
Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

1 © Andrew Davison 2011

NUI Chapter 4. A Motion-tracking Missile Launcher

[Note: all the code for this chapter is available online at
http://fivedots.coe.psu.ac.th/~ad/jg/??; only important fragments are described here.]

Protect your cubicle with a lethal defensive shield, deterring foolish intruders by
firing missiles at them as they approach. In order to save money, I won't be using
state-of-the-art tech., such as the SS-27 Sickle B ballistic system, but the somewhat
cheaper Dream Cheeky launcher (http://www.dreamcheeky.com/). This extremely
dangerous weapon is sometimes disparaged as a mere toy, perhaps because it is. But
those naysayers don't realize that I'm combining the launcher's awesome capabilities
with the motion detection code from chapter 3.

When movement is detected, the launcher automatically rotates left, right, up or down
to point at the target. If the motion continues, then the launcher fires one of its
missiles. This stupendous weapon system is illustrated in Figure 1, attacking its lowly
creator.

Figure 1. The Motion-tracking Missile Launcher.

The main topic of this chapter is how to write the launcher's control software, which
operates via USB. The tricky part is that the Dream Cheeky gadget doesn’t come with
a developers API or any technical documentation, and so I’ll use USB monitoring
software, and some detective work, to develop one myself. The other problem is that
Java doesn’t support USB I/O as standard, so I need to utilize third-party libraries.

The good news is that much of this work can be applied to developing interfaces for
other ‘fun’ USB devices, which typically use the same kinds of control and interrupt
messaging.

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

2 © Andrew Davison 2011

1. Playing with the Missile Launcher
The missile launcher comes from Dream Cheeky (http://www.dreamcheeky.com/),
which specializes in unusual USB gadgets for the PC, such as a roll-up piano
keyboard, drum kit, and webmail notifier postbox. The launcher shown in Figure 1
(called the MSN Missile Launcher) is a few years old, and the device was updated in
2010, and renamed as the Storm O.I.C. (Over Internet Control)
(http://www.dreamcheeky.com/storm-oic-missile-launcher). The launcher plugs into a
PC via a standard USB cable, and also comes with a webcam with its own USB
connector (that's why there are two leads going into the PC shown in Figure 1). There
are also launcher versions without a webcam, which are much less fun.

Sadly, the company no longer sells the MSN, although its GUI control software can
still be downloaded from the Dream Cheeky website, and the gadget is available from
other suppliers..

Dream Cheeky doesn't aim its products at developers (there's no APIs or technical
info included with the devices), focusing instead on making them fun and easy to use
via slightly cheesy GUIs. Figure 2 shows the interface for the MSN launcher.

Figure 2. The MSN Missile Launcher GUI.

Two applications need to be started – a webcam display window and a Missile
Launcher control panel. The control panel turns the launcher left, right, up, or down,
when the user presses the arrows in the star picture. Pressing the red circle in the
middle of the star fires a missile. The webcam is attached to the top of the launcher
(see Figure 3), so rotates along with it.

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

3 © Andrew Davison 2011

Figure 3. The Launcher Viewed from the Front.

The MSN is really two USB devices, and its possible to use the webcam separately
from the launcher.

The arrow keys in the GUI of Figure 2 stop working when the launcher is rotated too
far in the left, right, up, or down directions. However, there’s no limit on the number
of times the fire button can be pressed, even though there’s only three missiles in the
launcher. The missiles are fired in a fixed order in a clockwise order starting from the
bottom right.

By the way, when I use "left" and "right", I'm assuming that I'm standing directly
behind the launcher (by far the safest spot).

The “RE-SET” button on the GUI moves the launcher back to a default position,
facing forwards and pointing horizontally. It does this by turning to its maximum left-
most and down-facing positions, and then returning to a default orientation.

2. Where I'm Going with this Chapter
I'll be writing an application called MotionLauncher in this chapter, which is shown in
relationship to its third-party libraries in Figure 4.

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

4 © Andrew Davison 2011

Figure 4. The MotionLauncher Application and its Libraries.

I’ve already utiilized two of the three library stacks beneath MotionLauncher. The
camera imaging and analysis (for detecting movement) are almost unchanged from
NUI Chapter 3, so I’ll be reusing large chunks of the MotionDetection application.
My new code employs the middle stack of Figure 4, which consists of two libraries
and a driver.

libusb-win32 (http://sourceforge.net/apps/trac/libusb-win32/wiki) is a port of the
libusb 0.1 USB library to MS Windows, which allows applications to access a device
without writing a driver. Instead libusb-win32 comes with a tool that generates them,
and I’ll employ it to create the driver for the launcher shown in Figure 4. libusb-win32
is a C/C++ API, and so I access it via LibusbJava (http://libusbjava.sourceforge.net/).

Before I start writing USB code, I should spend a little time explaining the USB
protocol. Also, I'll have to turn investigator to find out the specifics of how the
launcher uses USB to communicate with the PC.

3. A Quick Introduction to USB
USB (Universal Serial Bus) communication is carried out between a host and a
device. In this chapter, the host is my PC running the MotionLauncher application,
and the device is the Dream Cheeky launcher. The host detects devices, manages data
flow on the communications bus, carries out error checking, and provides power to
the devices.

Due to the wide variety of devices that USB needs to support, the capabilities of a
given device are described using a hierarchy of four descriptors, illustrated in Figure
5.

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

5 © Andrew Davison 2011

Figure 5. The Descriptor Hierarchy for a USB Device.

The top-most device descriptor includes vendor and product IDs (two hexadecimal
digits), which uniquely identify the device.

There may be one or more configuration descriptors which explain the device's power
requirements (e.g. self-powered or drawing energy from the host). Many devices,
including all the ‘toy’ gadgets I’ve encountered, only have a single configuration
descriptor.

A configuration may utilize multiple interface descriptors, each one assigned to a
particular device feature or function. For example, a combination fax/scanner/printer
might have three interface descriptors, one each for the fax, scanner, and printer
functionality. An interface descriptor includes device class and protocol information.
Most USB toys belong to the Human Interface Device (HID) class, which also
includes more common hardware such as keyboards, pointing devices, and game
controllers.

A interface descriptor groups together endpoint descriptors; each endpoint represents
the point where data leaves the host for the device (or enters it). Each endpoint defines
the type of data transfer, the direction that data travels, message packet size, and other
data details.

USB supports four data transfer types: control, bulk, interrupt, and isochronous.
Control transfers are typically used for sending short command messages from the
host to the device, and receiving back status details. Bulk transfers are intended for
applications where the rate of transfer isn’t critical, such as sending a file to a printer.
Interrupt transfers are for devices that receive the host’s attention periodically, such as
keyboards and mice. Isochronous transfers have guaranteed delivery time but no error
correcting, so are often utilized for streaming audio and video.

The data transfer direction is defined from the host’s perspective: an IN endpoint
receives data from the device intended for the host (e.g. the PC) and an OUT endpoint
sends data to the device.

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

6 © Andrew Davison 2011

Every device has an endpoint 0, configured for control transfers, and there’s rarely
need for more endpoints in USB toys. This means that a typical gadget only has a
single device descriptor, configuration descriptor, interface descriptor, and endpoint
descriptor. The Dream Cheeky launcher actually employs two endpoints: endpoint 0
for control transfers and endpoint 0x81 for interrupt transfers.

A confusing aspect of interface descriptors is that the descriptor may have two IDs –
an interface number and an alternative setting ID. The alternative setting value is a
way of grouping interface descriptors together, so that one group can be switched for
another group by simply changing the alternative setting. Since most USB toys only
have a single interface descriptors, the alternative setting ID can be ignored (i.e. be set
to 0 or -1).

