
Java Prog. Techniques for Games. NUI Chapter 7. Face Tracking Draft #3 (10th July 2013)

 1 © Andrew Davison 2013

NUI Chapter 7. Face Detection and Tracking

[Note: all the code for this chapter is available online at

http://fivedots.coe.psu.ac.th/~ad/jg/??; only important fragments are described here.]

This chapter explains how a face can be tracked. As with earlier examples, I'll grab

frames from the webcam, and draw them rapidly onto a panel. At the same time, a

detector analyzes the frames to find a face and highlight it in the panel. The

application, called FaceTracker, is shown in Figure 1.

Figure 1. Face Tracking over Time.

The tracker draws a yellow rectangle around the face, and red crosshairs centered

inside the rectangle.

The detection code is fast when there's a face present in the image (around 40ms), but

may take substantially longer to decide there's no face (as much as 200ms). Two

important aspects of the coding are finding ways to speed up the detection, and

making sure that lengthy detection processing don't slow down the rest of the program

(in particular, the rendering of successive images onto the panel).

The next chapter will extend the processing to recognize the tracked face. The

distinction between face detection and recognition is that recognition returns a name

for the face.

Detection is carried out by a Haar classifier, pre-trained to find facial features (when

viewed front-on). The classifier's training requires a great deal of time, but thankfully

I can skip that stage because I'm using a face classifier that's already part of OpenCV.

Java Prog. Techniques for Games. NUI Chapter 7. Face Tracking Draft #3 (10th July 2013)

 2 © Andrew Davison 2013

1. Face Detection

The FaceDetection.java example described in this section reads an image from a file,

locates all the faces in the picture. It draws yellow rectangles around them, then writes

the modified image out to a new JPEG file. Figure 2 shows an example image before

and after the faces have been identified.

Figure 2. Finding Faces in an Image.

The face detection uses the same Haar classifier that I'll be employing later on in my

tracker application, and Figure 2 highlights some of the strengths and weaknesses of

the approach. Multiple faces can be found easily and quickly, but only if a face is

almost level and almost completely visible. For instance, the classifier failed to label

the men at the left and right edges of the image because too much of their faces are

missing or obscured. Also, a Haar classifier can often return false positives –

highlighted areas which are not faces. This can be seen in the right hand image of

Figure 2, where a crinkled shirt elbow is misidentified.

The code for FaceDetection.java:

import com.googlecode.javacv.*;

import com.googlecode.javacv.cpp.*;

import com.googlecode.javacpp.Loader;

import static com.googlecode.javacv.cpp.opencv_core.*;

import static com.googlecode.javacv.cpp.opencv_imgproc.*;

import static com.googlecode.javacv.cpp.opencv_highgui.*;

import static com.googlecode.javacv.cpp.opencv_objdetect.*;

public class FaceDetection

{

 private static final int SCALE = 2;

 // scaling factor to reduce size of input image

 // cascade definition for face detection

 private static final String CASCADE_FILE =

 "haarcascade_frontalface_alt.xml";

 private static final String OUT_FILE = "markedFaces.jpg";

 public static void main(String[] args)

 {

 if (args.length != 1) {

Java Prog. Techniques for Games. NUI Chapter 7. Face Tracking Draft #3 (10th July 2013)

 3 © Andrew Davison 2013

 System.out.println("Usage: run FaceDetection <input-file>");

 return;

 }

 // preload the opencv_objdetect module to work around a known bug

 Loader.load(opencv_objdetect.class);

 // load an image

 System.out.println("Loading image from " + args[0]);

 IplImage origImg = cvLoadImage(args[0]);

 // convert to grayscale

 IplImage grayImg =

 cvCreateImage(cvGetSize(origImg), IPL_DEPTH_8U, 1);

 cvCvtColor(origImg, grayImg, CV_BGR2GRAY);

 // scale the grayscale (to speed up face detection)

