
Java Prog. Techniques for Games. NUI Chapter 6.5. Topcodes Arm Draft #1 (24th July 2011)

1 © Andrew Davison 2011

NUI Chapter 6.5. Topcodes and the Robot Arm

[Note: all the code for this chapter is available online at
http://fivedots.coe.psu.ac.th/~ad/jg/??; only important fragments are described here.]

Chapter 6 ended with the robot arm being able to pick up and deliver items by
utilizing 3D coordinate locations. This chapter adds in a webcam and the topcodes
vision library (http://users.eecs.northwestern.edu/~mhorn/topcodes/) to enable things
(and places) to be referred to by tag IDs. For example, the user can request that the
arm moves the object with topcode ID 205 to the location marked by topcode ID 237.

The robot's working area is shown in Figure 1. The arm is positioned at the edge of
the graph paper, with its base at (0, 0), facing along the positive y-axis, with the –x
axis to its left, +x to the right.

Figure 1. The Robot Arm Grid.

Figure 1 includes five topcodes – they're the circular black and white pieces of paper,
one of which is stuck on the top of the sponge. Ninety nine different topcode graphics
can be downloaded from http://users.eecs.northwestern.edu/~mhorn/topcodes/;
Figure 2 shows a few of them.

Figure 2. Some Topcodes.

The ID numbers below the codes don't need to be included when the topcodes are

Java Prog. Techniques for Games. NUI Chapter 6.5. Topcodes Arm Draft #1 (24th July 2011)

2 © Andrew Davison 2011

printed, the topcodes vision library identifies a symbol by its pattern of concentric
circles.

The webcam is attached to a camera tripod, aimed straight down over the grid, as
shown in Figure 3.

Figure 3. The Webcam and Tripod.

The webcam is positioned at right angles to the grid surface, a requirement for
topcodes recognition. Figure 4 shows the webcam's view of the scene.

Figure 4. The Webcam View.

Java Prog. Techniques for Games. NUI Chapter 6.5. Topcodes Arm Draft #1 (24th July 2011)

3 © Andrew Davison 2011

The topcodes library can recognize codes as small as 25 x 25 pixels in an image,
under a variety of lighting conditions, without the need for camera calibration. For
each detected code, the library returns its ID number, its image location, its angular
orientation, and diameter.

Central to this chapter's application is the use of two coordinate systems, and the
mapping from one to the other. One coordinate space is relative to the webcam image,
the other to the grid, as illustrated by Figure 5.

Figure 5. The Two Coordinate Systems.

Image coordinates for the topcodes are obtained by analyzing the webcam's picture,
but the robot arm needs to be given grid coordinates in order to move correctly.

The mapping between the coordinate spaces can be derived from the relative positions
of the topcodes. To align the codes in the two spaces, the image can be rotated
counter-clockwise by 90 degrees, and enlarged.

My application utilizes topcodes in two different ways – as landmarks and as
trackers. The landmark codes have fixed positions on the grid, which allow an image-
to-grid mapping to be calculated quite easily. The tracker topcodes are moveable, and
so are employed to label the sponge (see Figure 1) and arm destinations.

The landmarks in Figure 5 are the three topcodes around the edge of the grid, while
the two trackers are towards the center.

Java Prog. Techniques for Games. NUI Chapter 6.5. Topcodes Arm Draft #1 (24th July 2011)

4 © Andrew Davison 2011

1. The Topcodes Robot Arm Application
The classes used by this chapter's application (called TCRobotArm) are shown in
Figure 6.

Figure 6. The Class Diagrams for the TCRobotArm Application.

The number of classes is a bit daunting, but we've seen most of them before. The
classes that control the movement of the robot arm (surrounded by a dotted line in
Figure 6) are unchanged from the previous chapter. I'll also be reusing the
JMFCapture class to grab images from the webcam. TCRobotArm and TCPanel are
subclasses of JFrame and JPanel, fairly similar to earlier GUI examples.

Each topcode is represented by a TopCodeItem object, with the collection of
landmark codes stored in the Landmarks class, and the trackers in Trackers.

The top-level TCRobotArm GUI is shown in Figure 7.

