }
 else // joint has no position
 setVisibility(false);
} // end of setPos()

A new position is added to the SmoothPosition object, after being suitably scaled. The
scaling values are passed to Joint3D in its constructor, and stored as the globals
xyScale and zScale. The sphere is updated with an average position obtained from
SmoothPosition.

If no position value is available (i.e. sPos == null) then the joint is turned invisible.

4.3. Smoothing a Position
The SmoothPosition class stores a list of Vector3d positions, up to a maximum of
MAX_POSNS.

// globals
private final static int MAX_POSNS = 10;
private ArrayList<Vector3d> posns;

public SmoothPosition()
{ posns = new ArrayList<Vector3d>(); }

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

26 © Andrew Davison 2011

I feel a little guilty about using an ArrayList for storing the positions, because the
storage is a bounded buffer which is better encoded as a fixed-size array. But a list is
easier to manipulate.

A new element is added to the end of the list, and the first element (the 'oldest' value)
is deleted if the MAX_POSN limit has been reached.

public void addPosition(Vector3d p)
{
 if (p == null) {
 if (!posns.isEmpty())
 posns.remove(0); //remove oldest element when null 'added'
 }
 else {
 if (posns.size() == MAX_POSNS)
 posns.remove(0); // remove oldest
 posns.add(p);
 }
} // end of addPosition()

A complication is that the Vector3d object being added to SmoothPosition may be
null, indicating that there's some problem with the Kinect position. addPosition()
deletes the oldest element in this case, which means that if the error continues over
several updates, that the list will gradually empty.

getPosition() returns the average of its list positions, or null if the list is empty.

public Vector3d getPosition()
{
 if (posns.isEmpty())
 return null; // since no positions to average
 else {
 double xSum = 0;
 double ySum = 0;
 double zSum = 0;
 int count = 0;
 for(Vector3d v : posns) {
 xSum += v.getX();
 ySum += v.getY();
 zSum += v.getZ();
 count++;
 }
 return new Vector3d(xSum/count, ySum/count, zSum/count);
 }
} // end of getPosition()

4.4. Joint Visibility

If getPosition() returns null then there's a problem with the joint position, perhaps
because the joint is no longer within range of the Kinect sensor. As a consequence,
the joint is made invisible in setPos(), by calling setVisibility(false):

// globals
private Switch visSW; // for joint visibility
private boolean isVisible;

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

27 © Andrew Davison 2011

private void setVisibility(boolean toVisible)
/* toggle the visibility of the joint
 (called by a limb connected to this joint) */
{
 if (toVisible) {
 visSW.setWhichChild(Switch.CHILD_ALL); // make visible
 isVisible = true;
 }
 else { // make invisible
 visSW.setWhichChild(Switch.CHILD_NONE); // invisible
 isVisible = false;
 }
} // end of setVisibility()

5. Creating a 3D Limb
Each Limb3D object manages a limb in the 3D scene, which involves two tasks:

 initially creating the limb subgraph;

 updating the limb by setting its visibility, position, orientation, and length.

5.1. Creating the Limb Subgraph
The limb subgraph created by Limb3D is shown in Figure 11.

Figure 11. A Limb Branch.

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

28 © Andrew Davison 2011

Figure 11 corresponds to the "Limb Branch" box in Figure 6. startTG holds the limb's
starting joint location; the visSW Switch manages visibility; orientTG sets the limb's
orientation so it points from its start joint towards the end joint; scaleTG is used to
scale the limb's length.

Cylinder is a Java 3D shape utility, implemented in a similar way to Sphere. When a
cylinder is created, its center is located at the origin, which isn't suitable for our
purposes because I want to rotate and position the cylinder relative to its base. So the
baseTG node is employed to lift the cylinder up the y-axis by half its length, so the
center of its base is at the origin

The long chain of nodes in Figure 11 may seem excessive, especially when four of
them are TransformGroups. It's possible to implement the subgraph with less nodes,
but it would make their updating more complicated. A chain of nodes splits the update
into parts, and imposes an update ordering. The updates are performed starting from
the leaf node (the cylinder in Figure 11), working up the branch.

First the cylinder's base is moved to the origin (by baseTG), then its y-axis length is
stretched (by scaleTG), then it's rotated (by orientTG) so it's facing in the direction
defined by its joints, then its visibility is set (by visSW), and finally it's translated (by
startTG) so its base coincides with the start joint.

