
NUI Chapter 5.5. Hand and Finger Detection Draft #2 (7th July 2013)

 1 © Andrew Davison 2013

NUI Chapter 5.5. Hand and Finger Detection

The colored blob detection code of Chapter 5 (available at

http://fivedots.coe.psu.ac.th/~ad/jg/nui05/) can be used as the basis of other shape

analyzers, which I'll illustrate here by extending it to detect a hand and fingers. In

Figure 1, I'm wearing a black glove on my left hand. My Handy application attempts

to find and label the thumb, index, middle, ring, and little finger. Yellow lines are

drawn between the fingertips and the center-of-gravity (COG) of the hand.

Figure 1. Detecting a Left Hand and Fingers.

I utilized the HSVSelector application of Chapter 5 to determine suitable HSV ranges

for the black glove. These ranges are loaded by Handy prior to executing the steps

shown in Figure 2 to obtain the hand's contour, its COG, and orientation relative to

the horizontal.

NUI Chapter 5.5. Hand and Finger Detection Draft #2 (7th July 2013)

 2 © Andrew Davison 2013

Figure 2. Finding the Hand Contour.

The various stages in Figure 2 are almost identical to those carried out by the

ColorRectDetector.findRect() method in section 4.1 of Chapter 5. However, Handy

continues processing, employing a convex hull and convexity defects to locate and

label the fingertips within the hand contour. These additional steps are shown in

Figure 3.

Figure 3. Finding and Labeling Fingertips.

NUI Chapter 5.5. Hand and Finger Detection Draft #2 (7th July 2013)

 3 © Andrew Davison 2013

The hull and defects are obtained from the contour with standard OpenCV operations,

which I'll explain below. However, the final step of naming the fingers utilizes a

rather hacky strategy that assumes the contour's defects are for an out-stretched left

hand. The thumb and index finger are located based on their angular position relative

to the COG, and the other fingers are identified based on their position relative to

those fingers. This process is rather fragile, and can easily become confused, as shown

in Figure 4.

Figure 4. A Misidentified Middle Finger.

Nevertheless, the technique is fairly reliable, usually identifying at least the thumb

and index finger irrespective of the hand's orientation, which should be enough for

basic gesture processing. However, the application doesn't identify gestures, which

will hopefully be the subject of a later chapter.

Class diagrams for Handy are shown in Figure 5, with only the public methods listed.

Figure 5. Class Diagrams for Handy.

NUI Chapter 5.5. Hand and Finger Detection Draft #2 (7th July 2013)

 4 © Andrew Davison 2013

The top-levels of Handy parallel those of the BlobsDrumming application in Chapter

5 (e.g. see Chapter 5's Figure 11), with the Handy class managing the JFrame and

HandPanel displaying the annotated webcam image. The image analyses summarized

in Figures 2 and 3 are performed by the HandDetector class, which is passed the

current webcam snap via a call to update(). It draws the current labeled fingertips,

COG, and connecting lines when HandPanel calls HandDetector.draw().

1. Analyzing the Webcam Image

The HandDetector.update() method is essentially a series of calls that implement

Figures 2 and 3.

// globals

private static final int IMG_SCALE = 2;

 // scaling applied to webcam image

// HSV ranges defining the glove color

private int hueLower, hueUpper, satLower, satUpper,

 briLower, briUpper;

// JavaCV elements

private IplImage scaleImg; // for resizing the webcam image

private IplImage hsvImg; // HSV version of webcam image

private IplImage imgThreshed; // threshold for HSV settings

// hand details

private Point cogPt; // center of gravity (COG) of contour

private int contourAxisAngle;

 // contour's main axis angle relative to the horiz (in degrees)

private ArrayList<Point> fingerTips;

public void update(IplImage im)

{

 cvResize(im, scaleImg);

 // reduce the size of the image to make processing faster

 // convert image format to HSV

 cvCvtColor(scaleImg, hsvImg, CV_BGR2HSV);

