
Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 1 © Andrew Davison 2013

NUI Chapter 3. Motion Detection

[Note: all the code for this chapter is available online at

http://fivedots.coe.psu.ac.th/~ad/jg/??; only important fragments are described here.]

This chapter explains how to use a webcam to detect change or movement in a scene.

Since this is such a common requirement of video-based systems, I'll describe three

different approaches. The first is based on the image differencing of consecutive

video frames, the second utilizes background/foreground segmentation, and the

third employs optical flow.

The image-difference detector highlights any movement between frames with a pair

of crosshairs at the center-of-gravity (COG) of the motion. The application, called

MotionDetector, is shown in Figure 1.

Figure 1. Image-difference Detection over Time.

I'll develop the application in two stages. First I'll focus on the detection problem by

implementing code using a JavaCV-based test-rig. In the second step, I'll integrate the

resulting detection class with the JavaCV grabber code from Chapter 2 that uses a

JFrame and threaded JPanel. I'll also add the crosshairs graphic and code to make the

tracking follow the user more smoothly.

The second technique, background substitution, utilizes a learning algorithm based on

background and foreground clustering using Gaussian distributions. It's a more

sophisticated detector of movement than image differencing, and is available in

JavaCV as the class BackgroundSubtractorMOG2. Figure 2 shows the applications in

action, with the detected foreground shown in white in the right-hand panel.

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 2 © Andrew Davison 2013

Figure 2. Foreground Detection.

The large blue circle drawn on the grabbed image in the left-hand panel represents the

center-of-gravity (COG) of the foreground region. I'll explain the code in section 4.

The third movement processing technique I'll look at is (sparse) optical flow which

matches up 'features' (pixels or small groups of pixels) that occur in consecutive video

frames. My OpticalFlowMove application is illustrated in Figure 3. Each feature

movement is shown as a blue arrow, and the overall COG of these direction vectors is

denoted by a large red circle.

Figure 3. Optical Flow.

This optical flow code will be examined in section 5.

1. Image-differencing in JavaCV

The test-rig for movement detection based on comparing consecutive video frames is

shown in Figure 4. It consists of two side-by-side JavaCV CanvasFrame displays.

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 3 © Andrew Davison 2013

Figure 4. The Motion Detector Test-rig.

The left-hand display shows a grayscale version of the current webcam image with a

white circle placed at the center-of-gravity of the detected motion (it's on my chin in

Figure 4). The right-hand display shows the "threshold difference" between the

current and previous webcam frames. The white areas denote a change or movement

between the two images, while the black areas are where the two frames are the same.

When Figure 4 was generated, I was moving my head to the left, which is shown as

the two blocks of white pixels in the difference image. There are two areas because

the consecutive frames are different on both sides of my head as I move to the left.

The position of the white dot in the grayscale image is calculated using the white

areas in the difference image, as I'll explain later.

The test-rig starts by creating a JavaCV OpenCVFrameGrabber instance for accessing

the webcam, and initializes an instance of my CVMotionDetector class.

(OpenCVFrameGrabber is a concrete subclass of FrameGrabber which always uses

the capture capabilities of OpenCV). The main() function then enters a loop which

updates the two canvases until one of them is closed. The code:

public static void main(String[] args) throws Exception

{

 System.out.println("Initializing frame grabber...");

 OpenCVFrameGrabber grabber = new OpenCVFrameGrabber(CV_CAP_ANY);

 grabber.start();

 CVMotionDetector md = new CVMotionDetector(grabber.grab());

 Dimension imgDim = md.getSize();

 IplImage imgWithCOG = IplImage.create(imgDim.width, imgDim.height,

 IPL_DEPTH_8U, 1);

 // two canvases for the image+COG and difference images

 // left-hand display

 CanvasFrame cogCanvas = new CanvasFrame("Camera + COG");

 cogCanvas.setLocation(0, 0);

 // right-hand display

 CanvasFrame diffCanvas = new CanvasFrame("Difference");

 diffCanvas.setLocation(imgDim.width+5, 0);

 // display grayscale+COG and diff images, until a window is closed

 while (cogCanvas.isVisible() && diffCanvas.isVisible()) {

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 4 © Andrew Davison 2013

 long startTime = System.currentTimeMillis();

 md.calcMove(grabber.grab());