The Limb3D constructor builds the subgraph in Figure 11:

// globals
private static final double LIMB_LEN = 1;

// the joints connected to this limb
private Joint3D startJ3d, endJ3d;
private SkeletonJoint startJoint, endJoint;

// for positioning the limb
private TransformGroup startTG;
private Transform3D startT3d;

// for limb visibility
private Switch visSW;
private boolean isVisible;

private TransformGroup orientTG;
private TransformGroup scaleTG;

public Limb3D(Joint3D startJ3d, Joint3D endJ3d, float radius)
{
 this.startJ3d = startJ3d;
 this.endJ3d = endJ3d;
 startJoint = startJ3d.getJoint();
 endJoint = endJ3d.getJoint();

 // limb's position at the start joint
 startT3d = new Transform3D();
 startTG = new TransformGroup(startT3d);
 startTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 startTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 // create switch for visibility
 visSW = new Switch();

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

29 © Andrew Davison 2011

 visSW.setCapability(Switch.ALLOW_SWITCH_WRITE);
 visSW.setWhichChild(Switch.CHILD_ALL); // visible initially
 isVisible = true;

 // limb's orientation
 orientTG = new TransformGroup();
 orientTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 orientTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 // for changing the length of a limb
 scaleTG = new TransformGroup();
 scaleTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 scaleTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 TransformGroup baseTG = makeLimb(radius, LIMB_LEN);

 // limb subgraph's sequence of nodes:
 // startTG -->visSW-->orientTG -->scaleTG --> baseTG --> cylinder
 startTG.addChild(visSW);
 visSW.addChild(orientTG);
 orientTG.addChild(scaleTG);
 scaleTG.addChild(baseTG);
} // end of Limb3D()

The cylinder is created by makeLimb():

// globals
// colors for limb material
private static final Color3f BLACK = new Color3f(0.0f, 0.0f, 0.0f);
private static final Color3f WHITE = new Color3f(0.9f, 0.9f, 0.9f);
private static final Color3f GRAY = new Color3f(0.6f, 0.6f, 0.6f);

private Transform3D currTrans = new Transform3D();

private TransformGroup makeLimb(float radius, double len)
// a gray cylinder whose base is at the origin
{
 // fix limb's start position
 TransformGroup baseTG = new TransformGroup();
 currTrans.setTranslation(new Vector3d(0, len/2, 0));
 // move up length/2
 baseTG.setTransform(currTrans);

 Appearance app = new Appearance();
 Material limbMaterial =
 new Material(GRAY, BLACK, GRAY, WHITE, 150.0f);
 // sets ambient, emissive, diffuse, specular, shininess
 limbMaterial.setLightingEnable(true);
 app.setMaterial(limbMaterial);

 Cylinder cyl = new Cylinder(radius, (float)len, app);
 baseTG.addChild(cyl);
 return baseTG;
} // end of makeLimb()

The Cylinder constructor needs a radius, length, and Appearance node. As with the
sphere, I utilize a Material node so the cylinder will be affected by the scene's lights.

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

30 © Andrew Davison 2011

5.2. Updating the Limb
When the limb is updated by a call to Limb3D.update(), four attributes may need to
be modified: visibility, position, orientation, and limb length.

The limb should only be updated if the joints at its two ends have valid positions,
which update() confirms by calling isLimbUpdatable(). The method performs two
checks:

// global
private static final double MIN_DIST = 0.00001;
 // small distance that probably indicates an error

private Joint3D startJ3d, endJ3d;

private boolean isLimbUpdatable(Vector3d startPos, Vector3d endPos)
// can the limb be updated given these joint positions?
{
 if (!startJ3d.isVisible() || !endJ3d.isVisible())
 return false;

 /* small diff between the (x,z) coordinates of the joints
 indicates a likely error */
 if ((Math.abs(endPos.x - startPos.x) < MIN_DIST) &&
 (Math.abs(endPos.z - startPos.z) < MIN_DIST))
 return false;

 return true;
} // end of isLimbUpdatable()

If either of the joints are invisible, then one or both do not have a valid position. Also,
if the joints are very close together in the XZ plane then there's probably a problem
with the limb's direction vector, as explained at the end of this section.