 // threshold image using loaded HSV settings for user's glove

 cvInRangeS(hsvImg, cvScalar(hueLower, satLower, briLower, 0),

 cvScalar(hueUpper, satUpper, briUpper, 0),

 imgThreshed);

 cvMorphologyEx(imgThreshed, imgThreshed, null, null,

 CV_MOP_OPEN, 1);

 // erosion followed by dilation on the image to remove

 // specks of white while retaining the image size

 CvSeq bigContour = findBiggestContour(imgThreshed);

 if (bigContour == null)

 return;

NUI Chapter 5.5. Hand and Finger Detection Draft #2 (7th July 2013)

 5 © Andrew Davison 2013

 extractContourInfo(bigContour, IMG_SCALE);

 // find the COG and angle to horizontal of the contour

 findFingerTips(bigContour, IMG_SCALE);

 // detect the fingertips positions in the contour

 nameFingers(cogPt, contourAxisAngle, fingerTips);

} // end of update()

update() begins by scaling the supplied webcam image to improve processing speeds.

It then converts the picture into HSV format so it can generate a threshold image

using the black glove's HSV ranges. This corresponds to the first line of Figure 2,

although the threshold is actually rendered as white pixels against a black

background.

The threshold, minus small specks, is passed to findBiggestContour(); the resulting

contour is assumed to be the user's hand in subsequent processing stages.

extractContourInfo() analyzes the contour to find the hand's center-of-gravity (COG),

and its orientation relative to the horizontal, which are stored in the cogPt and

contourAxisAngle globals. The completion of extractContourInfo() corresponds to the

end of Figure 2.

The findFingerTips() method wraps a convex hull around the contour to identify the

shape's defects (the top line of Figure 3), which we assume are the hand's fingers.

After a little filtering to reduce the number of defects, the remaining ones are treated

as fingertip coordinates, and stored in the global fingerTips list.

nameFingers() labels the fingers (assuming that the thumb and index finger are on the

left side of the hand), completing Figure 3's stages.

1.1. Finding the Biggest Contour

findBiggestContour() uses the JavaCV function cvFindContours() to create a list of

contours. For my binary threshold image, a contour is a region (or blob) of white

pixels. Each blob is approximated by a bounding box, and the contour corresponding

to the largest box is selected and returned.

// globals

private static final float SMALLEST_AREA = 600.0f;

 // ignore smaller contour areas

private CvMemStorage contourStorage;

private CvSeq findBiggestContour(IplImage imgThreshed)

{

 CvSeq bigContour = null;

 // generate all the contours in the threshold image as a list

 CvSeq contours = new CvSeq(null);

 cvFindContours(imgThreshed, contourStorage, contours,

 Loader.sizeof(CvContour.class),

 CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);

 // find the largest contour in the list based on bounded box size

 float maxArea = SMALLEST_AREA;

 CvBox2D maxBox = null;

NUI Chapter 5.5. Hand and Finger Detection Draft #2 (7th July 2013)

 6 © Andrew Davison 2013

 while (contours != null && !contours.isNull()) {

 if (contours.elem_size() > 0) {

 CvBox2D box = cvMinAreaRect2(contours, contourStorage);

 if (box != null) {

 CvSize2D32f size = box.size();

 float area = size.width() * size.height();

 if (area > maxArea) {

 maxArea = area;

 bigContour = contours;

 }

 }

 }

 contours = contours.h_next();

 }

 return bigContour;

} // end of findBiggestContour()

cvFindContours() can return different types of contours, collected together in different

kinds of data structures. I generate the simplest kind of contours, storing them in a

linear list which can be searched with a while loop.

After some experimentation, I placed a lower bound on the bounded box size of 600

square pixels which filters out small boxes surrounding patches of image noise. This

means that findBiggestContour() may return null if it doesn’t find a large enough box.