Java Prog. Techniques for Games. NUI Chapter 6.5. Topcodes Arm Draft #1 (24th July 2011)

5 © Andrew Davison 2011

Figure 7. The TCRobotArm GUI.

The majority of the window is taken up with TCPanel's rendering of the current
webcam image, but there's also a "Move Item" button at the bottom left. When the
user presses it, the arm moves to wherever the sponge is located, picks it up, and
carries it to the destination grid spot.

Crucially, the user doesn't have to enter coordinates for the sponge or destination;
they're found by the application looking for tracker topcodes in the image, mapping
them to grid positions, and passing those to the arm software.

Hardwired into my application is that the sponge is labeled by topcode ID 205, and
the destination is topcode 327. Both are trackers (they may be located anywhere on
the grid), but the other topcodes in Figure 7 (codes 333, 283, and 211) are landmarks
with fixed positions.

The webcam image drawn by TCPanel highlights the identified topcodes, drawing
black and white graphics for each, their IDs, and their grid positions.

After the sponge has been moved to the destination spot, the arm returns to its initial
position, as in Figure 8.

Java Prog. Techniques for Games. NUI Chapter 6.5. Topcodes Arm Draft #1 (24th July 2011)

6 © Andrew Davison 2011

Figure 8. The TCRobotArm after Moving the Sponge.

Figure 8 shows that the sponge is now 'approximately' on top of the destination spot,
the inaccuracy being due to the vagaries of the arm's gear wheels. Similarly, when the
arm returns to being upright, it never manages to reach its original starting position.

2. Threaded Arm Movement
The most important coding design in the top-level TCRobotArm class is the use of a
separate thread to execute arm movements. Since the arm takes several seconds to
pick up and deliver an item, it would be a major mistake to execute it directly from
the GUI thread. The GUI would 'lock up' (i.e. the webcam image would not be
redrawn) until the arm had finished its task.

The ActionListener for the "Move Item" button calls TCRobotArm.moveItem():

// globals
/* tracker topcodes IDs used by the robot arm: the arm will move
 the SPONGE_TOPCODE to the location of the DEST_TOPCODE */
private static final int SPONGE_TOPCODE = 205;
 // ID of the topcode stuck to the top of the sponge

private static final int DEST_TOPCODE = 327;
 // ID of the topcode located somewhere on the grid

private RobotArm robotArm;
private ExecutorService robotExecutor;
 // for executing the robot arm code in a separate thread

private JButton moveBut; // the "Move Item" button

Java Prog. Techniques for Games. NUI Chapter 6.5. Topcodes Arm Draft #1 (24th July 2011)

7 © Andrew Davison 2011

private void moveItem()
/* Move the robot as a separate thread task;
 called by the "Move Item" button's ActionListener */
{
 robotExecutor.execute(new Runnable() {
 public void run()
 {
 moveBut.setEnabled(false); // disable button during move

 // convert topcode IDs into grid coordinates
 Coord3D fromPt = getCoord(SPONGE_TOPCODE);
 Coord3D toPt = getCoord(DEST_TOPCODE);

 if ((fromPt != null) && (toPt != null)) {
 robotArm.moveItem(fromPt, toPt);
 System.out.println("Coord: " + robotArm.getCoord());
 robotArm.showAngles();
 robotArm.moveToZero();
 }

 moveBut.setEnabled(true);
 } // end of run()
 });
} // end of moveItem()

The time-consuming operations are the calls to RobotArm.moveItem() and
RobotArm. moveToZero(), so the easiest thing is to place all the code in the hands of
an ExecutorService which runs it in a separate thread. moveItem() immediately
returns, letting the GUI thread continue. However, I disable the "Move Item" button
so the user can't press it again until the robot has finished the curent move.

The topcode IDs for the sponge and destination spot are stored as constants, but their
current coordinates on the grid are determined at runtime by calling getCoord().