 IplImage smallImg = IplImage.create(grayImg.width()/SCALE,

 grayImg.height()/SCALE, IPL_DEPTH_8U, 1);

 cvResize(grayImg, smallImg, CV_INTER_LINEAR);

 // equalize the small grayscale

 cvEqualizeHist(smallImg, smallImg);

 // create temp storage, used during object detection

 CvMemStorage storage = CvMemStorage.create();

 // instantiate a classifier cascade for face detection

 CvHaarClassifierCascade cascade =

 new CvHaarClassifierCascade(cvLoad(CASCADE_FILE));

 System.out.println("Detecting faces...");

 CvSeq faces = cvHaarDetectObjects(smallImg, cascade, storage,

 1.1, 3, CV_HAAR_DO_CANNY_PRUNING);

 cvClearMemStorage(storage);

 // draw thick yellow rectangles around all the faces

 int total = faces.total();

 System.out.println("Found " + total + " face(s)");

 for (int i = 0; i < total; i++) {

 CvRect r = new CvRect(cvGetSeqElem(faces, i));

 cvRectangle(origImg, cvPoint(r.x()*SCALE, r.y()*SCALE),

 cvPoint((r.x() + r.width())*SCALE,

 (r.y() + r.height())*SCALE),

 CvScalar.YELLOW, 6, CV_AA, 0);

 // undo image scaling when calculating rect coordinates

 }

 if (total > 0) {

 System.out.println("Saving marked-faces version of " +

 args[0] + " in " + OUT_FILE);

 cvSaveImage(OUT_FILE, origImg);

 }

 } // end of main()

} // end of FaceDetection class

The image preprocessing consists of three steps: conversion of the color input image

to grayscale (necessary for the subsequent equalization and Haar detection), scaling to

reduce the size of the image (and thereby reduce the detection time), and grayscale

Java Prog. Techniques for Games. NUI Chapter 7. Face Tracking Draft #3 (10th July 2013)

 4 © Andrew Davison 2013

equalization. Equalization examines the image's range of grayscale values and widens

them to cover more of the total range from black to white. The result is an image with

larger contrasts between similarly shaded areas, which makes object detection easier

later on.

1.1. Background on Haar Classification

Although I've mentioned Haar classification a few times, I haven't explained how it

finds faces. In fact, I've been selling it short, because it can be used for much more

than just face detection. A Haar classifier can be trained to detect most types of

'blocky', fairly rigid objects, such as cars, motorbikes, and parts of the human body

such as the eyes and mouth. It's less great at recognizing structures with tree-like

branches such as hands, or smooth shapes containing very little texturing, lines, or

varying sub-regions.

Good training involves using many thousands of high-quality positive images. For

face detection, this means close-up pictures of heads which all have a very similar

front-facing pose with little background variation. Eyes, noses, and mouths should all

be in roughly the same position across all the pictures, and the images should be the

same size. You also need to train the classifier with a similar number of negative

images (pictures without faces).

As you might suspect, all this training may take tens of hours, or even longer! The

good news is that OpenCV comes with several pre-trained Haar classifiers for

different objects, including faces, relieving me of any trainer work. You'll find the

classifiers in the OpenCV download, in the directory <OpenCV>\data\haarcascades\.

A source for other classifiers is http://alereimondo.no-ip.org/OpenCV/34.

If you really want to train your own classifier, then there's a good description of the

necessary steps in Chapter 13 of Learning OpenCV by Bradski and Kaehler. Online

resources include Naotoshi Seo's excellent tutorial at

http://note.sonots.com/SciSoftware/haartraining.html

One reason for the Haar classifier's speed is that it looks for features represented by

rectangular groups of pixels (some typical examples are shown in Figure 3) rather

than individual pixels.

Figure 3. Some Common Haar Features.