1.2. Calculating the COG and Horizontal Angle

The next step shown in Figure 2 is to find the COG and angle to the horizontal of the

hand contour by calling extractContourInfo(). This is where the code in HandDetector

starts to part company from the analysis carried out by ColorRectDetector.findRect()

in Chapter 5. In section 4.2 of that chapter, the enclosing box around the contour is

utilized to obtain a center and orientation. This is adequate because the underlying

shape is a rectangular card, and so the contour and box are almost identical. However,

a bounding box around a hand can easily have a very different COG or angle from the

hand itself; in this case, it's necessary to directly analyze the hand contour rather than

a bounding box, by utilizing moments.

I used spatial moments back in Chapter 4 to find the COG of a binary image. The

same technique can be applied to a contour to find its center (or centroid). I can also

calculate second order mixed moments, which give information about the spread of

pixels around the centroid. Second order moments can be combined to return the

orientation (or angle) of the contour’s major axis relative to the x-axis.

Referring back to the JavaCV moments notation from Chapter 4, the m() moments

function is defined as:

m(p, q) = ∑

The function takes two arguments, p and q, which are used as powers for x and y. The

I() function is the intensity for a pixel defined by its (x, y) coordinate. n is the number

of pixels that make up the shape.

If I consider a contour like the one in Figure 6, then θ is the angle of its major axis to

the horizontal, with the +y-axis pointing downwards.

NUI Chapter 5.5. Hand and Finger Detection Draft #2 (7th July 2013)

 7 © Andrew Davison 2013

Figure 6. A Contour and its Major Axis Line.

In terms of the m() function, it can be shown that:

tan 2θ =

The extractContourInfo() method shown below uses spatial moments to obtain the

contour’s centroid, and cvGetCentralMoment() to calculate the major axis angle

according to the above equation; these results are stored in the globals cogPt and

contourAxisAngle for use later.

// globals

private Point cogPt; // center of gravity (COG) of contour

private int contourAxisAngle;

 // contour's main axis angle relative to horizontal (in degrees)

private ArrayList<Point> fingerTips;

private void extractContourInfo(CvSeq bigContour, int scale)

{

 CvMoments moments = new CvMoments();

 cvMoments(bigContour, moments, 1);

 // center of gravity

 double m00 = cvGetSpatialMoment(moments, 0, 0) ;

 double m10 = cvGetSpatialMoment(moments, 1, 0) ;

 double m01 = cvGetSpatialMoment(moments, 0, 1);

 if (m00 != 0) { // calculate center

 int xCenter = (int) Math.round(m10/m00)*scale;

 int yCenter = (int) Math.round(m01/m00)*scale;

 cogPt.setLocation(xCenter, yCenter);

 }

 double m11 = cvGetCentralMoment(moments, 1, 1);

 double m20 = cvGetCentralMoment(moments, 2, 0);

NUI Chapter 5.5. Hand and Finger Detection Draft #2 (7th July 2013)

 8 © Andrew Davison 2013

 double m02 = cvGetCentralMoment(moments, 0, 2);

 contourAxisAngle = calculateTilt(m11, m20, m02);

 // deal with hand contour pointing downwards

 /* uses fingertips information generated on the last update of

 the hand, so will be out-of-date */

 if (fingerTips.size() > 0) {

 int yTotal = 0;

 for(Point pt : fingerTips)

 yTotal += pt.y;

 int avgYFinger = yTotal/fingerTips.size();

 if (avgYFinger > cogPt.y) // fingers below COG

 contourAxisAngle += 180;

 }

 contourAxisAngle = 180 - contourAxisAngle;

 /* this makes the angle relative to a positive y-axis that

 runs up the screen */

} // end of extractContourInfo()

private int calculateTilt(double m11, double m20, double m02)

{

 double diff = m20 - m02;

 if (diff == 0) {

 if (m11 == 0)

 return 0;

 else if (m11 > 0)

 return 45;

 else // m11 < 0

 return -45;