Knowing a device's class can be useful for programming since many device classes
have higher-level APIs built on top of the four basic transfer types: control, bulk,
interrupt, and isochronous. Most USB toys belong to the HID class, which supports
six higher-level requests types for transferring data (called reports in the HID
documentation). The Windows HID API (details at http://msdn.microsoft.com/en-
us/library/ms793246.aspx) provides an extensive set of functions for building,
sending, and receiving reports. The bad news is that there isn't a Java binding for this
API. That's quite a major hole in Java's USB support, bearing in mind the popularity
of the HID class. However, it’s fairly easy to drop back to using lower-level control
transfers to implement HID-like functionality.

The "USB Made Simple" site at http://www.usbmadesimple.co.uk offers a good
introduction to USB. A wonderful source for more information is Jan Axelson's
website, http://www.lvr.com. He's also the author of the definitive book on USB:

USB Complete: The Developer's Guide
by Jan Axelson
Lakeview Research; 4 ed., June 2009

“USB in a NutShell” at http://www.beyondlogic.org/usbnutshell/usb1.shtml is another
simple online introduction. The USB specification is very readable, and can be found
at http://www.usb.org/developers/docs/

For details on HID, see http://www.usb.org/developers/hidpage/ and
http://www.lvr.com/hidpage.htm.

4. Becoming a USB Detective
Before I can start programming the launcher, I need to collect information about the
device, including its vendor and product IDs, and the addresses of its endpoints. I also
need to discover what forms of data transfer it uses.

The Dream Cheeky launcher comes with no technical information, so the easiest way
to find its IDs is with a USB analysis tool, such as USBDeview (free from
http://www.nirsoft.net/utils/usb_devices_view.html). Figure 6 shows USBDeview's
brief list of active USB devices attached to my test machine.

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

7 © Andrew Davison 2011

Figure 6. USBDeview's List of Active USB Devices.

Make sure that USBDeview is configured to exclude disconnected devices, or you’ll
receive a list of every USB device that’s ever been connected to your PC!

Figure 6 shows four devices and, by a process of elimination (not really) reminiscent
of Sherlock Holmes, I deduced that the Dream Cheeky launcher is identified as
"Rocket Baby", a name which doesn't appear anywhere in its user documentation. The
launcher’s webcam is listed separately as “PC Camera”.

Double clicking on the Rocket Baby row brings up more details, shown in Figure 7.

Figure 7. USBDeview's Details on Rocket Baby.

The important entries for my needs are the VendorID and ProductID hexadecimals:
0a81 and 0701 (about a third of the way down the two columns). Also, the device
class is 0x03, which means it’s a HID, but I won’t be programming with the Windows
HID API because there's no Java wrapper for it.

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

8 © Andrew Davison 2011

4.1. Analyzing the Dream Cheeky Launcher Protocol
I need to know what should go in the messages that go from the PC to the launcher.
It's time to fire up a USB protocol analyzer.

I decided to use SysNucleus' USBTrace (http://www.sysnucleus.com/), a simple to
use, powerful analyzer and packet filter that records USB I/O requests and other
events. It's not free, but a 15-day trial period is a good way to try out the product. It
requires the user to register for a free activation key.

In the past, I’ve used a similar tool called SourceUSB (http://www.sourcequest.com/),
which has a 30-day trial period. Another popular, and free, analyzer is SnoopyPro
from http://sourceforge.net/projects/usbsnoop/.

The first step with USBTrace is to select the device that should be monitored. Search
through its device view tree (see Figure 8) for a gadget with the correct VendorID and
ProductID hexadecimals (0a81 and 0701 for the launcher). Clicking on a device will
make its details appear in an “Info” tab at the bottom-left of the display, where the
IDs are ‘hiding’ in the “Hardware ID”, USBVid_0a81&Pid_0701& Rev_0001.

Figure 8. USBTrace Device Selection.

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

9 © Andrew Davison 2011

The “Info” tab contains a wealth (perhaps over-abundance) of information. Scrolling
down shows the configuration, interface, and endpoint descriptors (see Figure 9).

Figure 9. USBTrace Descriptor Information.

The relevant things to note for later are that there’s only a single configuration
descriptor and interface descriptor, but there are two endpoints. The default 0 endpoint
isn’t listed, but it’s joined by the 0x81 IN endpoint which receives interrupts coming
from the device.

4.2. Rotating the Launcher
The next step is to turn on packet capturing for the device, and see what data is
transmitted when I interact with the Dream Cheeky GUI (as shown in Figure 2).
Figure 10 shows USBTrace's captured packets when I very briefly press the left
rotation arrow.

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

10 © Andrew Davison 2011

Figure 10. Packets Caught by USBTrace for a Left Rotation.

The volume of data is daunting, but USBTrace allows the log to be filtered in various
ways. If I restrict it to only show successfully processed OUT messages (those going
from the PC to the launcher), then the output becomes a little bit more manageable
(see Figure 11).

Figure 11. Successful OUT Packets Caught by USBTrace for a Left Rotation.

Each output message is shown twice – once as a HID SetReport CLASS
INTERFACE message, and once as a lower-level control transfer CLASS
INTERFACE message. This is indicated by the “Type” column which is either HID
or URB (USB Request Block). Unfortunately, I can’t filter by type to remove the HID
messages, but let’s ignore them anyway.

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

11 © Andrew Davison 2011

In this case, Figure 11 shows a series of CLASS INTERFACE messages being sent
from the host (the PC) to the device (the launcher). To differentiate between them it’s
necessary to look at the messages’ contents, which are shown in the Buffer panel at
the bottom right of USBTrace, and in the Buffet Snippet and Buffer Size columns of
the packets panel in Figure 11. Writing these message contents out as a sequence
gives:

40, 40, 04, 40, 40, …, 40, 20 // left turn

I’ve marked two ‘clues’ in bold. Remember that these messages were produced when
the launcher was rotated left.

If I now reset the tracer and launcher, and briefly press the right arrow key, the series
of CLASS INTERFACE messages produced this time (using the same filter) is shown
in Figure 12.

Figure 12. Successful OUT Packets Caught by USBTrace for a Right Rotation.

If I again extract the message contents as a sequence, then I see:

40, 40, 08, 40, 40, …, 40, 20 // right turn

If I repeat this for up and down rotations, the sequences are:

40, 40, 02, 40, 40, …, 40, 20 // upwards

40, 40, 01, 40, 40, …, 40, 20 // downwards

Based on when these message are generated, the 0x04, 0x08, 0x02, and 0x01
messages start a rotation, while 0x20 stops it (when the user releases the arrow key in
the GUI).

What about all the 0x40s messages? To be honest, I’m not sure what they do. They
may be polling or “stay alive” messages; I’ll come back to them when I start
programming. The results of my investigations are summarized in Figure 13.

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

12 © Andrew Davison 2011

Figure 13. Control Transfer Messages for the Launcher.

4.3. Firing a Missile
The GUI interface for firing a missile is the red button in the center of the star shape
in Figure 2. Once it’s pressed, air pressure builds up behind a missile until it’s shot
from the launcher. Figure 14 shows the successful OUT packets sent to the host
during that time.

Figure 14. Successful OUT Packets Caught by USBTrace for a Missile Fire.

If I again extract the message contents as a sequence, then I get:

40, 10, 40, 40, …, 40, 20 // fire

The 0x10 message initiates the build up of pressure, the missile is ejected 5-7 seconds
later, and the 0x20 message stops the pressure. The time required for a missile to fire

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

13 © Andrew Davison 2011

can vary quite a lot, and sometimes there seems to be pressure left over from the
previous missile firing which lets the current missile be released faster.