 // show current grayscale image with COG drawn onto it

 cvCopy(md.getCurrImg(), imgWithCOG);

 Point cogPoint = md.getCOG();

 if (cogPoint != null)

 cvCircle(imgWithCOG, cvPoint(cogPoint.x, cogPoint.y), 8,

 CvScalar.WHITE, CV_FILLED, CV_AA, 0);

 cogCanvas.showImage(imgWithCOG);

 diffCanvas.showImage(md.getDiffImg()); // update diff image

 System.out.println("Processing time: " +

 (System.currentTimeMillis() - startTime));

 }

 grabber.stop();

 cogCanvas.dispose();

 diffCanvas.dispose();

} // end of main()

The CVMotionDetector constructor is passed a webcam picture which becomes the

initial 'previous' frame for use later on.

CVMotionDetector.getSize() returns the size of the webcam image, which is used to

create an empty IplImage object called imgWithCOG, and two JavaCV

CanvasFrames positioned side-by-side on the screen.

At the start of each iteration of the while-loop, CVMotionDetector.calcMove() is

passed the current webcam image, which is treated as the 'current' frame, compared to

the previous frame, resulting in a new difference image. CVMotionDetector also

makes the current frame the new previous frame for use when the loop next iterates.

The CVMotionDetector.getCOG() call returns the difference image's center-of-

gravity (COG) as a Java Point object.

A grayscale version of the current frame is retrieved from CVMotionDetector, and

copied into the imgWithCOG image. A white circle can then be drawn onto the copy

without affecting the original frame.

The two canvases are updated, one with the imgWithCOG image, the other with the

difference image (obtained from CVMotionDetector).

On my slow test machine, the processing time for each loop iteration averaged about

80 ms, which is acceptable.

1.1. Initializing CVMotionDetector

CVMotionDetector's constructor initializes two of the three IplImage objects used

during motion detection:

// globals

private IplImage prevImg, currImg, diffImg;

 // grayscale images (diffImg is bi-level)

private Dimension imDim = null; // image dimensions

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 5 © Andrew Davison 2013

public CVMotionDetector(IplImage firstFrame)

{

 if (firstFrame == null) {

 System.out.println("No frame to initialize motion detector");

 System.exit(1);

 }

 imDim = new Dimension(firstFrame.width(), firstFrame.height());

 System.out.println("image dimensions: " + imDim);

 prevImg = convertFrame(firstFrame);

 currImg = null;

 diffImg = IplImage.create(prevImg.width(), prevImg.height(),

 IPL_DEPTH_8U, 1);

} // end of CVMotionDetector()

prevImg, which holds the 'previous' frame, is initialized with the image passed to the

constructor after it has been modified by convertFrame(). diffImg, which holds the

difference image, is set to be an empty grayscale.

convertFrame() applies three operations to an image: blurring, color conversion to

grayscale, and equalization:

private IplImage convertFrame(IplImage img)

{

 // blur image to get reduce camera noise

 cvSmooth(img, img, CV_BLUR, 3);

 // convert to grayscale

 IplImage grayImg = IplImage.create(img.width(), img.height(),

 IPL_DEPTH_8U, 1);

 cvCvtColor(img, grayImg, CV_BGR2GRAY);

 cvEqualizeHist(grayImg, grayImg); // spread grayscale range

 return grayImg;

} // end of convertFrame()

The blurring reduces the noise added to the image by the poor quality webcam. The

conversion to grayscale makes subsequent difference and moment calculations easier,

and equalization spreads out the grayscale's range of grays, making it easier to

differentiate between different shades.

1.2. Detecting Movement

CVMotionDetector.calcMove() is passed the 'current' frame (the current webcam

image) which it compares with the previous frame, detects differences, and uses them

to calculate a center-of-gravity point.