These rectangular patterns can be scaled so that different feature sizes can be found

using the same approach. Detection is made faster by converting the picture into an

integral image, where a given (x, y) pixel contains the sum of all the original picture's

Java Prog. Techniques for Games. NUI Chapter 7. Face Tracking Draft #3 (10th July 2013)

 5 © Andrew Davison 2013

pixel intensities in the rectangle between (0, 0) and (x, y). This makes checking for

feature rectangles a fast, simple operation involving only a few additions and

subtractions. The Haar features that are rotated by 45 degrees (see Figure 3 for some

examples) require the original picture to be rotated before being converted to an

integral.

The use of integrals is fast and efficient but calculating the 100,000 possible features

in even a small image is still too time-consuming, Fortunately, its possible to

drastically reduce the number of features that need to be tested to decide whether an

image contains an object (e.g. a face). Feature testing is organized into a cascade

(something like a binary tree), where the cascade's root node contains the test that has

proven the best at finding an object during training. If an image isn't rejected by this

test then it's passed down the cascade to the second-best test, and so on. Only if an

image reaches the end of all the tests without being rejected, is it deemed to contain

an object.

The main drawback of Haar classification is the relatively high negative hit rate – an

object is detected which isn't really in the image. We can see that in Figure 2, where

the face detector decides somebody's elbow is a face.

Haar classification was first developed by Paul Viola and Michael Jones, and so is

sometimes known as Viola-Jones detection. A copy of their paper can be downloaded

from http://research.microsoft.com/en-

us/um/people/viola/Pubs/Detect/violaJones_CVPR2001.pdf. OpenCV documentation

on Haar classification is located at

http://opencv.willowgarage.com/documentation/c/objdetect_cascade_classification.ht

ml

1.2. Using the Haar Classifier

If you look back at the FaceDetection.java example, the code related to the classifier

is:

// cascade definition for face detection

private static final String CASCADE_FILE =

 "haarcascade_frontalface_alt.xml";

 :

// instantiate a classifier cascade for face detection

CvHaarClassifierCascade cascade =

 new CvHaarClassifierCascade(cvLoad(CASCADE_FILE));

CvSeq faces = cvHaarDetectObjects(smallImg, cascade, storage,

 1.1, 3, CV_HAAR_DO_CANNY_PRUNING);

The classifier information is stored as an XML file in the local directory, and loaded

by the CvHaarClassifierCascade() constructor. I copied the XML file from

<OpenCV>\data\haarcascades\. Some developers recommend using

haarcascade_frontalface_alt2.xml instead, but I found no difference between them in

my tests.

Java Prog. Techniques for Games. NUI Chapter 7. Face Tracking Draft #3 (10th July 2013)

 6 © Andrew Davison 2013

cvHaarDetectObjects() finds rectangular regions in the input image that contain

objects recognized by the classifier. The returned data structure is a sequence (list) of

these rectangles.

The classifier scans the image several times at different scales, controlled by the

fourth argument (the value 1.1 in the code above). Increasing the scale factor (e.g. to

1.2) will make the classifier run faster, but also increase the chance that it might miss

a feature at a certain size.

The fifth argument (the value 3 in the example above) is the number of overlapping

detections needed before a region is deemed to contain an object. Reducing this value

will increase processing speed, but increases the chance of negative hits.

The Canny pruning argument specifies that regions with no lines are to be skipped,

thereby speeding up the search.

1.3. Accessing the Face Information

The CvSeq JavaCV data type is something like a Java ArrayList of Rectangle objects

in this example, and is manipulated in an analogous way. A loop iterates through the

sequence, accessing each rectangle:

int total = faces.total();

for (int i = 0; i < total; i++) {

 CvRect r = new CvRect(cvGetSeqElem(faces, i));

 cvRectangle(origImg, cvPoint(r.x()*SCALE, r.y()*SCALE),

 cvPoint((r.x() + r.width())*SCALE,

 (r.y() + r.height())*SCALE),

 CvScalar.YELLOW, 6, CV_AA, 0);

 // undo image scaling when calculating rect coordinates

}

JavaCV's CvRect data type is similar to Java's Rectangle class – it stores the top-left

hand corner of the rectangle as a (x, y) coordinate, and the rectangle's width and

height. These are drawn onto the original image (the one loaded from the file), using

OpenCV's cvRectangle() drawing function. One tricky aspect is to remember to undo

the scaling of the rectangle values, so they match the original image's unscaled

dimensions.