// globals
private static final int SPONGE_HEIGHT = 65; // in mm

private TCPanel topCodesPanel;

private Coord3D getCoord(int trackerID)
{
 TopCodeItem item = topCodesPanel.findTracker(trackerID);
 if (item == null) {
 System.out.println("Item " + trackerID + " is unknown");
 return null;
 }
 else if (!item.isLocatedOnGrid()) {
 System.out.println("Item " + trackerID + " not on grid");
 return null;
 }
 // get the tracker's grid position
 int xCoord = item.getXGrid();
 int yCoord = item.getYGrid();
 return new Coord3D(xCoord, yCoord, SPONGE_HEIGHT);
} // end of getCoord()

Java Prog. Techniques for Games. NUI Chapter 6.5. Topcodes Arm Draft #1 (24th July 2011)

8 © Andrew Davison 2011

getCoord() uses the supplied ID to access the relevant TopCodeItem in the Trackers
object maintained by TCPanel. The TopCodeItem is employed to check if the topcode
is on the grid, and to retrieve its current position.

I'll explain the details of the TopCodeItem class later in this chapter.

3. The Rendering Panel
TCPanel contains the usual run() method for displaying the current webcam image. In
addition, it extracts a list of topcodes from the image, and renders information about
them on top of the picture (as shown in Figure 8).

// globals
private BufferedImage image = null; // current webcam snap
private JMFCapture camera;
private volatile boolean isRunning;

private topcodes.Scanner scanner;
private java.util.List<TopCode> topCodes = null;

public void run()
{ initDisplay();

 BufferedImage im;
 long duration;
 isRunning = true;
 while (isRunning) {
 long startTime = System.currentTimeMillis();

 im = camera.getImage(); // take a snap
 if (im == null) {
 System.out.println("Problem loading image " + (imageCount+1));
 duration = System.currentTimeMillis() - startTime;
 }
 else {
 image = im; // only update image if it contains something
 imageCount++;

 topCodes = scanner.scan(enhanceImage(image));
 // find topcodes in the image
 locateItems(topCodes); // use topcodes to locate items

 duration = System.currentTimeMillis() - startTime;
 totalTime += duration;
 repaint();
 }

 if (duration < DELAY) {
 try {
 Thread.sleep(DELAY-duration);
 }
 catch (Exception ex) {}
 }
 }

 camera.close(); // close down the camera

Java Prog. Techniques for Games. NUI Chapter 6.5. Topcodes Arm Draft #1 (24th July 2011)

9 © Andrew Davison 2011

} // end of run()

The main topcodes library method is Scanner.scan() which is passed an image and
returns a list of TopCode objects found in that image.

In tests, the image supplied by my old webcam was often too blurry for the scan()
method to find all the topcodes. enhanceImage() employs several OpenCV techniques
to improve the results: image sharpening, smoothing for noise reduction, and adaptive
thresholding, applied to a grayscale version of the picture.

// global JavaCV variables
private CvMat lapKernel; // Laplace kernel for image sharpening
private IplImage grayImg;

private BufferedImage enhanceImage(BufferedImage im)
{
 IplImage img = IplImage.createFrom(im);
 cvCvtColor(img, grayImg, CV_BGR2GRAY); // convert to grayscale

 cvSmooth(grayImg, grayImg, CV_GAUSSIAN, 7, 7, 0, 0);

 cvAdaptiveThreshold(grayImg, grayImg, 255,
 CV_ADAPTIVE_THRESH_MEAN_C, CV_THRESH_BINARY, 5, 2);

 cvFilter2D(grayImg, grayImg, lapKernel, cvPoint(-1,-1)); // sharpen

 return grayImg.getBufferedImage();
} // end of enhanceImage()

The smoothing removes some of the graininess from the image, and the adaptive
thresholding maps the image to black and white, taking into account varying light
intensity. The final step is to sharpen the image using a Laplace filter, which is
created in TCPanel.initOpenCV():

// in initOpenCV(): make Laplace kernel
lapKernel = CvMat.create(3, 3);
lapKernel.put(1, 1, 5.0);
lapKernel.put(0, 1, -1.0);
lapKernel.put(2, 1, -1.0);
lapKernel.put(1, 0, -1.0);
lapKernel.put(1, 2, -1.0);

The transformation carried out by enhanceImage() is illustrated in Figure 9.

Java Prog. Techniques for Games. NUI Chapter 6.5. Topcodes Arm Draft #1 (24th July 2011)

10 © Andrew Davison 2011

Figure 9. The Effects of enhanceImage()

enhanceImage() makes the topcode symbols more distinct, allowing Scanner.scan() to
reliably find all of them at runtime.