// globals

private static final int LOW_THRESHOLD = 64;

private IplImage prevImg, currImg, diffImg;

private Point cogPoint = null; // center-of-gravity (COG) coord

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 6 © Andrew Davison 2013

public void calcMove(IplImage currFrame)

{

 if (currFrame == null) {

 System.out.println("Current frame is null");

 return;

 }

 if (currImg != null) // store old current as the previous image

 prevImg = currImg;

 currImg = convertFrame(currFrame);

 cvAbsDiff(currImg, prevImg, diffImg);

 // calculate absolute diff between curr & previous images;

 // large value means movement; small value means no movement

 /* threshold to convert grayscale --> two-level binary:

 small diffs (0 -- LOW_THRESHOLD) --> 0

 large diffs (LOW_THRESHOLD+1 -- 255) --> 255 */

 cvThreshold(diffImg, diffImg, LOW_THRESHOLD, 255,

 CV_THRESH_BINARY);

 Point pt = findCOG(diffImg);

 if (pt != null) // update COG if there is a new point

 cogPoint = pt;

} // end of calcMove()

The current frame is converted to a grayscale by convertFrame(), and then compared

with the previous frame using JavaCV's cvAbsDiff() function. It calculates the

absolute intensity difference between corresponding pixels in the two grayscales,

storing the results in the difference image, diffImg.

If the intensities of corresponding pixels haven't changed much between the previous

and current frame, then their subtraction will produce a small value. However, a pixel

that has changed radically (e.g. from black to white), will register a large intensity

difference.

The resulting difference image is a grayscale containing a wide range of values, but

it's possible to simplify the data using thresholding. cvThreshold() maps a specified

range of intensities (LOW_THRESHOLD+1 (65) to 255) to a single value 255, while

the rest of the intensity range (0 to LOW_THRESHOLD (64)) goes to 0. The result is

a "bi-level" grayscale image – one that only contains 0's and 255's. I'm employing

thresholding as a simple form of clustering, and saying that intensities above 65 are

important, while those below can be ignored.

1.3. A Moment Spent on Moments

Before I look at findCOG(), it's necessary to explain moments. I'll employ them to

obtain a mathematical expression for the center of a shape. The shape isn’t something

regular like a circle or square, but a collection of pixels which may be widely

dispersed (e.g. like a cloud).

In physics, the moment M expresses how a force F operates at some distance d along

a rigid bar from a fixed fulcrum. The idea is illustrated by Figure 5.

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 7 © Andrew Davison 2013

Figure 5. Force Acting at a Distance from a Fulcrum.

The equation for the moment is M = F*d

This concept can be generalized in numerous ways. For instance, rather than employ

force, it’s often convenient to talk about mass instead (denoted by a little m) so that

gravity doesn’t need to be considered. Also, the moment equation can be extended to

multiple dimensions, to involve areas and volumes instead of just a one-dimensional

bar.

The two-dimensional use of moments can be illustrated by the collection of n points

shown in Figure 6.

Figure 6. Points in Two-dimensions.

Each point has a mass (m1, m2,… , mn) and an (x, y) coordinate ((x1, y1), (x2, y2),... ,

(xn, yn)). If we imagine that the points are attached by a rigid, weightless, frame to the

x- and y- axes, then their moments can be calculated relative to those axes.

Considering the y-axis first, each point has a moment based on its mass*distance

relative to the axis. For example, the moment of the point with mass m1 with respect

to the y-axis is m1*x1. The sum of all the points’ moments around the y-axis is:

My = m1*x1 + m2*x2 + ... + mn*xn

The reasoning is the same for calculating the points’ moments around the x-axis. The

sum is:

Mx = m1*y1 + m2*y2 + ... + mn*yn

If we consider the collection of points, as a single ‘system’ then Mx and My can be

read as the moments of the system around the x- and y-axes.

The total mass of the system is the sum of its point masses:

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 8 © Andrew Davison 2013

msys = m1 + m2 + ... + mn

The basic moment equation is M = F*d in the one-dimensional case. This can be

generalized to two-dimensions as:

My = msys* ̅

and Mx = msys* ̅

 ̅ and ̅ can be viewed as the respective distances of the system from the x- and y-

axes. In other words, the (̅, ̅) coordinate is the system’s ‘center’, which is often

termed its center-of-gravity or centroid. Rearranging the above equations, gives us a

way to calculate the center-of-gravity:

 ̅ =

and

 ̅ =

From Points to Pixels

The use of mass in the moment equations only makes sense when we’re applying

moments to real objects. When we use them in computer vision, the focus is on pixels

rather than points, and the mass component can be replaced by a pixel function, such

as its intensity (0-255 for a grayscale, 0-1 for a binary image).