4.4. Interrupts
So far I’ve been focusing on control transfers which go via endpoint 0. The launcher
uses these messages to start rotating, start a firing sequence, and to stop. However, the
launcher also sends out interrupts, arriving at the PC via endpoint 0x81. Let’s return
to USBTrace, to decide how these interrupts are used.

Interrupts for Rotation Limits
If a user holds down the left, right, up, or down arrow on the GUI, then the launcher
keeps turning until it gets to an extreme position, then stops by itself. Even if the user
keeps pressing the arrow, the launcher won't turn any further.

This mechanism is implemented using interrupts, which can be seen by rotating the
launcher to its left-most limit. Figure 15 shows that interrupts containing the message
0x00 are periodically sent to the host while the rotation is okay, but 0x04 is delivered
in the last row of the figure when the limit is reached. Figure 15 only lists incoming
messages with data arriving through endpoint 0x81.

Figure 15. Successful IN Packets via Endpoint 0x81 for a Left Rotation.

For a right rotation, interrupts are used in a similar way: 0x00 means okay but an
interrupt containing the message 0x08 signals that the limit has been reached. For a
down rotation, the limit message is 0x01, and for upwards turning the message
contains 0x02

Another aspect of these interrupts is that several limit interrupts may be sent, even
after the launcher has rotated away from an extreme position.

Firing Interrupts
Interrupts are also utilized in missile firing. A sequence of 0x00 interrupt messages
are sent to the device during pressure build-up, but a 0x10 message when the missile
has left the launcher. Subsequently, the host sends a 0x20 control message to stop the

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

14 © Andrew Davison 2011

firing sequence. Figure 16 adds these interrupt values to the control transfer
information of Figure 13.

Figure 16. Control Transfer and Interrupt Messages for the Launcher.

5. Installing USB Support for Java
There’s an official USB extension for Java, called JSR-80, located at http://javax-
usb.org. However, the Windows implementation has been in an alpha state for several
years, and I had problems getting it to work. Instead I went for LibusbJava
(http://libusbjava.sourceforge.net/wp/) which requires me to install three main
elements, as shown in Figure 17.

Figure 17. USB Support for Java in Windows.

5.1. Installing libusb-win32
LibusbJava relies on libusb-win32, a Windows port of a widely used USB library for
Linux. The current version of libusb-win32 can be downloaded from
http://sourceforge.net/apps/trac/libusb-win32/wiki (I retrieved libusb-win32-bin-
1.2.4.0.zip).

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

15 © Andrew Davison 2011

The executable installs libusb-win32 into c:\Program Files\LibUSB-Win32\. Inside its
bin\ subdirectory are DLLs for various Windows architectures which have to be
renamed and moved over to the OS. I used the x86\ DLLs, moving libusb0_x86.dll to
Windows\system32\libusb0.dll (notice the rename), and libusb0.sys to
Windows\systems32\drivers\libusb0.sys (notice the unchanged name).

testlibusb-win.exe, located in x86\, can be employed to test the installation by listing
out the USB devices using libusb-win32 drivers. That’s not much use yet since I don't
have any libusb drivers installed..

The linusb-win32 documentation is a bit sketchy, but lots more can be found at the
website (http://sourceforge.net/apps/trac/libusb-win32/wiki). Also accessible from
there is API documentation, a developers guide, a FAQ, and a mailing list.

5.2. A libusb-win32 driver for the Launcher
The libusb-win32 bin\ directory contains the inf-wizard.exe tool, which can create a
INF file for a libusb-win32 driver. inf-wizard.exe starts by listing all the devices
connected to the PC, listed by their vendor ID, product ID, and device description (see
Figure 18).

Figure 18. The inf-wizard.exe Application.

I know which entry to choose by referring to the vendor and product IDs I obtained
from USBDeview (0A81 and 0701; see Figure 7). After my selection, inf-wizard.exe
generates an INF file for the launcher, which I can install in the OS by right clicking
on it.

Now I can use testlibusb-win.exe to check the launcher details, as shown in Figure 19.

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

16 © Andrew Davison 2011

Figure 19. The testlibusb-win Details for The Launcher.

I can also examine the device via Windows Device manager, which is reached via the
Hardware tab of the System control panel.

The launcher has two USB components – the launcher base which now has a libusb-
win32 driver, and the camera stuck on top of the launcher. The webcam doesn’t
require a driver since I’ll utilize JMF to communicate with the driver installed by the
Dream Cheeky AMCAP camera viewing application. I’ll explain the details later.

5.3. Installing LibusbJava
Once libusb-win32 is installed, the LibusbJava library can be downloaded from
http://libusbjava.sourceforge.net/wp/. The necessary files are a JAR (ch.ntb.usb-
0.5.9.jar) and a zipped DLL (LibusbJava_dll_0.2.4.0.zip). I placed the JAR and
unzipped DLL in a directory on my c:\ drive (c:\libusbjava\), but anywhere is fine.

The JAR includes a number of test applications, the simplest being a viewer for the
libusb-win32 USB devices connected to the machine. Figure 20 shows its output for
the Dream Cheeky launcher.

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

17 © Andrew Davison 2011

Figure 20 The USB View Application.

Note that this application only displays information on libusb-win32 drivers.

The viewer (which is inside ch.ntb.usb-0.5.9.jar) is started using the command line:

java -Djava.library.path="c:\libusbjava"
 -cp "c:\libusbjava\ch.ntb.usb-0.5.9.jar;."
 ch.ntb.usb.usbView.UsbView

The paths to the DLL and JAR files need to match their location on your machine.

6. Using the LibusbJava Library
LibusbJava offers two slightly different ways of carrying out USB programming. Its
ch.ntb.usb.LibusbJava class is a thin layer over libusb-win32 so it’s quite easy to
translate C/C++ code using libusb-win32 into Java. The API also offers a slightly
more high-level interface, which mostly differs in the way that USB devices are
initialized. For example, the ch.ntb.usb.Device class makes it easier to handle errors
and timeouts. I’ll be using this latter approach for my coding.

The LibusbJava website includes two examples illustrating these coding styles, which
are also explained in the API documentation at
http://libusbjava.sourceforge.net/wp/res/doc/. There’s a useful forum at
http://sourceforge.net/projects/libusbjava/forums/forum/660151/index/

Initializing the Launcher (and Closing Down)
The great advantage of using the LibusbJava higher-level classes is the simplicity of
opening and closing a device. Most programs have the following structure:

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

18 © Andrew Davison 2011

public static void main(String[] args)
{
 Device dev = USB.getDevice(VENDOR_ID, PRODUCT_ID);
 try {
 dev.open(1, 0, -1);
 // open device with configuration 1, interface 0
 // and no alternative interface

 // communicate with the device (see below for details)

 dev.close(); // close down
 }
 catch (USBException e) {
 System.out.println(e);
 }
} // end of main()

The vendor and product IDs are the hexadecimal IDs which we’ve seen many times
(e.g. 0x0a81 and 0x0701 in Figure 7).

The first argument of Device.open() is the configuration value, the second is the
interface number, and the last is the alternate interface, which can be set to 0 or -1 if
there isn’t one.

The configuration value and interface number can be obtained from USBTrace
Descriptor Information, as shown in Figure 9. The configuration value is the table
entry called iConfiguration and the interface number is in the bInterfaceNumber row.
For USB toys, the values are almost always 1 and 0.

6.1. Making the Launcher Move
Figure 16 summarizes what data has to be sent between the PC and the launcher,
which falls into two categories. I need to send control transfer messages to the
launcher to start it moving (e.g. 0x04 will rotate it left). To stop the launcher, I must
send a 0x20 message.