3.1. Locating Landmarks and Trackers
locateItems() passes the topcodes' image coordinates to the Landmarks and Trackers
objects.

// globals
private int imageHeight = 0;
private Landmarks landmarks; // the two kinds of topcodes
private Trackers trackers;

private void locateItems(java.util.List<TopCode> topCodes)
{
 if ((topCodes == null) || (topCodes.size() == 0)) // no topcodes
 return;

 for (TopCode tc : topCodes) {
 int id = tc.getCode();
 int xImage = (int) tc.getCenterX();
 int yImage = imageHeight - (int) tc.getCenterY();
 // so y-axis goes up screen

 // store the image coordinates
 if (landmarks.isLandmark(id)) {
 if (!landmarks.canMapCoords())
 /* only keep adding landmark info until
 a mapping is obtained */
 landmarks.setImageCoord(id, xImage, yImage);
 }
 else
 trackers.setImageCoord(id, xImage, yImage);
 }

 if (landmarks.canMapCoords())
 trackers.calcGridCoords();
} // end of locateItems()

Java Prog. Techniques for Games. NUI Chapter 6.5. Topcodes Arm Draft #1 (24th July 2011)

11 © Andrew Davison 2011

Once the Landmarks class has been passed image coordinates for at least two of its
topcodes, it can calculate an image-to-grid coordinates mapping (I'll explain the
details when I describe the Landmarks class). From then on,
Landmarks.canMapCoords() will return true.

The Trackers object employs this mapping in calcGridCoords() to convert its
topcodes' image coordinates to grid positions. calcGridCoords() is called repeatedly
because trackers can move, so their changing image coordinates will require re-
mapping to the grid.

The topcodes vision library plots its codes using the standard image coordinate system
where the top-left of the image is at (0,0). However, the image-to-grid mapping is
somewhat easier to define if the image's origin is at the bottom-left. This is achieved
by subtracting the topcode's y value from the height of the webcam image:
int yImage = imageHeight - (int) tc.getCenterY();

imageHeight is assigned a value in TCPanel.initDisplay() at the same time that the
panel's dimensions are set.

3.2. Displaying a TopCode
TCPanel.paintComponent() displays the usual webcam image and statistics, and also
calls drawTopCodes() to render the topcodes. Each code is represented by three
elements: a circular black-and-white graphic, its ID, and a grid coordinate, as shown
in Figure 10.

Figure 10, A Rendered Topcode.

The drawTopCodes() method:

// globals
private java.util.List<TopCode> topCodes = null;
private Landmarks landmarks; // the two kinds of topcodes
private Trackers trackers;

private void drawTopCodes(Graphics2D g2)
{
 if ((topCodes == null) || (topCodes.size() == 0)) // no topcodes
 return;

 for (TopCode tc : topCodes) {
 tc.draw(g2); // draw a topcode image at its image location

 // access the topcode's attributes
 int id = tc.getCode();

Java Prog. Techniques for Games. NUI Chapter 6.5. Topcodes Arm Draft #1 (24th July 2011)

12 © Andrew Davison 2011

 String idStr = String.valueOf(id);
 int dia = (int) tc.getDiameter();
 int xCenter = (int) tc.getCenterX();
 int yCenter = (int) tc.getCenterY();
 int strWidth = g2.getFontMetrics().stringWidth(idStr);

 // write ID in black inside a white box below the topcode image
 g2.setColor(Color.WHITE);
 g2.fillRect((int)(xCenter - strWidth/2 - 3),
 (int)(yCenter + dia/2 + 6), strWidth+6, 12);
 g2.setColor(Color.BLACK);
 g2.drawString(idStr, xCenter - strWidth/2, yCenter + dia/2 + 16);

 // is the ID for a tracker or a landmark?
 TopCodeItem item = trackers.findTracker(id);
 if (item == null)
 item = landmarks.findLandmark(id);

 // write grid coordinates in red above the topcode image
 if ((item != null) && item.isLocatedOnGrid()) {
 g2.setColor(Color.RED);
 g2.drawString("(" + item.getXGrid() + ", " + item.getYGrid() +
 ")", xCenter - dia/2 - 8, yCenter - dia/2 - 8);
 }
 }
} // end of drawTopCodes()

The method calls TopCode.draw() to render the graphics, but the printing of the grid
coordinates requires TopCodeItem objects from the landmarks and trackers.