 }

 double theta = 0.5 * Math.atan2(2*m11, diff);

 int tilt = (int) Math.round(Math.toDegrees(theta));

 if ((diff > 0) && (m11 == 0))

 return 0;

 else if ((diff < 0) && (m11 == 0))

 return -90;

 else if ((diff > 0) && (m11 > 0)) // 0 to 45 degrees

 return tilt;

 else if ((diff > 0) && (m11 < 0)) // -45 to 0

 return (180 + tilt); // change to counter-clockwise angle

 else if ((diff < 0) && (m11 > 0)) // 45 to 90

 return tilt;

 else if ((diff < 0) && (m11 < 0)) // -90 to -45

 return (180 + tilt); // change to counter-clockwise angle

 System.out.println("Error in moments for tilt angle");

 return 0;

} // end of calculateTilt()

Moments in OpenCV are explained in depth in "Simple Image Analysis by Moments"

by Johannes Kilian at

http://public.cranfield.ac.uk/c5354/teaching/dip/opencv/SimpleImageAnalysisbyMom

NUI Chapter 5.5. Hand and Finger Detection Draft #2 (7th July 2013)

 9 © Andrew Davison 2013

ents.pdf. The code inside calculateTilt() is based on the special cases for θ listed in

Table 1 of Kilian's paper.

Unfortunately, the axis angle doesn't distinguish between a hand with fingers pointing

upwards and one facing down, and so it's necessary to examine the relative position of

the fingertips with respect to the COG to decide whether the angle should be adjusted.

The problem is that this information isn't available until after the hand contour's

convex hull has been examined for defects, which occurs after extractContourInfo()

has finished.

My solution is to use the fingertip coordinates calculated in the previous call to

update() which analyzed the webcam frame before the current one. The data will be

out-of-date, but the hand won't have moved much in the 200 ms interval between

snaps.

1.3. Finding the Fingertips

Identifying the fingertips is carried out in the first row of Figure 3; in the code, a

convex hull is wrapped around the contour by JavaCV's cvConvexHull2() and this

polygon is compared to the contour by cvConvexityDefects() to find its defects.

Hull creation and defect analysis are speeded up by utilizing a low-polygon

approximation of the contour rather than the original.

These stages are performed in the first half of the findFingerTips() method:

// globals

private static final int MAX_POINTS = 20;

 // max number of points stored in an array

// JavaCV elements

private CvMemStorage contourStorage, approxStorage,

 hullStorage, defectsStorage;

// defects data for the hand contour

private Point[] tipPts, foldPts;

private float[] depths;

private void findFingerTips(CvSeq bigContour, int scale)

{

 CvSeq approxContour = cvApproxPoly(bigContour,

 Loader.sizeof(CvContour.class),

 approxStorage, CV_POLY_APPROX_DP, 3, 1);

 // reduce number of points in the contour

 CvSeq hullSeq = cvConvexHull2(approxContour,

 hullStorage, CV_COUNTER_CLOCKWISE, 0);

 // find the convex hull around the contour

 CvSeq defects = cvConvexityDefects(approxContour,

 hullSeq, defectsStorage);

 // find the defect differences between the contour and hull

 int defectsTotal = defects.total();

 if (defectsTotal > MAX_POINTS) {

 System.out.println("Processing " + MAX_POINTS + " defect pts");

 defectsTotal = MAX_POINTS;

NUI Chapter 5.5. Hand and Finger Detection Draft #2 (7th July 2013)

 10 © Andrew Davison 2013

 }

 // copy defect information from defects sequence into arrays

 for (int i = 0; i < defectsTotal; i++) {

 Pointer pntr = cvGetSeqElem(defects, i);

 CvConvexityDefect cdf = new CvConvexityDefect(pntr);

 CvPoint startPt = cdf.start();

 tipPts[i] = new Point((int)Math.round(startPt.x()*scale),

 (int)Math.round(startPt.y()*scale));