You may be wondering about all the 0x40 messages. I discovered through
experimentation, that these aren’t needed to start and stop the launcher, or to trigger
missile firing. Due to their position in the USB communications log just before
interrupt messages, my bet is that they’re status request messages. The arrival of a
0x40 message at the launcher triggers the gathering of data that’s sent back in the
subsequent interrupt read. Assuming this, I can simplify Figure 16 to become Figure
21.

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

19 © Andrew Davison 2011

Figure 21. Simplified Control Transfer and Interrupt Messages for the Launcher.

In the Device class, the prototype for sending a control transfer is:

public int controlMsg(int requestType,
 int request, int value, int index,
 byte[] data, int size,
 int timeout,boolean reopenOnTimeout)
 throws USBException

There's a brief explanation of the method in the libusbJava API documentation at
http://libusbjava.sourceforge.net/wp/res/doc/, which refers to the USB control transfer
specification in sections 9.3 and 9.4 of the Revision 2.0 document (available at
http://www.usb.org/developers/docs/).

The method's parameters use (almost) the same names as the USB control transfer
explained in the specification, and returns the number of bytes written (or a negative
number if there's an error).

In practice, the best way of knowing what arguments should be passed to
Device.controlMsg() is by looking at the packet information displayed by USBTrace
when the launcher GUI transmits a control transfer.

For example, Figure 22 shows packet details for the control transfer that sends 0x04
to the device, to start it turning left.

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

20 © Andrew Davison 2011

Figure 22. Control Transfer for Moving Left.

Figure 22 shows values that can be used as Device.controlMsg() arguments for the
request, value, index, and size of the byte array (TransferBufferLength). Also, the
method’s data argument should be a byte array containing only 0x04 (the Buffer
contents in Figure 22).

Device.controlMsg()’s requestType argument appears as the
RequestTypeReservedBits value (0x22) in the table. The bits are a mix of three
settings: the data transfer direction, the device type, and the recipient type. Based on a
study of LibusbJava's documentation for constants, 0x22 is a combination of
USB.REQ_TYPE_DIR_HOST_TO_DEVICE, USB.REQ_TYPE_TYPE_CLASS,
and USB.REQ_TYPE_RECIP_ENDPOINT.

To my dismay, this collection of bits did not work when I tried them in
Device.controlMsg(). I was forced to try other bit combinations until I arrived at
USB.REQ_TYPE_DIR_HOST_TO_DEVICE, USB.REQ_TYPE_TYPE_CLASS,
and USB.REQ_TYPE_RECIP_INTERFACE (which is equivalent to 0x21). In other
words, the transfer must be sent to an interface rather than an endpoint. The difference
is that an interface is a collection of endpoints, while an endpoint is a single device
port. To be fair, this bit of guesswork wasn’t too hard, since it corresponds to the
name of the USB function, CLASS_INTERFACE, shown at the top of Figure 22.

Device.controlMsg()'s timeout value isn't part of the USB specification, and is used
by libusb to decide how long to wait for a response before signaling an error. The
method's reopenOnTimeout argument is a LibusbJava boolean that attempts to retry
the operation after a timeout when set to true.

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

21 © Andrew Davison 2011

My sendControl() function uses Device.controlMsg() to build and send a control
transfer over to the device.

private static void sendControl(Device dev, int opCode)
{
 System.out.println("Sending opCode: " + toHexString(opCode));
 byte[] bytes = { new Integer(opCode).byteValue() };
 try {
 int rval = dev.controlMsg(
 USB.REQ_TYPE_DIR_HOST_TO_DEVICE |
 USB.REQ_TYPE_TYPE_CLASS |
 USB.REQ_TYPE_RECIP_INTERFACE,
 0x09, 0x0200, 0,
 bytes, bytes.length, 2000, false);
 if (rval < 0) {
 System.out.println("Control Error (" + rval + "):\n " +
 LibusbJava.usb_strerror());
 }
 }
 catch (USBException e) {
 System.out.println(e);
 }
} // end of sendControl()

private static String toHexString(int b)
// change the hexadecimal integer into "0x.." string format
{
 String hex = Integer.toHexString(b);
 if (hex.length() == 1)
 return "0x0" + hex;
 else
 return "0x" + hex;
} // end of toHexString

sendControl() can transmit any control transfer, such as 0x04 to start the launcher
turning left. Of course, I also want to stop the rotation after a certain amount of time,
and that can be implemented by sending 0x20 after waiting for the required period.

The following main() function makes the launcher rotate to the left for 2 seconds.

public static void main(String[] args)
{
 Device dev = USB.getDevice((short)0x0a81, (short)0x0701);
 try {
 dev.open(1, 0, -1);

 sendControl(dev, 0x04); // start launcher rotating left
 wait(2000); // wait 2 secs while launcher is moving
 sendControl(dev, 0x20); // stop launcher

 dev.close();
 }
 catch (USBException e) {
 System.out.println(e);
 }
} // end of main()

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

22 © Andrew Davison 2011

private static void wait(int ms)
// sleep for the specified no. of millisecs
{ try {
 Thread.sleep(ms);
 }
 catch(InterruptedException e) {}
} // end of wait()

6.2. USB Devices are Temperamental
The main() function for rotating the launcher is nicely brief, and easy to understand.
However, it doesn't convey the headaches that can occur when programming USB
gadgets. Here are some techniques I've developed for avoiding, or at least reducing,
the problems.

It really helps to have two test machines. In the case of the Dream Cheeky launcher I
installed its GUI on one machine, and the LibusbJava and libusb-win32 libraries, and
the libusb-win32 generated driver on another. In this way there's no chance of having
two device drivers for the same USB gadget interfere with each other. At the
programming level, this kind of interaction problem often reveals itself as the
informative Windows USB error "a device attached to the system is not functioning".

If a device driver generates an error, the only certain way to correctly reset it is to
reboot the machine. This can add many hours to the development time.

Although USBTrace is a great tool, it may not report the full story of what's
happening at the OS kernel and hardware levels. For instance, my problem with the
control transfer's request type is probably due to the kernel converting the type from
an endpoint to the device's interface.

Always write a simple test-rig (e.g. like the code above) to test the communication
protocol before moving to a more complex application. Small headaches are easier to
cure than big ones.

6.3. Status Monitoring
The other part of programming the launcher is status monitoring, which comes in two
forms – checking if the launcher has reached a rotation limit, and deciding whether a
missile has been shot from the launcher.

As Figure 21 suggests, status monitoring is initiated by sending a 0x40 to the device
followed by an interrupt read to get back the gathered data. If a rotation limit hasn’t
been reached, or a missile hasn’t yet left the launcher then 0x00 is returned, or
sometimes a timeout. There are four different rotation limit messages, 0x01, 0x02,
0x04, and 0x08, which correspond to the opcodes used to start that type of rotation.
Similarly, data signaling a missile release is 0x10, the same opcode that requests the
firing.

Before I go any further, I should warn delicate readers that a nasty bit of hacking lies
ahead. Despite many hours of experimentation I was unable to get status monitoring
to work via LibusbJava; the best I could achieve were interrupt reads that always
timed out, without returning any data. Nevertheless, I’ll explain my approach since it

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

23 © Andrew Davison 2011

should be correct, and it may help readers developing code for other USB gadgets, or
a more recent version of the Dream Cheeky launcher.

If anyone reading this chapter solves my problem, I'd be very happy to update the
code at the NUI website (http://fivedots.coe.psu.ac.th/~ad/jg/??) and in this chapter,
giving you due thanks for your efforts.

But just a cotton-pickin’ moment, what about Figure 1 which shows the author
suffering before the frightening onslaught of the mighty launcher. Is the
MotionLauncher application working or not? It’s working, but instead of using status
monitoring with interrupts to detect rotation limits and successful firing, I use time
estimates. I’ll explain the ugly details presently, after talking about interrupts.