4. The TopCodeItem Class
The Topcode library's TopCode class stores a code's ID, its location in the image, its
angular orientation, and diameter. Unfortunately, this isn't quite enough because I also
need each code's position on the grid paper. My TopCodeItem class maintains both
coordinates for a code, and offers support methods for calculating the mapping
between them.

// globals in the TopCodeItem class
private int id;
private int xGrid, yGrid; // position on the grid (in mm)
private int xIm, yIm; // position on the image
private boolean isOnGrid, isOnImage;

public TopCodeItem(int id)
{
 this.id = id;
 isOnGrid = false; // no coords assigned to code yet
 isOnImage = false;
} // end of TopCodeItem()

public void setGridCoord(int x, int y)
{ xGrid = x;
 yGrid = y;

Java Prog. Techniques for Games. NUI Chapter 6.5. Topcodes Arm Draft #1 (24th July 2011)

13 © Andrew Davison 2011

 isOnGrid = true;
}

public void setImageCoord(int x, int y)
{ xIm = x;
 yIm = y;
 isOnImage = true;
}

The mapping calculation carried out by the Landmarks class needs the distance and
angle between two topcodes, in both the image and grid coordinate systems.

The grid distance and angle are calculated using a bit of trigonometry, as illustrated
by Figure 11, where the values are obtained for the topcodes 333 and 283, with the
angle relative to topcode 333.

Figure 11. The Grid Distance and Angle.

The distance and angle are returned by the gridDistTo() and gridAngleTo() methods
in TopCodeItem:

public double gridDistTo(TopCodeItem item)
// calculate grid distance to item
{
 if (!isOnGrid) {
 System.out.println("" + id + " not found on grid");
 return 0;
 }
 if (!item.isLocatedOnGrid()) {
 System.out.println("" + item.getID() + " not found on grid");
 return 0;
 }
 int x = item.getXGrid();
 int y = item.getYGrid();
 return Math.sqrt((xGrid-x)*(xGrid-x) + (yGrid-y)*(yGrid-y));

Java Prog. Techniques for Games. NUI Chapter 6.5. Topcodes Arm Draft #1 (24th July 2011)

14 © Andrew Davison 2011

} // end of gridDistTo()

public int gridAngleTo(TopCodeItem item)
// calculate grid degree angle to item
{
 if (!isOnGrid) {
 System.out.println("" + id + " not found on grid");
 return 0;
 }
 if (!item.isLocatedOnGrid()) {
 System.out.println("" + item.getID() + " not found on grid");
 return 0;
 }
 int x = item.getXGrid();
 int y = item.getYGrid();
 double radAngle = Math.atan2((double)(y-yGrid),
 (double)(x-xGrid));
 int angle = (int) Math.round(Math.toDegrees(radAngle));
 return angle;
} // end of gridAngleTo()

The image distance and angle are obtained in the same way but by employing the
image coordinates of the topcodes (see Figure 12).

Figure 12. The Image Distance and Angle.

Note that the image coordinate system has the y-axis pointing upwards. The
TopCodeItem imageDistTo() and imageAngleTo() methods are:

public double imageDistTo(TopCodeItem item)
// calculate image distance to item
{

Java Prog. Techniques for Games. NUI Chapter 6.5. Topcodes Arm Draft #1 (24th July 2011)

15 © Andrew Davison 2011

 if (!isOnImage) {
 System.out.println("" + id + " not found on image");
 return 0;
 }
 if (!item.isLocatedOnImage()) {
 System.out.println("" + item.getID() + " not found on image");
 return 0;
 }
 int x = item.getXImage();
 int y = item.getYImage();
 return Math.sqrt((x-xIm)*(x-xIm) + (y-yIm)*(y-yIm));
} // end of imageDistTo()

public int imageAngleTo(TopCodeItem item)
// calculate image angle to item
{
 if (!isOnImage) {
 System.out.println("" + id + " not found on image");
 return 0;
 }
 if (!item.isLocatedOnImage()) {
 System.out.println("" + item.getID() + " not found on image");
 return 0;
 }
 int x = item.getXImage();
 int y = item.getYImage();
 double radAngle = Math.atan2((double)(y-yIm), (double)(x-xIm));
 int angle = (int) Math.round(Math.toDegrees(radAngle));
 return angle;
} // end of imageAngleTo()