Let's assume that each pixel has an intensity (I1, I2,… , In) and a (x, y) coordinate ((x1,

y1), (x2, y2),... , (xn, yn)), as shown in Figure 7.

Figure 7. Pixels in Two-dimensions.

The sum of all the pixels’ moments around the y-axis can be written as:

My = I1*x1 + I2*x2 + ... + In*xn

The pixels’ moments around the x-axis is:

Mx = I1*y1 + I2*y2 + ... + In*yn

The ‘system’ is the collection of pixels, or the shape being studied.

The total intensity of the system (shape) is the sum of the intensities of its pixels:

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 9 © Andrew Davison 2013

Isys = I1 + I2 + ... + In

Knowing Isys and My allows us to obtain the distance of the shape from the y-axis:

 ̅ =

In a similar way, the distance of the shape from the x-axis is:

 ̅ =

The center-of-gravity point (̅, ̅) is the shape's center.

1.4. Moments in JavaCV

JavaCV calculates different types of moments using the parameterized equation:

m(p, q) = ∑ ()

The m() moments function takes two arguments, p and q, which are used as powers

for x and y. The I() function is a generalization of my intensity notation, where the

intensity for a pixel is defined by its (x, y) coordinate. n is the number of pixels that

make up the shape.

The m() function is sufficient for calculating the center-of-gravity point (̅, ̅) for a

shape. Recall that ̅ =

 and ̅ =

, so the three sums we need are:

My = I1*x1 + I2*x2 + ... + In*xn

Mx = I1*y1 + I2*y2 + ... + In*yn

Isys = I1 + I2 + ... + In

These can be expressed as versions of m() with different p and q values:

 My = m(1, 0)

 Mx = m(0, 1)

 Isys = m(0, 0)

This means that (̅, ̅) can be expressed as:

 ̅ =
 ()

 ()

and

 ̅ =
 ()

 ()

findCOG() uses JavaCV's m() function to calculate the center-of-gravity point (̅, ̅),

which it returns as a Point object.

All the moments are calculated at once by a call to JavaCV's cvMoments() function,

which stores them inside a CvMoments object. The ones needed for the center-of-

gravity calculation (m(0,0), m(1,0), m(0,1)) are retrieved by calling

cvGetSpatialMoment() with the necessary p and q values.

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 10 © Andrew Davison 2013

// globals

private static final int MIN_PIXELS = 100;

 // min number of non-black pixels for COG calculation

private Point findCOG(IplImage diffImg)

{

 Point pt = null;

 int numPixels = cvCountNonZero(diffImg);

 if (numPixels > MIN_PIXELS) {

 CvMoments moments = new CvMoments();

 cvMoments(diffImg, moments, 1);

 // 1 == treat image as binary (0,255) --> (0,1)

 double m00 = cvGetSpatialMoment(moments, 0, 0) ;

 double m10 = cvGetSpatialMoment(moments, 1, 0) ;

 double m01 = cvGetSpatialMoment(moments, 0, 1);

 if (m00 != 0) { // create COG Point

 int xCenter = (int) Math.round(m10/m00);

 int yCenter = (int) Math.round(m01/m00);

 pt = new Point(xCenter, yCenter);

 }

 }

 return pt;

} // end of findCOG()

cvMoments() calculates many types of moments (many more than I've explained),

and one optimization is to simplify the intensity relation it uses. Since the difference

image, diffImg, is a bi-level grayscale, it can be treated as a binary image with

intensities of 0 and 1. This is signaled to JavaCV by calling cvMoments() with its

third argument set to 1:

cvMoments(diffImg, moments, 1); // treat image as a binary

Another optimization is to check the number of non-zero pixels in diffImg before

calculating the moments. A difference is denoted by an intensity of 255, and no

change by 0, so the counting of non-zeros is a way to gauge the amount of difference

in diffImg. If the difference is too small (less than MIN_PIXELS are non-zero) then

the moments calculation is skipped.