The LibusbJava method I need for reading data from interrupts is
Device.readInterrupt(), which has the prototype:

public int readInterrupt(int in_ep_address,
 byte[] data, int size,
 int timeout, boolean reopenOnTimeout)
 throws USBException

The arguments are similar to those for Device.controlMsg(), except for in_ep_address
which is the endpoint to read from. This information is easy to find by looking at the
USB descriptor details in USBTrace, as shown in Figure 23.

Figure 23. USB Descriptor Information for Endpoints.

According to Figure 23, the endpoint address is 0x81, and the byte[] array needs to be
big enough to hold 1 byte.

Another way of obtaining this information is by double clicking on an interrupt packet
in USBTrace’s log. For example, Figure 24 shows details about a 0x01 interrupt
transfer, issued when the launcher can’t rotate downwards any further.

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

24 © Andrew Davison 2011

Figure 24. Interrupt Message for Downwards Limit.

My method for extracting status information from a Device.readInterrupt() call is:

private static int readStatus(Device dev, int timeout)
{
 byte[] buffer = new byte[1];
 try {
 int res = dev.readInterrupt(0x81, buffer, buffer.length,
 timeout, false);
 if (res < 0)
 System.out.println("Interrupt read error (" + res + "):\n " +
 LibusbJava.usb_strerror());
 else if (res == 0)
 System.out.println("No data in interrupt read");
 else { // res > 0
 return ((int)buffer[0] & 0xff); // return status data
 }
 catch (USBTimeoutException e) {
 System.out.println("interrupt timeout");
 }
 catch (USBException e) {
 System.out.println(e);
 }
 return -1;
} // end of readStatus()

Error cases, such as Device.readInterrupt() timing out are reported as a negative
result. Status data should be positive (0x00 or greater).

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

25 © Andrew Davison 2011

There needs to be a status request (i.e. a control transfer using 0x40) before the
interrupt read. I combine this with timeout functionality in waitUntil():

// global
private static final int INTERRUPT_TIME_OUT = 100; // ms

private static boolean waitUntil(Device dev, int maxTime,
 int intrCode)
/* wait until maxTime ms has passed, if not interrupted first;
 return after maxTime ms with a true result or earlier
 with a false result if the interrupt transfer returns
 the right interrupt code (intrCode) */
{
 int totalWait = 0;
 while (totalWait < maxTime) {
 sendControl(dev, 0x40); // send status request
 if (readStatus(dev, INTERRUPT_TIME_OUT) == intrCode)
 return false;
 totalWait += INTERRUPT_TIME_OUT;
 }
 return true;
} // end of waitUntil()

waitUntil() waits for maxTime milliseconds to pass, but instead of sleeping with
Thread.sleep(), it keeps requesting status information. Each request may take up to
INTERRUPT_TIME_OUT milliseconds, which is the timeout for the
Device.readInterrupt() call inside readStatus().

The status value returned by readStatus() must be compared with the interrupt opcode
in intrCode to decide if the waiting should be terminated early.

waitUntil() returns true if the full maxTime time has passed, or false if the waiting has
finished early because of a status report.

An example of how waitUntil() can be used with a downwards rotation:

sendControl(dev, 0x01); // start launcher rotating down
boolean timeoutReached = waitUntil(dev, 3000, 0x01);
 // wait 3 secs or until status is 0x01
sendControl(dev, 0x20); // stop launcher

The downward rotation may last for a maximum of 3 seconds, but waitUntil() can
finish earlier if the status report returns 0x01 (meaning that the downward limit has
been reached). In either case, after waitUntil() returns, the rotation is stopped.

As I mentioned above, this code does not work correctly. Even when a rotation
reaches its physical limit, the call to Dev.readInterrupt() in readStatus() only timeouts
(which is caught by the USBTimeoutException catch block in readStatus()).

I tried numerous variations of this idea, such as issuing more than one 0x40 control
transfer before an interrupt read, varying the time delays between the control transfer
and the interrupt read. I tried moving the code to a separate Java thread, and have it
repeatedly call waitUntil() with small max times until the device was closed. None of
these changes made waitUntil() work correctly.

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

26 © Andrew Davison 2011

At the end of this chapter, there are links to other Dream Cheeky launcher
applications and libraries on Windows, Mac, and Linux, using languages such as C,
C#, Python, and Perl. It’s clear that status monitoring has posed problems for other
people. Some implementations don’t mention monitoring at all.

6.4. Replacing Monitoring with Explicit Time Limits
Let the hacking commence: I’ll replace status monitoring with time limits,
summarized in Figure 25.

Figure 25. Rotation and Firing Time Limits.

I measured the time it took for the launcher to rotate from its default central position
to its rotation limits in the left, right, up, and down directions. I also timed how long it
took for the pump inside the launcher to build up sufficient pressure to expel a
missile. I rounded down to the nearest integer for the rotation limits, and rounded up
the fire period. I now have the maximum amount of time that the launcher can spend
rotating horizontally and vertically.

During rotations I'll store the times spent moving horizontally and vertically. Both
times start at 0 at the launcher's central start position. A movement to the left
decrements the horizontal ‘time’, while a move to the right increments it. Similarly, a
movement up increments the vertical time, while rotating downward decrements it.
When these ongoing horizontal and vertical times reach the maximum time limits
shown in Figure 25 then further rotations in that direction is disabled.

This approach requires me to know the duration of a rotation, but that's included in
every rotation command as the wait time between sending a start rotation command
and a stop.

The following code snippets shows the use of the resulting MissileLauncher class, the
internals of which I’ll explain shortly.

MissileLauncher launcher = new MissileLauncher();

launcher.up(700); // move up for 700 ms
launcher.fire();

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

27 © Andrew Davison 2011

launcher.down(900);
launcher.down(1000); // rejected since limit would be exceeded

launcher.left(1000);

launcher.reset(); // restores launcher to starting position

launcher.close();

The launcher will rotate upwards, fire a missile, then rotate below its starting position.
It will not execute the second MissileLauncher.down() call since that would move the
gun below its downward limit (1 second according to Figure 25). An error message is
printed, and the call to down() returns false. The down limit doesn’t stop the next
rotation, which is to the left. The reset() call uses the stored on-going horizontal and
vertical times to undo the rotations, restoring the launcher to its starting position.

6.5. Integration with the Motion Detector
The launcher is going to be integrated with my motion detection code, but there’s a
slight mismatch between the two. The motion detector (see the previous chapter)
reports how a center-of-gravity (COG) has moved in terms of its pixel displacement
from its previous position. I need to convert these pixel distances into time arguments
suitable for MissileLauncher.up(), and the other rotation methods.

My solution is another time hack, based on how long it takes the launcher to rotate
across one webcam image’s width and height. For instance, the left hand side of
Figure 26 shows a man standing on the left edge of the webcam image. I timed how
long it took the launcher (and the webcam image) to rotate left until the man was
positioned at the right of the image.

Figure 26. Timing the Horizontal Traversal of a Webcam Image,

This allows me to link image pixel distance and launcher rotation time, since I know
the width of the webcam image (640 pixels) and the rotation time (3 seconds). I can
say (roughly) that it takes 1 second for the launcher to traverse 213 pixels.

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

28 © Andrew Davison 2011

I carried out a similar measurement for the vertical traversal of an image. The
launcher moves more slowly in that direction, taking about 3 seconds to cross 480
pixels.

This approach is a long way from being accurate. For example, I only timed things to
the nearest second, and I’m assuming that the launcher's velocity is constant. This is
obviously not true if you consider what happens when a single large rotation is
replaced by several smaller ones. For instance, instead of calling
MissileLauncher.left() once for 3 seconds, call it three times, each for 1 second. The
total distance traveled in both cases is not the same (although it is close). Inaccuracies
accumulate due to the mechanical starting and stopping of the launcher.