5. Finding Landmarks
The Landmarks object is assigned topcodes with fixed grid positions (which come
from a landmarks.txt file) but their image positions are initially unknown. TCPanel
repeatedly calls Landmarks.setImageCoord() to assign image coordinates to those
codes. When there are at least two landmark topcodes with both grid and image
coordinates, an image-to-grid mapping can be calculated.

Once the mapping exists, the Trackers object can start asking Landmarks to calculate
the grid positions of its topcodes.

My application uses three landmarks (seen around the edge of the grid in Figure 11).
Their grid positions are specified in landmarks.txt:

// landmarks for large graph
// id xGrid yGrid (in mm)

333 -190 100
283 120 270
211 180 50

The three topcodes have IDs 333, 283, and 211. The Landmarks.readInfo() method
creates a TopCodeItem object for each data line from the file, and stored them in an

Java Prog. Techniques for Games. NUI Chapter 6.5. Topcodes Arm Draft #1 (24th July 2011)

16 © Andrew Davison 2011

ArrayList called landmarks. The Landmarks() constructor also creates an empty array
called located[]:

// globals
private static final String LANDMARKS_FNM = "landmarks.txt";

private static final int MIN_LANDMARKS = 2;
 /* minimum of landmarks that need to be 'located'
 (i.e. have both grid and image coords). */

private ArrayList<TopCodeItem> landmarks; // all the landmarks
private TopCodeItem[] located;
 // landmarks with both grid and image coords
private int numLocated;
 // no. of landmarks currently located on the image

public Landmarks()
{
 landmarks = new ArrayList<TopCodeItem>();
 readInfo(landmarks, LANDMARKS_FNM);

 located = new TopCodeItem[MIN_LANDMARKS];
 numLocated = 0;
} // end of Landmarks()

The located[] array hold references to the topcodes which have both grid and image
coordinates. MIN_LANDMARKS (2) such codes are needed before the image-to-grid
mapping can be calculated.

Topcodes in the Landmarks object are assigned image coordinates by TCPanel calling
Landmarks.setImageCoord():

// globals
private boolean canMapCoords = false;
 // is the mapping possible yet?

public void setImageCoord(int id, int xImage, int yImage)
// set landmark id's image coordinate
{
 if (canMapCoords){
 System.out.println("No need for " + id +
 "; enough landmarks have been located");
 return;
 }

 TopCodeItem item = findLandmark(id); // find id landmark
 if (item == null) {
 System.out.println("" + id + " not a landmark");
 return;
 }

 if (item.isLocatedOnImage()) {
 System.out.println("" + id + " already located on the image");
 return;
 }

Java Prog. Techniques for Games. NUI Chapter 6.5. Topcodes Arm Draft #1 (24th July 2011)

17 © Andrew Davison 2011

 // record image coordinate
 item.setImageCoord(xImage, yImage);
 located[numLocated] = item;
 numLocated++;
 if (numLocated == MIN_LANDMARKS) {
 calcMapping();
 canMapCoords = true;
 // trackers image coords can now be mapped to grid coords
 }
} // end of setImageCoord()

Once MIN_LANDMARKS codes have been issued image coordinates,
calcMapping() is called to calculate the mapping from image to grid coordinates. This
is defined using two parameters – a scale factor from image to grid distances, and a
rotation offset for moving from images to grid orientations.

private void calcMapping()
{
 // distance scale factor (image --> grid)
 double gridDist = located[0].gridDistTo(located[1]);
 double imageDist = located[0].imageDistTo(located[1]);
 distanceScaleFactor = gridDist/imageDist;

 // angle difference (image --> grid)
 int gridAngle = located[0].gridAngleTo(located[1]);
 int imageAngle = located[0].imageAngleTo(located[1]);
 angleDifference = gridAngle - imageAngle;
} // end of calcMapping()

Figures 11 and 12 show typical values for the grid distance, grid angle, image
distance, and image angle between two topcodes.