 // array contains coords of the fingertips

 CvPoint endPt = cdf.end();

 CvPoint depthPt = cdf.depth_point();

 foldPts[i] = new Point((int)Math.round(depthPt.x()*scale),

 (int)Math.round(depthPt.y()*scale));

 //array contains coords of the skin fold between fingers

 depths[i] = cdf.depth()*scale;

 // array contains distances from tips to folds

 }

 reduceTips(defectsTotal, tipPts, foldPts, depths);

} // end of findFingerTips()

The latter half of findFingerTips() extracts the tip and fold coordinates and depths

from the defects sequence. The earlier call to the convex hull method,

cvConvexHull2(), with a CV_COUNTER_CLOCKWISE argument means that the

coordinates will be stored in a counter-clockwise order, like that of Figure 7.

Figure 7. Fingertips, Folds, and Depths.

The fingertips are stored in a tipPts[] array, the finger folds (the indentations between

the fingers) in foldPts[], and their depths in depths[].

As Figure 7 suggests, the analysis often generates too many defects, and so

reduceTips() is called at the end of findFingerTips(). It applies two simple tests to

filter out defects that are unlikely to be fingertips – it discards points with shallow

NUI Chapter 5.5. Hand and Finger Detection Draft #2 (7th July 2013)

 11 © Andrew Davison 2013

defect depths, and coordinates with too great an angle between their neighboring fold

points. Examples of both are shown in Figure 8.

Figure 8. Shallow Depths and Wide Angles.

reduceTips() stores the remaining tip points in the global fingerTips list:

// globals

private static final int MIN_FINGER_DEPTH = 20;

private static final int MAX_FINGER_ANGLE = 60; // degrees

private ArrayList<Point> fingerTips;

private void reduceTips(int numPoints, Point[] tipPts,

 Point[] foldPts, float[] depths)

{

 fingerTips.clear();

 for (int i=0; i < numPoints; i++) {

 if (depths[i] < MIN_FINGER_DEPTH) // defect too shallow

 continue;

 // look at fold points on either side of a tip

 int pdx = (i == 0) ? (numPoints-1) : (i - 1); // predecessor of i

 int sdx = (i == numPoints-1) ? 0 : (i + 1); // successor of i

 int angle = angleBetween(tipPts[i], foldPts[pdx], foldPts[sdx]);

 if (angle >= MAX_FINGER_ANGLE)

 continue; // angle between finger and folds too wide

 // this point is probably a fingertip, so add to list

 fingerTips.add(tipPts[i]);

 }

} // end of reduceTips()

private int angleBetween(Point tip, Point next, Point prev)

// calculate the angle between the tip and its neighboring folds

// (in integer degrees)

{

 return Math.abs((int)Math.round(

 Math.toDegrees(

 Math.atan2(next.x - tip.x, next.y - tip.y) -

 Math.atan2(prev.x - tip.x, prev.y - tip.y))));

}

NUI Chapter 5.5. Hand and Finger Detection Draft #2 (7th July 2013)

 12 © Andrew Davison 2013

1.4. Naming the Fingers

nameFingers() uses the list of fingertip coordinates, and the contour's COG and axis

angle to label the fingers in two steps. First, it calls labelThumbIndex() to label the

thumb and index finger based on their likely angles relative to the COG, assuming

that they are on the left side of the hand. nameFingers() attempts to label the other

fingers in labelUnknowns(), based on their known order relative to the thumb and

index finger.