What this approach does have going for it is simplicity, both to explain and
implement. After all, I’m not developing a launcher system that has to hit a pin on the
moon; the inaccuracies are perfectly reasonable for tracking a person moving a few
feet from the webcam.

7. Implementing the MissileLauncher Class
My MissileLauncher class simplifies the opening of a connection to the launcher, and
offers high-level rotation and firing methods that hide control transfers and the
opcodes that drive the launcher. The class contains hardwired timing values for
rotation limits and the firing period (as shown in Figure 25).

The basic rotation methods are left(), right() up(), and down(), which all take a time
period argument. There are also two rotation methods that take pixel arguments,
moveHorizontal() and moveVertical(), which convert pixel distances into time periods
and then call the relevant left(), right() up(), or down() functions.

The MissileLauncher constructor takes the dimensions of the webcam image as
arguments, which are later used to convert pixel lengths to times. These only give
correct answers if the dimensions are in the same ratio as a default image size (640
pixels wide / 480 deep). If the ratio is different, then the code issues a warning.

The launcher is opened using LibusbJava ’s USB and Device classes.

// globals
// default image size
private final static int SCR_WIDTH = 640;
private final static int SCR_HEIGHT = 480;

private final static short VENDOR_ID = (short)0x0a81;
private final static short PRODUCT_ID = (short)0x0701;
 // IDs for the launcher

private Device dev = null;
 // used to communicate with the USB device

private int scrWidth, scrHeight;
 /* dimensions of the screen (I assume they're the
 same width/height ratio as SCR_WIDTH/SCR_HEIGHT) */

public MissileLauncher()

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

29 © Andrew Davison 2011

{ this(SCR_WIDTH, SCR_HEIGHT); }

public MissileLauncher(int w, int h)
{
 scrWidth = w;
 scrHeight = h;

 // check image dimension ratio against defaults
 if ((scrWidth*SCR_HEIGHT) != (SCR_WIDTH*scrHeight))
 System.out.println("Screen size ratio doesn't
 match conversion defaults");

 System.out.println("Looking for device: (vendor: " +
 toHexString(VENDOR_ID) +
 "; product: " + toHexString(PRODUCT_ID) + ")");
 dev = USB.getDevice(VENDOR_ID, PRODUCT_ID);
 try {
 System.out.println("Opening device");
 dev.open(1, 0, -1);
 // configuration 1, interface 0 and no alt interface
 }
 catch (USBException e) {
 System.out.println(e);
 System.exit(1);
 }
} // end of MissileLauncher()

7.1. Basic Rotation Methods
The basic rotation methods (left(), right() up(), and down()) all utilize
sendCommand(), which makes two calls to sendControl(), separated by some waiting:

// globals
private Device dev = null; // the USB device

private void sendCommand(int opCode, int period)
// execute the opCode operation for period millisecs
{
 if (dev != null) {
 sendControl(opCode); // start the operation
 wait(period);
 sendControl(0x20); // stop the operation
 }
} // end of sendCommand()

private void sendControl(int opCode)
// send a USB control transfer
{
 System.out.println("Sending opCode: " + toHexString(opCode));
 byte[] bytes = { new Integer(opCode).byteValue() };

 try {
 int rval = dev.controlMsg(
 USB.REQ_TYPE_DIR_HOST_TO_DEVICE |
 USB.REQ_TYPE_TYPE_CLASS |

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

30 © Andrew Davison 2011

 USB.REQ_TYPE_RECIP_INTERFACE,
 0x09, 0x0200, 0,
 bytes, bytes.length, 2000, false);
 if (rval < 0) {
 System.out.println("Control Error (" + rval + "):\n " +
 LibusbJava.usb_strerror());
 }
 }
 catch (USBException e) {
 System.out.println(e);
 }
} // end of sendControl()

Each of the rotation function calls sendCommand() with the correct opCode, and also
updates the ongoing horizontal or vertical rotation times. For example, left():

// globals
// times for the gun to move a maximum amount in one direction
private final static int LEFT_MAX_TIME = 4900; // in ms
private final static int RIGHT_MAX_TIME = 8900;

private final static int MIN_PERIOD = 100; // in ms
 // time for the gun to move the smallest distance

private int horizontalTime = 0; // left is -ve; right is +ve

public boolean left(int period)
// move left for period ms
{
 if (period < MIN_PERIOD) {
 System.out.println(" left too small: " + period);
 return false;
 }
 else if (horizontalTime-period > -1*LEFT_MAX_TIME) {
 System.out.println(" left: " + period);
 sendCommand(0x04, period);
 horizontalTime -= period;
 return true;
 }
 else { // reached the left rotation limit
 System.out.println(" left limit");
 return false;
 }
} // end of left()

left(), right(), up(), and down() all have the same three-way branch structure. The first
branch rejects a rotation with too small a time period. The second branch carries out
the turn and updates the relevant global ongoing rotation time. In left(), if the time
required exceeds the time limit for turning left (LEFT_MAX_TIME), then the
operation is rejected by the third branch. The right() method is similar but uses
RIGHT_MAX_TIME for its time testing.

up() and down() are much the same, but manipulate the ongoing vertical rotation time,
as shown in up():

// globals

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

31 © Andrew Davison 2011

// times for the gun to move a maximum amount in one direction
private final static int UP_MAX_TIME = 1900;
private final static int DOWN_MAX_TIME = 900;

private final static int MIN_PERIOD = 100; // in ms
 // time for the gun to move the smallest distance

private int verticalTime = 0; // down is -ve; up is +ve

public boolean up(int period)
// move up for period ms
{
 if (period < MIN_PERIOD) {
 System.out.println(" up too small: " + period);
 return false;
 }
 else if (verticalTime+period < UP_MAX_TIME) {
 System.out.println(" up: " + period);
 sendCommand(0x02, period);
 verticalTime += period;
 return true;
 }
 else { // reached the up rotation limit
 System.out.println(" up limit");
 return false;
 }
} // end of up()

7.2. Resetting
The MissileLauncher.reset() method uses the two time globals, horizontalTime and
verticalTime to undo the rotations, returning the launcher to its start position.

// globals
private int horizontalTime = 0; // left is -ve; right is +ve
private int verticalTime = 0; // down is -ve; up is +ve

public void reset()
{
 if (horizontalTime < 0) // -ve so on left
 right(-1*horizontalTime);
 else // +ve so on right
 left(horizontalTime);

 if (verticalTime < 0) // -ve so facing down
 up(-1*verticalTime);
 else // +ve so facing up
 down(verticalTime);
} // end of reset()

7.3. From Pixel to Time-based Rotations
The MotionLauncher application deals in pixel distances, and so will not directly call
left(), right(), up(), and down() because they deal in time periods. Instead

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

32 © Andrew Davison 2011

MotionLauncher invokes MissileLauncher.moveHorizontal() with a x-axis pixel
length and MissileLauncher.moveVertical () with a y-axis pixel length. The (x, y)
coordinates use the normal Java axes, so positive x is to the right and positive y is
down the image.