2. The Face Tracker

My tracker application (see Figure 1) captures webcam snaps with JavaCV's

FrameGrabber and then performs face detection using code similar to the previous

section. The class diagrams for the application are given in Figure 4.

Java Prog. Techniques for Games. NUI Chapter 7. Face Tracking Draft #3 (10th July 2013)

 7 © Andrew Davison 2013

Figure 4. Class Diagrams for the FaceTracker Application.

I won't bother explaining the top-level FaceTracker class – it’s a standard JFrame

which creates the FacePanel object, and a button. Pressing the button, labeled as

"Save Face", makes FacePanel save the currently highlighted face (i.e. the subimage

inside the yellow rectangle) to a file.

The FacePanel class spends much of it's time inside a threaded loop which repeatedly

grabs an image from the webcam and draws it onto the panel until the window is

closed. FacePanel differs from similar panel classes in earlier examples in one

important way. Since face detection is such a time consuming process, it is farmed out

to a separate thread that uses a mixture of Java 2D and JavaCV. The rest of this

chapter will describe these aspects in more detail.

2.1. Initializing the Detector

When cvHaarDetectObjects() is eventually called, it has two prerequisites that I can

deal with at start-up time: I load the classifier's XML file, and create dynamic storage

which will be allocated as the function progresses. This occurs in the initDetector()

method, called from FacePanel's constructor:

// globals

// classifier for face detection

private static final String FACE_CASCADE_FNM =

 "haarcascade_frontalface_alt.xml";

 // "haarcascade_frontalface_alt2.xml";

private CvHaarClassifierCascade classifier;

private CvMemStorage storage;

private CanvasFrame debugCanvas;

private void initDetector()

{

 // instantiate a classifier cascade for face detection

 classifier = new CvHaarClassifierCascade(cvLoad(FACE_CASCADE_FNM));

 if (classifier.isNull()) {

 System.out.println("\nCould not load: " + FACE_CASCADE_FNM);

 System.exit(1);

 }

Java Prog. Techniques for Games. NUI Chapter 7. Face Tracking Draft #3 (10th July 2013)

 8 © Andrew Davison 2013

 storage = CvMemStorage.create();

 // create storage used during object detection

 // debugCanvas = new CanvasFrame("Debugging Canvas");

} // end of initDetector()

The code for the creation of a debugCanvas object is commented out. It was used

during debugging to show the intermediate stages in an image's transformation.

CanvasFrame is a useful way of quickly displaying an image without creating

additional GUI elements in the Swing application.

2.2. The Display Loop

The FacePanel() constructor invokes a thread which starts the webcam display loop

inside run(). The method is similar to what we've seen before, except when it passes

the snapped image to trackFace() for processing (shown in bold in the following):

// globals

private static final int DELAY = 100;

 // time (ms) between redraws of the panel

private static final int CAMERA_ID = 0;

private static final int DETECT_DELAY = 500;

 // time (ms) between each face detection

private static final int MAX_TASKS = 4;

 // max no. of tasks that can be waiting to be executed

private IplImage snapIm = null;

private volatile boolean isRunning;

// used for the average ms snap time information

private int imageCount = 0;

private long totalTime = 0;

// used for thread that executes the face detection

private AtomicInteger numTasks;

 // used to record number of detection tasks

private long detectStartTime = 0;

public void run()

{

 FrameGrabber grabber = initGrabber(CAMERA_ID);

 if (grabber == null)

 return;

 long duration;

 isRunning = true;

 while (isRunning) {

 long startTime = System.currentTimeMillis();

 snapIm = picGrab(grabber, CAMERA_ID);

 if (((System.currentTimeMillis() - detectStartTime) >

 DETECT_DELAY) &&

Java Prog. Techniques for Games. NUI Chapter 7. Face Tracking Draft #3 (10th July 2013)