The mapping only requires two parameters since both coordinate systems are flat,
allowing the transformation between them to be affine.

Once the mapping parameters have been calculated, the Trackers object can start
sending topcodes to Landmarks.mapToGridCoord() to obtain grid values.

// globals
// landmarks mappings from (image --> grid) coordinates
private double distanceScaleFactor;
private int angleDifference;
private boolean canMapCoords; // is the mapping possible yet?

public boolean mapToGridCoord(TopCodeItem trackerItem)
{
 if (!canMapCoords) {
 System.out.println("Insufficent landmarks");
 return false;
 }

 if (!trackerItem.isLocatedOnImage()) {
 System.out.println("Item has no image coords");
 return false;
 }

Java Prog. Techniques for Games. NUI Chapter 6.5. Topcodes Arm Draft #1 (24th July 2011)

18 © Andrew Davison 2011

 // store the old grid coordinates for this tracker;
 // will be 0 if the tracker has no previous grid coords
 int xPrev = trackerItem.getXGrid();
 int yPrev = trackerItem.getYGrid();

 // map item to grid distance and angle from located[0]
 double gItemDist = located[0].imageDistTo(trackerItem) *
 distanceScaleFactor;
 double gItemAngle = located[0].imageAngleTo(trackerItem) +
 angleDifference;
 double ang = Math.toRadians(gItemAngle);

 // calculate grid (x,y) position of item
 double xItem = located[0].getXGrid() +
 (gItemDist * Math.cos(ang));
 int x = (int)Math.round(xItem);
 double yItem = located[0].getYGrid() +
 (gItemDist * Math.sin(ang));
 int y = (int)Math.round(yItem);

 if ((x != xPrev) || (y != yPrev)) // update if changed
 trackerItem.setGridCoord(x, y);

 return true;
} // end of mapToGridCoord()

mapToGridCoord() starts by obtaining the image distance and angle between the first
landmark and the supplied tracker (see Figure 13).

Figure 13. Image Position of Tracker Relative to Landmark.

The mapping converts these values into a grid distance and angle between the two
topcodes (see Figure 14).

Java Prog. Techniques for Games. NUI Chapter 6.5. Topcodes Arm Draft #1 (24th July 2011)

19 © Andrew Davison 2011

Figure 14. Grid Position of Tracker Relative to Landmark.

The Cartesian (x, y) grid coordinates of the tracker is obtained by combining the
landmark's position with the x- and y- offset of the tracker.

6. Tracking Moving Topcodes
The Trackers object stores topcodes that can move, which mean their image
coordinates may change over time. Modifications are done by TCPanel calling
Trackers.setImageCoord():

// globals
private ArrayList<TopCodeItem> trackers; // all the trackers

public void setImageCoord(int id, int xImage, int yImage)
{
 TopCodeItem item = findTracker(id);
 if (item != null) // tracker already exists
 item.setImageCoord(xImage, yImage); // update position
 else {
 TopCodeItem newItem = new TopCodeItem(id);
 newItem.setImageCoord(xImage, yImage);
 trackers.add(newItem);
 }
} // end of setImageCoord()

Trackers.setImageCoord() is called from TCPanel.locateItems(). locateItems() also
calls Trackers.calcGridCoords() to recalculate of the tracker codes' grid coordinates:

// global

Java Prog. Techniques for Games. NUI Chapter 6.5. Topcodes Arm Draft #1 (24th July 2011)

20 © Andrew Davison 2011

private ArrayList<TopCodeItem> trackers; // all the trackers
private Landmarks landmarks; // for grid coord calculations

public void calcGridCoords()
{
 if (!landmarks.canMapCoords())
 System.out.println("Insufficent landmarks");
 else {
 for(TopCodeItem item : trackers)
 landmarks.mapToGridCoord(item);
 }
} // end of calcGridCoords()

The Trackers object deals with the recalculation of its codes' grid positions by sending
the codes over to the Landmarks object for updating.