// globals
// time for the gun to move across the screen
private final static int WIDTH_MAX_TIME = 2900; // in ms
private final static int HEIGHT_MAX_TIME = 2900;

private int scrWidth, scrHeight;
 /* dimensions of the screen (I assume they're the same
 width/height ratio as SCR_WIDTH/SCR_HEIGHT */

public boolean moveHorizontal(int x)
// convert x-axis dist into time-period call to left() or right()
{
 int period;
 if (x < 0) { // x goes to the left in the webcam image
 period = (int) Math.round(((double) -x / scrWidth) *
 WIDTH_MAX_TIME);
 return left(period); // has moved left?
 }
 else { // x is to right
 period = (int) Math.round(((double) x / scrWidth) *
 WIDTH_MAX_TIME);
 return right(period); // has moved right?
 }
} // end of moveHorizontal()

public boolean moveVertical(int y)
// convert y-axis dist into time-period call to up() or down()
{
 int period;
 if (y > 0) { // y is down the webcam image
 period = (int) Math.round(((double) y / scrHeight) *
 HEIGHT_MAX_TIME);
 return down(period); // has moved down?
 }
 else { // y is up
 period = (int) Math.round(((double) -y / scrHeight) *
 HEIGHT_MAX_TIME);
 return up(period); // has moved up?
 }
} // end of moveVertical()

The calculation of the period uses travel times that I obtained rotating across a 640 x
480 size webcam image. These will be the same for any image with the same
width/height ratio.

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

33 © Andrew Davison 2011

8. Creating the MotionLauncher application
The MotionLauncher application shown back in Figure 1 is a combination of the
MotionDetector application of the previous chapter and the MissileLauncher class just
described. This can be seem from the application’s class diagrams in Figure 27.

Figure 27. Class Diagrams for the MotionLauncher Application.

The top-level JFrame and JPanel classes, MotionLauncher and MLPanel, are versions
of the MotionDetector and MotionPanel classes of the previous chapter. The
JMFCapture class is unchanged, and JCVMotionDetector has one small extra method,
reset().

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

34 © Andrew Davison 2011

In Figure 28, I’ve superimposed the classes of Figure 27 over the third-party libraries
from Figure 4, to show how the application’s functionality is divided between the
classes.

Figure 28. The MotionLauncher Classes and their Libraries.

8.1. Rendering the Launcher's View
The MLPanel class loops inside its run() method, grabbing an image, finding its
center-of-gravity (COG), and uses the COG to move the launcher. Much of the coding
(imaging, analysis) is the same as in the last chapter’s MotionPanel class.

The new element is the positioning of the launcher. Initially, it points toward the
center of the webcam image (this isn’t quite true, but near enough). When a COG is
calculated, the launcher should be moved to point at it. The next webcam image will
show a new view of the scene, since the camera is mounted on top of the launcher,
and the new image's center will coincide with the COG position.

There’s a tricky dependency hidden in the above description. JCVMotionDetector
finds a COG by comparing the current webcam image with the previous one, the
assumption being that any differences are due to movement in the scene. However,
when the launcher moves to a new position, the webcam image will be very different
from the previous one. A COG calculation using the previous, now out-of-date, image
will give incorrect results. This means that after the launcher has moved, its necessary
to generate a new previous image.

Another problem is speed. In previous examples, the panel has been updated at least
10 times/second, controlled by a global DELAY constant set to 100 ms. But each
iteration must now include time to move the launcher, and generate new webcam
images. Launcher movement is particularly slow, often taking 1-2 seconds.

One way of handling slow processing is to move it into a separate thread where it can
be as lethargic as it likes without affecting the rest of the application (an approach I'll
use for face recognition in NUI Chapter 8). The drawback is the complexity of writing
threads which share data (in this case, webcam images). Instead I'll go for a simpler
fix – reducing the frequency of COG analysis and launcher movement. These tasks

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

35 © Andrew Davison 2011

will still take 1-2 seconds, but occur less often than once every rendering iteration.
From the user's point of view, panel rendering will be fast most of the time, with
occasional slowdowns.

The run() method in MLPanel shows how this design is implemented:

// in MLPanel
// globals
private static final int DELAY = 500; // was 100
 // time (ms) between redraws of the panel

private static final int MOVE_DELAY = 1000;
 // time (ms) between moves

private JFrame top;
private BufferedImage image = null; // current webcam snap
private JMFCapture camera;
private volatile boolean isRunning;

// used for the average ms snap time information
private int imageCount = 0;
private long totalTime = 0;

public void run()
{
 camera = new JMFCapture();

 BufferedImage im = camera.getImage();
 JCVMotionDetector md = new JCVMotionDetector(im);
 // create motion detector

 MissileLauncher launcher = null;

 // update panel and window sizes to fit video's frame size
 Dimension frameSize = camera.getFrameSize();
 if (frameSize != null) {
 setPreferredSize(frameSize);
 top.pack(); // resize and center JFrame
 top.setLocationRelativeTo(null);

 launcher = new MissileLauncher(frameSize.width,
 frameSize.height);

 centerPoint = new Point(frameSize.width/2, frameSize.height/2);
 }

 long duration;
 isRunning = true;
 long moveTime = System.currentTimeMillis();
 while (isRunning) {
 long startTime = System.currentTimeMillis();

 im = camera.getImage(); // take a snap
 if (im == null) {
 System.out.println("Problem loading image " + (imageCount+1));
 duration = System.currentTimeMillis() - startTime;
 }
 else {

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

36 © Andrew Davison 2011

 image = im; // only update image if it contains something
 imageCount++;

 md.calcMove(im); // update detector with new image

 if ((System.currentTimeMillis() - moveTime) >= MOVE_DELAY) {
 reactToCOG(md, launcher); // use COG to move launcher
 moveTime = System.currentTimeMillis();
 }

 duration = System.currentTimeMillis() - startTime;
 totalTime += duration;
 repaint();
 }

 if (duration < DELAY) {
 try {
 Thread.sleep(DELAY-duration); // wait until DELAY time
 }
 catch (Exception ex) {}
 }
 }

 launcher.close();
 camera.close(); // close down the camera
} // end of run()

The JCVMotionDetector object is created and used in the same way as in the previous
chapter. Most of the new code is in reactToCOG(), executed by the small if-test after
the call to calcMove(). Also, reactToCOG() is only called if enough time has passed
since the launcher was last moved.

The DELAY constant has also been changed; formerly it was set at 100 ms, but it is
now 500 ms, which makes the delays caused by launcher movement less noticeable.

A MissileLauncher object is created inside run(), and closed down when the display
loop finishes. MissileLauncher is unmodified from its description in the last section.

8.2. Reacting to Movement
reactToCOG() converts a COG position into launcher movement, a reset of the
JCVMotionDetector object, and a possible missile firing.

// globals
private static final int FIRE_MOVES = 6;
 // no of consecutive moves before firing

private int numConseqMoves = 0; // number of consecutive moves

private void reactToCOG(JCVMotionDetector md,
 MissileLauncher launcher)
{ Point cogPt = md.getCOG(); // get new COG
 if (cogPt == null) {
 System.out.println("No new COG point found");
 numConseqMoves = 0;
 return;

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

37 © Andrew Davison 2011

 }
 else
 System.out.println("COG: (" + cogPt.x + ", " + cogPt.y + ")");

 // calculate offset of COG from center
 int xOffset = cogPt.x - centerPoint.x;
 int yOffset = cogPt.y - centerPoint.y;

 // move launcher so COG is at center spot
 boolean hasMovedHoriz = launcher.moveHorizontal(xOffset);
 boolean hasMovedVert = launcher.moveVertical(yOffset);

 if (hasMovedHoriz || hasMovedVert) {
 image = camera.getImage(); // update panel's image
 md.reset(image); // reset JCVMotionDetector
 numConseqMoves++;
 if (numConseqMoves == FIRE_MOVES) {
 launcher.fire();
 numConseqMoves = 0;
 }
 }
 else // no move this time so reset numConseqMoves counter
 numConseqMoves = 0;
} // end of reactToCOG()

reactToCOG() generate a new COG point, and sees how far it is from the center of the
panel. It calls MissileLauncher.moveHorizontal() and MissileLauncher.
moveVertical() with the calculated pixel offsets. If the launcher is moved, then the
panel and the JCVMotionDetector object must be assigned a new view of the scene.