If isLimbUpdatable() returns false, the limb is made invisible, as shown in the
fragment of update() below:

// globals
// the joints connected to this limb
private Joint3D startJ3d, endJ3d;

public void update()
{
 // get start and end joint positions
 Vector3d startPos = startJ3d.getPos();
 Vector3d endPos = endJ3d.getPos();

 if (!isLimbUpdatable(startPos, endPos)) { // hide the limb
 setVisibility(false);
 return;
 }

 // both joints are ok, so make the limb visible
 if (!isVisible)
 setVisibility(true);

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

31 © Andrew Davison 2011

 // more code not shown. . .

} // end of update()

The setVisibility() method affects the Switch node, visSW:

// globals
private Switch visSW;
private boolean isVisible;

private void setVisibility(boolean toVisible)
// change limb visibility
{
 if (toVisible) {
 visSW.setWhichChild(Switch.CHILD_ALL); // make visible
 isVisible = true;
 }
 else { // make invisible
 visSW.setWhichChild(Switch.CHILD_NONE); // invisible
 isVisible = false;
 }
} // end of setVisibility()

This approach means that a problem with a limb's joints will cause that limb to
become invisible. Figure 12 shows the effect on a skeleton.

Figure 12. A Skeleton with Some Invisible Joints and Limbs.

The neck and neck joints are invisible, along with their connecting limbs, because the
user's head and neck are too close to the Kinect for their positions to be calculated. As
soon as the user moves back into range of the Kinect, the joints and limbs will
reappear.

In Figure 12, the limb connecting the left knee to the foot is invisible because the (x,
z) difference between the left knee and foot joint is almost zero. I'll explain why this
is a problem at the end of this section.

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

32 © Andrew Davison 2011

Another way of dealing with a joint with an invalid position is to have it use its last
correct value instead. This doesn't look so nice in practice because, as the skeleton
moves, the limbs connected to the static joint will become elongated and twisted.

The best answer is probably to use interpolation to calculate a likely position for a
joint based on its previous positions and rotations.

5.3. Adjusting Limb Position and Length
A limb's new position is the location of its base's start joint, which is set by adjusting
the startTG TransformGroup. The limb's length also needs to be changed since the
Kinect does not reliably keep joints a fixed distance apart (unlike the joints in a real
body). The current distance between the two joints must be calculated, and used to
scale the limb's y-axis via the scaleTG TransformGroup.

The relevant code in update() is shown below:

// globals
private Joint3D startJ3d, endJ3d;

// for positioning the limb
private TransformGroup startTG;
private Transform3D startT3d;

// code fragments from Limb3D.update(). . .

// get start and end joint positions
Vector3d startPos = startJ3d.getPos();
Vector3d endPos = endJ3d.getPos();

// update limb position
startT3d.set(startPos);
startTG.setTransform(startT3d);

Vector3d lengthVec =
 new Vector3d((double)(endPos.x - startPos.x),
 (double)(endPos.y - startPos.y),
 (double)(endPos.z - startPos.z));
double len = lengthVec.length();

rotateLimb(lengthVec);
setLength(len); // change length of limb

The setLength() method changes the cylinder's length by modifying the scaling factor
used in scaleTG():

// globals for scaling
private TransformGroup scaleTG;
private Vector3d scaleLimb = new Vector3d(1,1,1); // only y changes
private Transform3D currTrans = new Transform3D();

private void setLength(double len)
// change the cylinder's length to len (by changing the scaling)
{
 double lenChange = len / (LIMB_LEN * scaleLimb.y);

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

33 © Andrew Davison 2011

 scaleLimb.y *= lenChange; // only y scale changes

 scaleTG.getTransform(currTrans);
 currTrans.setScale(scaleLimb);
 scaleTG.setTransform(currTrans);
} // end of setLength()

5.4. Changing the Limb's Orientation
rotateLimb() rotates the limb about the start joint to point at the end joint. The
problem is that a simple rotation about the x-, y-, or z- axis is insufficient, since the
joints can be anywhere in the 3D space. Instead, an AxisAngle4d rotation is utilized,
which can define a rotation about any vector. rotateLimb()'s algorithm is illustrated in
Figure 13.

Figure 13. Rotating a Limb.

The start and end joints are located at startPos and endPos respectively, and the limb
begins by pointing in the UPVEC direction with its base at startPos. It must be rotated
to point in the lengthVec direction, a rotation of limbAngle radians.

The rotation should be carried out around the axisVec vector, which is normal to the
plane defined by the two vectors UPVEC and lengthVec, and is known as their cross
product. The Vector3d class contains a cross() method which calculates the vector,
given normalized values for UPVEC and lengthVec.