 9 © Andrew Davison 2013

 (numTasks.get() < MAX_TASKS))

 trackFace(snapIm);

 imageCount++;

 repaint();

 duration = System.currentTimeMillis() - startTime;

 totalTime += duration;

 if (duration < DELAY) {

 try {

 Thread.sleep(DELAY-duration);

 }

 catch (Exception ex) {}

 }

 }

 closeGrabber(grabber, CAMERA_ID);

} // end of run()

Face detection, even after various speed optimizations, can still take a 200ms to fail to

find anything. Such a lengthy delay would severely affect run()'s display loop, which

is meant to draw a new image onto the panel roughly every DELAY (100) ms.

I get around that problem by utilizing a separate thread to execute the work inside

trackFace() (see below for details), allowing the display loop to progress without

delay. Altogether, FaceTracker utilizes three threads – the GUI event thread, a thread

containing the display loop in run(), and a face detection thread inside trackFace().

Due to the time-consuming nature of trackFace()'s work, I limit its call frequency to

once every DETECT_DELAY (500) ms. I'll explain the other part of the if-test

around the trackFace() call – the test of the numTasks atomic integer – shortly.

trackFace()'s threaded nature means that its call in run() will return almost

immediately, before the detection task has been completed. As a consequence, the

duration calculated inside run() doesn't include detection time.

2.3. Tracking a Face in a Thread

The simplest way of implementing a threaded detection task is to fire off a new thread

each time an image needs to be analyzed. This is almost certainly not a good idea

since we don't know whether the underlying OpenCV library (i.e. the C code inside

OpenCV's DLLs) is capable of dealing with multiple detection tasks being carried out

at the same time.

It's hard to test OpenCV's robustness in the face of concurrency, since any problems

depend on how multiple calls overlap in their use of global data structures, DLLs, and

the underlying OS. It's better to avoid the problem altogether by enforcing a

restriction that only one detection task can execute inside the detection thread at a

time; pending tasks will have to queue up to wait their turn.

Since Java 5, it's been easy to create threads with this kind of behavior, by using an

ExecutorService object to manage a single threaded executor:

// global

private ExecutorService executor;

// in the FacePanel() constructor

Java Prog. Techniques for Games. NUI Chapter 7. Face Tracking Draft #3 (10th July 2013)

 10 © Andrew Davison 2013

executor = Executors.newSingleThreadExecutor();

The factory method, Executors.newSingleThreadExecutor(), creates an executor

consisting of a single worker thread taking tasks off an unbounded queue one at a

time. Tasks are guaranteed to execute sequentially, and no more than one task will be

active at any given time.

One way of improving this execution scenario is to limit the length of the task queue,

since we don't want an unbounded number of detection tasks waiting to be processed.

The queue length can be limited by using an atomic integer as a counter to record the

number of tasks currently on the queue:

// globals

private static final int MAX_TASKS = 4;

 // max no. of tasks that can be waiting to be executed

private AtomicInteger numTasks;

 // used to record number of detection tasks

// in the FacePanel constructor()

numTasks = new AtomicInteger(0);

nunTasks is atomic since both the webcam display and detection threads are able to

modify it. I don't want problems to arise if they try to manipulate the integer at the

same time.

The second half of the if-test around the call to trackFace() implements the bounded

queue requirement:

if (((System.currentTimeMillis() - detectStartTime) >

 DETECT_DELAY) &&

 (numTasks.get() < MAX_TASKS))

 trackFace(im);

trackFace() is only called if there are less than MAX_TASKS (4) tasks associated

with the executor – one running and three waiting.