A niggly question is when to fire a missile? As usual, I've gone for a simple answer
based on a counter, numConseqMoves, which records the number of consecutive
launcher moves. If this counter reaches FIRE_MOVES, then firing is initiated. The
counter will be reset to 0 if no COG point was detected in the reactToCOG() call or
the calculated COG offset was too small to make the launcher move.

MissileLauncher.fire() is the slowest launcher operation, taking nearly 7 seconds to
fire a missile. Even worse, the whole thing may be a complete waste of time if all the
missiles have already been released (and the user hasn't reloaded them).
MissileLauncher.fire() is another good reason for moving launcher manipulation into
a separate thread.

8.3. Resetting the JCVMotionDetector Object
The JCVMotionDetector class is virtually unchanged from the version I described in
the previous chapter. The only significant change is a new reset() method:

// in JCVMotionDetector
// globals
private static final int MAX_PTS = 2; // was 5
 // size of cogPoints[] array

private IplImage prevImg, currImg; // grayscale images

private Point[] cogPoints; // for smoothing COG point values
private int ptIdx, totalPts;

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

38 © Andrew Davison 2011

public void reset(BufferedImage frame)
{
 ptIdx = 0;
 totalPts = 0;
 prevImg = convertFrame(frame);
 currImg = null;
} // end of reset()

The reset affects the COG points array and the previous and current images. The
points array is treated as being empty by setting its ptIdx and totalPts counters to 0.
This reflects the idea that the 'old' COG points were for the launcher's old position,
and so should be discarded. The previous image is set to the new view, and the current
image will be recalculated when JCVMotionDetector.calcMove() is next called.

I also reduced the size of the COG points array in JCVMotionDetector to two
elements. If you recall, the purpose of this array is to store old COG values so
smoothing could combine the current and previous points. This removes some of the
jitter from the COG position at the expense of making the COG slower to change
position when there's rapid movement.

After experimenting with MotionLauncher, it turns out that COG responsiveness is
more desirable than smoothness, so I reduced the size of the points array.

8.4. Some Issues with the Camera
One of the long standing restrictions of JMF is that is only supports one webcam per
JVM (according to its documentation). In practice, it seems that even if multiple
JVMs are running, JMF will still only see a single camera, even when MS Windows
can quite happily switch between them.

What has this got to do with MotionLauncher, which only uses the camera stuck atop
the launcher? The problem is that most modern PCs come with a built-in webcam,
and so plugging the launcher's camera into the machine's USB port will bring the
number to two, creating problems for JMF.

This lack of JMF functionality, combined with the likelihood that the issue will never
be fixed, is what encourages people to turn to more modern, functionally more
advanced, supported, third-party libraries. An increasingly popular one is FMJ
(http://fmj-sf.net/) which bills itself as an open-source alternative to JMF, that aims to
be API-compatible. According to its help forum, FMJ does support multiple cameras.

I didn't go the FMJ route since there's a fairly simple fix in Windows for my problem
– I can temporarily disable the PC’s webcam driver via Window's Device Manager,
leaving only the Dream Cheeky camera. It's also necessary to register the camera with
the JMF Registry application.

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

39 © Andrew Davison 2011

9. More Information on the Dream Cheeky Launcher
Investigating the USB protocol for the Dream Cheeky Launcher involved
USBDeview (free from http://www.nirsoft.net/utils/usb_devices_view.html) and
USBTrace (free 15 day trial from http://www.sysnucleus.com/), and the development
of code on top of LibusbJava (http://libusbjava.sourceforge.net/) and libusb-win32
(http://sourceforge.net/apps/trac/libusb-win32/wiki). In some respects, the
investigation process and tools are more important than what I found out about the
launcher, since I can apply these techniques to other USB gadgets. I'll be doing just
that when I start playing with a toy robot arm in NUI Chapter 6.

I was a bit miffed not to be able to read interrupt transfers (anyone who gets this
working in Java, please contact me). However, it seems that similar problems have
affected people programming the launcher in other languages and platforms.

Due to its high fun quota, there's a lot of advice out of the Web about how to interface
to the launcher. Perhaps the best first stop is David Wilson's blog
(http://dgwilson.wordpress.com/). Look for the blog section headings entitled "USB
Missile" and "Download" that hold lots of C code for several versions of the launcher
on the Mac and Windows; the Windows information can be accessed directly at
http://dgwilson.wordpress.com/windows-missile-launcher/. One nice thing about his
blog posts, are the informative comments by readers.

Wilson makes an important point: that different launcher versions (at least four from
Dream Cheeky, not counting other manufacturers) utilize similar USB commands, but
not the same ones. For example, my analysis of Dream Cheeky's MSN Missile
Launcher is not quite the same as their current Storm O.I.C launcher
(http://www.dreamcheeky.com/storm-oic-missile-launcher)

Wilson doesn't consider Linux. For that platform, you should visit Matthias
Vallentin's blog post "A Linux kernel driver for the Dream Cheeky USB missile
launcher" (http://matthias.vallentin.net/2007/04/writing-linux-kernel-driver-for-
unknown.html). It includes a detailed explanation of the reverse engineering of the
protocol, and good comments from readers. The driver, called ML-Driver, is available
from https://github.com/mavam/ml-driver.

Another Linux version, written in Perl, is described in an article in Linux Magazine
called "Replacing Tin Soldiers" by Michael Schilli, available at http://www.linux-
magazine.com/w3/issue/103/Perl.pdf

For Python programmers, try "Python Interfacing a USB Missile Launcher" by
Pedram Amini at http://dvlabs.tippingpoint.com/blog/2009/02/12/python-interfacing-
a-usb-missile-launcher. The code is at
http://dvlabs.tippingpoint.com/pub/pamini/ped_missile.py. Amini traces the USB
protocol, and also disassembles Dream Cheeky's support library, USBHID.dll.

Chris Smith utilizes F# in "Being an Evil Genius with F# and .NET" at
http://blogs.msdn.com/b/chrsmith/archive/2010/01/24/being-an-evil-genius-with-f-
and-net.aspx. He adds speech control using .NET's System.Speech API, something I'll
be doing in Java in NUI Chapter 11.

Fancy a Wii? Then take a look at "Wiimotely Controlled Wee Little Rockets" by
Chad Z. Hower at http://www.kudzuworld.com/blogs/Tech/WiiRockets.en.aspx and
http://rocket.codeplex.com/. He uses C# and two external libraries, WiimoteLib and
USB HID, for keyboard and Wiimote (Wii remote) support.

Java Prog. Techniques for Games. NUI Chapter 4. Launcher Draft #1 (30th May ‘11)

40 © Andrew Davison 2011

The launcher makes a good university computer engineering project. For example, see
"Run, Stephen, Run: Shoot First, Ask Questions Later" by Andrew Bui et al. at
Columbia
(http://www.cs.columbia.edu/~sedwards/classes/2010/4840/reports/RSR.pdf). They
develop controller hardware and software for a Altera DE2 Board, and look at
ballistics and triangulation issues. There's also the Group05 project from UNSW
(http://cgi.cse.unsw.edu.au/~cs4411/wiki/index.php?title=Group05_Project) that
combines the launcher with robots that search, aim and fire at each other
autonomously. They employ Haar classifiers in OpenCV and ARToolkit, topics I'll be
considering in NUI Chapters 8 and 19. The report includes lots of fun pictures.

What came as a bit of a surprise were the many open source libraries for toy
launchers, written in different languages (but not in Java) I found five libraries at
http://sourceforge.net/ and another five at http://code.google.com/. You should search
with keywords such as "missile" and "launcher".