The rotation angle, limbAngle, between UPVEC and lengthVec, can also be easily
obtained with Vector3d’s angle() method. An AxisAngle4d object requires a vector
and rotation, which is supplied in the calcRotation() method:

// globals
private static final Vector3d UPVEC = new Vector3d(0.0, 1.0, 0.0);
 // initial orientation of limb: straight up

private Vector3d axisVec = new Vector3d();
private AxisAngle4d rotAxisAngle = new AxisAngle4d();
private double limbAngle = 0;

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

34 © Andrew Davison 2011

private AxisAngle4d calcRotation(Vector3d lengthVec)
 {
 lengthVec.normalize();
 axisVec.cross(UPVEC, lengthVec); // calculate axisVec

 limbAngle = UPVEC.angle(lengthVec); // get rotation

 rotAxisAngle.set(axisVec, limbAngle); // build axis angle
 return rotAxisAngle;
} // end of calcRotation()

A complication is that rotateLimb() assumes that the limb starts in the UPVEC
direction, which is only true when a limb is initially created. Before subsequent
rotations, the limb must first be rotated back to the vertical. A negative AxisAngle4d
rotation is calculated in rotateLimb() using the limbAngle and the negative of the
axisVec vector before calling calcRotation():

// globals
private Vector3d negAxisVec = new Vector3d();
private AxisAngle4d negRotAxisAngle = new AxisAngle4d();
private boolean firstRotation = true;
 // to flag the need to undo the previous rotation

private void rotateLimb(Vector3d lengthVec)
{
 if (!firstRotation) { // calculate neg of previous rotation
 negAxisVec.negate(axisVec);
 negRotAxisAngle.set(negAxisVec, limbAngle);
 }

 // update limb orientation
 AxisAngle4d rotAxisAngle = calcRotation(lengthVec);
 doRotation(rotAxisAngle, negRotAxisAngle);
 firstRotation = false;
} // end of rotateLimb()

doRotation() applies the two AxisAngle4d rotations to the orientTG TransformGroup:

// globals
private Transform3D orientT3d = new Transform3D();
private Transform3D rotT3d = new Transform3D();
private Transform3D negRotT3d = new Transform3D();
private TransformGroup orientTG;

private void doRotation(AxisAngle4d rotAxisAngle,
 AxisAngle4d negRotAxisAngle)
{
 orientTG.getTransform(orientT3d); // get current transform

 if (!firstRotation) { // undo previous rotation first
 negRotT3d.setRotation(negRotAxisAngle);
 orientT3d.mul(negRotT3d);
 }

 // apply new rotation

Java Prog. Techniques for Games. Kinect Chapter 5. UserViewer3D Draft #2 (22nd Dec. 2011)

35 © Andrew Davison 2011

 rotT3d.setRotation(rotAxisAngle);
 orientT3d.mul(rotT3d);
 orientTG.setTransform(orientT3d);
} // end of doRotation()

5.5. An Interpolation and Cross Product Problem
The isLimbUpdatable() method includes a rather mysterious test to see if two joints
are very close together in the XZ plane. In that case, the method returns false and the
limb between the joints isn't drawn. If it was drawn then there's a good chance that it
will point straight up the y-axis.

The test is mysterious partly because I'm not quite sure why it's needed :). It appears
that the UserGenerator node interpolates the positions of some joints which the Kinect
cannot see. For example, in Figure 12, the left foot joint (the one on the left of the
picture with no limb) is not actually visible to the Kinect sensor. The joint's
coordinates appears to be generated by using the (x, z) coordinate of the left knee joint
plus a y-axis offset. Another example is when a joint is obscured by another, such as
when the user turns sideways to the Kinect. The obscured joint appears to be assigned
a similar (x, z) value to the joint that's in front of it.

LengthVec is the vector between two adjacent joints (see Figure 13). If the XZ
component of lengthVec is very close to zero, then the AxisAngle4d object can rotate
correctly by limbAngle radians. However, if the two joints have identical (x, z) values
then the normalized lengthVec will be parallel to UPVEC, and the cross product
returns a null vector (i.e. (0, 0, 0)). When that happens, the axis angle ignores the
limbAngle value, and the limb will end up pointing in the same direction as UPVEC,
up the y-axis.

isLimbUpdatable() checks for XZ values very close to 0, and makes a limb invisible
before it flips into an upright position.