2.4. Detecting a Face

The face detection code inside trackFace() is in a run() method. It's invocation is

added to the executor's queue as a pending task when trackFace() is called:

// globals

private IplImage grayIm;

private volatile boolean saveFace = false;

 // set by the "Save Face" button

private void trackFace(final IplImage img)

{

 grayIm = scaleGray(img);

 numTasks.getAndIncrement();

 // increment no. of tasks before entering queue

Java Prog. Techniques for Games. NUI Chapter 7. Face Tracking Draft #3 (10th July 2013)

 11 © Andrew Davison 2013

 executor.execute(new Runnable() {

 public void run()

 {

 detectStartTime = System.currentTimeMillis();

 CvRect rect = findFace(grayIm);

 if (rect != null) {

 setRectangle(rect);

 if (saveFace) {

 clipSaveFace(img);

 saveFace = false;

 }

 }

 long detectDuration =

 System.currentTimeMillis() - detectStartTime;

 System.out.println(" detect time: " + detectDuration + "ms");

 numTasks.getAndDecrement();

 // decrement no. of tasks since finished

 }

 });

} // end of trackFace()

The hard work of face detection by the Haar classifier is hidden away in findFace(),

which returns a single JavaCV rectangle object. This information is stored by

setRectangle() for later rendering onto the panel, and the clipped face is saved if the

"Save Face" button has been pressed.

The task counter, numTasks, is incremented outside the run() method since I want to

record the number of tasks queuing as well as the one currently executing. However

the counter is decremented at the end of the task (the last line of run()).

The Haar classifier requires a grayscale image, which is generated by scaleGray()

before the thread starts. scaleGray() also reduces the image's size, to speed up the

processing, and equalizes it. The code is very similar to that performed in the earlier

FaceDetector example.

The time taken by the classifier is printed to standard output. On my slow test

machine, finding a face usually took 20-50ms while failing to find one could take

between 70-200ms. These times indicate that I could increase the detection activation

frequency which is currently set at once every DETECT_DELAY (500) ms.

2.5. Finding a Face

The findFace() method calls the Haar classifier, and extracts a single rectangle from

the result.

private CvRect findFace(IplImage grayIm)

{

 // Haar classification

 CvSeq faces = cvHaarDetectObjects(grayIm, classifier, storage,

 1.1, 1, CV_HAAR_DO_ROUGH_SEARCH |

 CV_HAAR_FIND_BIGGEST_OBJECT);

 /* speed things up by searching for only a single,

 largest face subimage */

 int total = faces.total();

 if (total == 0) {

Java Prog. Techniques for Games. NUI Chapter 7. Face Tracking Draft #3 (10th July 2013)

 12 © Andrew Davison 2013

 System.out.println("No faces found");

 return null;

 }

 else if (total > 1)

 System.out.println("Multiple faces detected (" + total

 + "); using the first");

 else

 System.out.println("Face detected");

 CvRect rect = new CvRect(cvGetSeqElem(faces, 0)); //get rectangle

 cvClearMemStorage(storage);

 return rect;

} // end of findFace()

The arguments of the cvHaarDetectObjects() call are a little different from those in

my earlier FaceDetection.java example. The fifth argument sets the number of

overlapping detections needed before a region is deemed to contain an object to only

1 (it was 3 in FaceDetection). Reducing this value increases processing speed, but

increases the chance of negative hits.

The final argument is an OR'ed combination of CV_HAAR_DO_ROUGH_SEARCH

and CV_HAAR_FIND_BIGGEST_OBJECT which signals that only the largest

object need be returned, and that a faster search is preferred. Canny pruning isn't

included since it interacts unfavorably with the rough search setting.

During debugging, it was useful to display the JavaCV image utilized in findFace(). I

added the following lines at the start of the method:

// show the grayscale

debugCanvas.showImage(grayIm);

debugCanvas.waitKey(0);

2.6. Saving a Rectangle

setRectangle() extracts the face rectangle's coordinates ((x, y), width, height) from the

JavaCV data structure and stores them in a Java Rectangle object. In the process, the

data is enlarged, so it has the same scale as the original snapped image.