// globals

private ArrayList<FingerName> namedFingers;

private void nameFingers(Point cogPt, int contourAxisAngle,

 ArrayList<Point> fingerTips)

{ // reset all named fingers to unknown

 namedFingers.clear();

 for (int i=0; i < fingerTips.size(); i++)

 namedFingers.add(FingerName.UNKNOWN);

 labelThumbIndex(fingerTips, namedFingers);

 labelUnknowns(namedFingers);

} // end of nameFingers()

The Finger IDs and their relative order are maintained in a FingerName enumeration:

public enum FingerName {

 LITTLE, RING, MIDDLE, INDEX, THUMB, UNKNOWN;

 public FingerName getNext()

 {

 int nextIdx = ordinal()+1;

 if (nextIdx == (values().length))

 nextIdx = 0;

 return values()[nextIdx];

 } // end of getNext()

 public FingerName getPrev()

 {

 int prevIdx = ordinal()-1;

 if (prevIdx < 0)

 prevIdx = values().length-1;

 return values()[prevIdx];

 } // end of getPrev()

} // end of FingerName enum

One of the possible finger names is UNKNOWN, which is used to label all the

fingertips prior to the calls to the naming methods.

labelThumbIndex() attempts to label the thumb and index fingers based on the angle

ranges illustrated in Figure 9.

NUI Chapter 5.5. Hand and Finger Detection Draft #2 (7th July 2013)

 13 © Andrew Davison 2013

Figure 9. Angle Ranges for the Thumb and Index Fingers.

The index finger can turn between 60 and 120 degrees around the COG, while the

thumb can move between 120 and 200 degrees. I arrived at these angles through trial-

and-error, and they assume that the hand is orientated straight up.

labelThumbIndex() also assumes that the thumb and index fingers will most likely be

stored at the end of the fingerTips list, since the contour hull was built in a counter-

clockwise order. It therefore increases its chances of matching against the right

defects by iterating backwards through the list.

// globals

private static final int MIN_THUMB = 120; // angle ranges

private static final int MAX_THUMB = 200;

private static final int MIN_INDEX = 60;

private static final int MAX_INDEX = 120;

// hand details

private Point cogPt

private int contourAxisAngle;

private void labelThumbIndex(ArrayList<Point> fingerTips,

 ArrayList<FingerName> nms)

{

 boolean foundThumb = false;

 boolean foundIndex = false;

 int i = fingerTips.size()-1;

 while ((i >= 0)) {

 int angle = angleToCOG(fingerTips.get(i),

 cogPt, contourAxisAngle);

 // check for thumb

 if ((angle <= MAX_THUMB) && (angle>MIN_THUMB) && !foundThumb) {

 nms.set(i, FingerName.THUMB);

NUI Chapter 5.5. Hand and Finger Detection Draft #2 (7th July 2013)

 14 © Andrew Davison 2013

 foundThumb = true;

 }

 // check for index

 if ((angle <= MAX_INDEX) && (angle > MIN_INDEX) && !foundIndex) {

 nms.set(i, FingerName.INDEX);

 foundIndex = true;

 }

 i--;

 }

} // end of labelThumbIndex()

angleToCOG() calculates the angle of a fingertip relative to the COG, remembering to

factor in the contour axis angle so that the hand is orientated straight up.

private int angleToCOG(Point tipPt, Point cogPt,

 int contourAxisAngle)

{

 int yOffset = cogPt.y - tipPt.y; // make y positive up screen

 int xOffset = tipPt.x - cogPt.x;

 double theta = Math.atan2(yOffset, xOffset);

 int angleTip = (int) Math.round(Math.toDegrees(theta));

 return angleTip + (90 - contourAxisAngle);

 // this ensures that the hand is orientated straight up

} // end of angleToCOG()

labelUnknowns() is passed a list of finger names which hopefully contains THUMB

and INDEX at certain positions and UNKNOWNs everywhere else. Using a named

finger as a starting point, the UNKNOWNs are changed to finger names based on

their ordering in the FingerName enumeration.

private void labelUnknowns(ArrayList<FingerName> nms)

{

 // find first named finger

 int i = 0;

 while ((i < nms.size()) && (nms.get(i) == FingerName.UNKNOWN))

 i++;

 if (i == nms.size()) // no named fingers found, so give up

 return;