// globals

private static final int IM_SCALE = 4;

private static final int SMALL_MOVE = 5;

private Rectangle faceRect; // holds coords of highlighted face

private void setRectangle(CvRect r)

{

 synchronized(faceRect) {

 int xNew = r.x()*IM_SCALE;

 int yNew = r.y()*IM_SCALE;

 int widthNew = r.width()*IM_SCALE;

 int heightNew = r.height()*IM_SCALE;

 // calculate movement of new rectangle compared to previous one

 int xMove = (xNew + widthNew/2) -

 (faceRect.x + faceRect.width/2);

Java Prog. Techniques for Games. NUI Chapter 7. Face Tracking Draft #3 (10th July 2013)

 13 © Andrew Davison 2013

 int yMove = (yNew + heightNew/2) -

 (faceRect.y + faceRect.height/2);

 // report movement only if it is 'significant'

 if ((Math.abs(xMove)> SMALL_MOVE) ||

 (Math.abs(yMove) > SMALL_MOVE))

 System.out.println("Movement (x,y): (" +

 xMove + "," + yMove + ")");

 faceRect.setRect(xNew, yNew, widthNew, heightNew);

 }

} // end of setRectangle()

Perhaps the most mysterious aspect of setRectangle() is its use of a synchronized

block. It's present because there's a possibility that faceRect can be used in two

threads at the same time. The face detection thread calls setRectangle() and

clipSaveFace() which both access faceRect, while the Java GUI thread needs it for

drawing.

The movement of the current face rectangle compared to the last one is calculated in

setRectangle(), but not used elsewhere in the application. I included the code since

such information would be useful in more complex face tracking applications.

2.7. Rendering the Highlighted Face

Figure 5 shows a typical rendering of the highlighted face in FaceTracker.

Figure 5. A Highlighted Face.

The panel contains four elements: the webcam image in the background, a yellow

rectangle, a red crosshairs image, and statistics written at the bottom left corner.

All rendering is done through calls to the panel's paintComponent():

// global

private IplImage snapIm = null; // current webcam snap

public void paintComponent(Graphics g)

{

 super.paintComponent(g);

 Graphics2D g2 = (Graphics2D) g;

 g2.setFont(msgFont);

Java Prog. Techniques for Games. NUI Chapter 7. Face Tracking Draft #3 (10th July 2013)

 14 © Andrew Davison 2013

 // draw the image, stats, and detection rectangle

 if (snapIm != null) {

 g2.setColor(Color.YELLOW);

 g2.drawImage(snapIm.getBufferedImage(), 0, 0, this);

 String statsMsg = String.format("Snap Avg. Time: %.1f ms",

 ((double) totalTime / imageCount));

 g2.drawString(statsMsg, 5, HEIGHT-10);

 // write statistics in bottom-left corner

 drawRect(g2);

 }

 else { // no image yet

 g2.setColor(Color.BLUE);

 g2.drawString("Loading from camera " + CAMERA_ID +

 "...", 5, HEIGHT-10);

 }

} // end of paintComponent()

drawRect() is in charge of drawing the yellow rectangle and the crosshairs:

// global

private Rectangle faceRect; // coords of the highlighted face

private void drawRect(Graphics2D g2)

{

 synchronized(faceRect) {

 if (faceRect.width == 0)

 return;

 // draw a thick yellow rectangle

 g2.setColor(Color.YELLOW);

 g2.setStroke(new BasicStroke(6));

 g2.drawRect(faceRect.x, faceRect.y,

 faceRect.width, faceRect.height);

 int xCenter = faceRect.x + faceRect.width/2;

 int yCenter = faceRect.y + faceRect.height/2;

 drawCrosshairs(g2, xCenter, yCenter);

 }

} // end of drawRect()

drawRect() uses a synchronized block for the same reason as setRectangle() earlier – I

don't want its access to the rectangle information to be affected by other threads.

Standard Java2D code is used to draw the rectangle, replacing my earlier use of

JavaCV's cvRectangle() in FaceDetection.java.

drawCrosshairs() draws a pre-loaded PNG image (see Figure 6) so it's centered at the

given coordinates.

Figure 6. The Crosshairs Image.