 FingerName name = nms.get(i);

 labelPrev(nms, i, name); // fill-in backwards

 labelFwd(nms, i, name); // fill-in forwards

} // end of labelUnknowns()

labelPrev() and labelFwd() differ only in the direction they move through the list of

names. labelPrev() moves backwards trying to change UNKNOWNS to named

fingers, but only if the name hasn't already been assigned to the list.

private void labelPrev(ArrayList<FingerName> nms,

 int i, FingerName name)

// move backwards through fingers list labeling unknown fingers

{

 i--;

 while ((i >= 0) && (name != FingerName.UNKNOWN)){

NUI Chapter 5.5. Hand and Finger Detection Draft #2 (7th July 2013)

 15 © Andrew Davison 2013

 if (nms.get(i) == FingerName.UNKNOWN) { // unknown finger

 name = name.getPrev();

 if (!usedName(nms, name))

 nms.set(i, name);

 }

 else // finger is named already

 name = nms.get(i);

 i--;

 }

} // end of labelPrev()

2. Drawing the Named Fingers

The analysis performed by update() will result in a list of fingertip points (in the

fingerTips global), an associated list of named fingers (in namedFingers), and a

contour COG and axis angle. All of these, apart from the angle, are utilized by draw()

to add named finger labels to the webcam image, as shown in Figure 1 and Figure 10

below.

Figure 10. Named Fingers and an Unknown.

An unknown finger 'tip' (labeled as UNKNOWN in namedFingers) is drawn as a red

circle.

// globals

private Point cogPt;

private ArrayList<Point> fingerTips;

private ArrayList<FingerName> namedFingers;

public void draw(Graphics2D g2d)

{

 if (fingerTips.size() == 0)

 return;

 g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING,

 RenderingHints.VALUE_ANTIALIAS_ON); // line smoothing

 g2d.setPaint(Color.YELLOW);

 g2d.setStroke(new BasicStroke(4)); // thick yellow pen

NUI Chapter 5.5. Hand and Finger Detection Draft #2 (7th July 2013)

 16 © Andrew Davison 2013

 // label tips in red or green, and draw lines to named tips

 g2d.setFont(msgFont);

 for (int i=0; i < fingerTips.size(); i++) {

 Point pt = fingerTips.get(i);

 if (namedFingers.get(i) == FingerName.UNKNOWN) {

 g2d.setPaint(Color.RED); // unnamed fingertip is red

 g2d.drawOval(pt.x-8, pt.y-8, 16, 16);

 g2d.drawString("" + i, pt.x, pt.y-10); // label with a digit

 }

 else { // draw yellow line to the named fingertip from COG

 g2d.setPaint(Color.YELLOW);

 g2d.drawLine(cogPt.x, cogPt.y, pt.x, pt.y);

 g2d.setPaint(Color.GREEN); // named fingertip is green

 g2d.drawOval(pt.x-8, pt.y-8, 16, 16);

 g2d.drawString(namedFingers.get(i).toString().toLowerCase(),

 pt.x, pt.y-10);

 }

 }

 // draw COG

 g2d.setPaint(Color.GREEN);

 g2d.fillOval(cogPt.x-8, cogPt.y-8, 16, 16);

} // end of draw()

3. Gesture Detection

The Handy application stops short at converting the named fingertips into gestures,

which would require an analysis of how the fingers move through space over time.

Preliminary tests show that Handy can only identify gestures reliably when they

involve an outstretched thumb and/or index finger, perhaps combined with other

fingers. Gestures of this type include "victory", "wave", "good", "point", and "gun"

shown in Figure 11.

Figure 11. Gestures Suitable for Handy-style Detection.

A common gesture that cannot be detected by Handy is "ok" (see Figure 12) because

it requires the fingers be brought together, which cannot be detected solely in terms of

contour defects.

NUI Chapter 5.5. Hand and Finger Detection Draft #2 (7th July 2013)

 17 © Andrew Davison 2013

Figure 12. The Unsuitable "ok" Gesture.