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 11 © Andrew Davison 2013

2. The GUI-based Motion Detector

The class structure of the MotionDetector application is summarized in Figure 8.

Figure 8. Class Diagrams for the MotionDetector Application.

I won't bother explaining the top-level MotionDetector class – it’s just like the

SnapPics JFrame developed in Chapter 2, but simpler since I've removed the code for

saving a snap when the user presses numpad-5, space, or enter.

MotionPanel is similar to the Chapter 2's PicsPanel class, in that it spends much of it's

time inside a threaded loop repeatedly grabbing an image from the webcam (with

JavaCV's FrameGrabber) and drawing it onto the panel until the window is closed.

Consequently, I won't explain the grabber-related methods again.

MotionPanel also draws crosshairs, centered on the current center-of-gravity point of

the detected motion. This position is calculated using a slightly modified version of

CVMotionDetector from the previous section (now called JCVMotionDetector).

2.1. The Webcam Processing Loop

MotionPanel executes the webcam display loop inside run(), just as in Chapter 2

except for the use of JCVMotionDetector. A JCVMotionDetector object is created

before the loop starts, and JCVMotionDetector.calcMove() and

JCVMotionDetector.getCOG() are called during each loop iteration:

// in MotionPanel

// globals

private static final int DELAY = 100;

 // time (ms) between redraws of the panel

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 12 © Andrew Davison 2013

private static final int CAMERA_ID = 0;

private IplImage snapIm = null; // current webcam snap

private volatile boolean isRunning;

// used for the average ms snap time information

private int imageCount = 0;

private long totalTime = 0;

// previous and current center-of-gravity points

private Point prevCogPoint = null;

private Point cogPoint = null;

public void run()

{

 FrameGrabber grabber = initGrabber(CAMERA_ID);

 if (grabber == null)

 return;

 snapIm = picGrab(grabber, CAMERA_ID);

 JCVMotionDetector md = new JCVMotionDetector(snapIm);

 Point pt;

 long duration;

 isRunning = true;

 while (isRunning) {

 long startTime = System.currentTimeMillis();

 snapIm = picGrab(grabber, CAMERA_ID);

 md.calcMove(snapIm); // update detector with new image

 if ((pt = md.getCOG()) != null) { // get new COG

 prevCogPoint = cogPoint;

 cogPoint = pt;

 reportCOGChanges(cogPoint, prevCogPoint);

 }

 imageCount++;

 repaint();

 duration = System.currentTimeMillis() - startTime;

 totalTime += duration;

 if (duration < DELAY) {

 try {

 Thread.sleep(DELAY-duration);

 }

 catch (Exception ex) {}

 }

 }

 closeGrabber(grabber, CAMERA_ID);

} // end of run()

The center-of-gravity point is stored in the cogPoint global, and the previous value is

backed-up in prevCogPoint. Both these objects are passed to reportCOGChanges() so

that changes in the center-of-gravity can be reported.

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 13 © Andrew Davison 2013

2.2. Reporting on the Center-of-gravity

The reportCOGChanges() method prints out the current center-of-gravity if it has

moved sufficiently far from its previous position, and prints the distance moved (in

pixels) and its angle (in degrees) relative to the old point. Some typical output:

COG: (614, 371)

 Dist moved: 39; angle: 94

COG: (612, 341)

 Dist moved: 30; angle: 94

COG: (614, 315)

 Dist moved: 26; angle: 86

COG: (614, 303)

 Dist moved: 12; angle: 90

COG: (609, 319)

 Dist moved: 16; angle: -105

The reportCOGChanges() code:

// global

private static final int MIN_MOVE_REPORT = 3;

private void reportCOGChanges(Point cogPoint, Point prevCogPoint)

{

 if (prevCogPoint == null)

 return;

 // calculate the distance moved and the angle (in degrees)

 int xStep = cogPoint.x - prevCogPoint.x;

 int yStep = -1 *(cogPoint.y - prevCogPoint.y);

 // so + y-axis is up screen

 int distMoved = (int) Math.round(

 Math.sqrt((xStep*xStep) + (yStep*yStep)));

 int angle = (int) Math.round(Math.toDegrees(

 Math.atan2(yStep, xStep)));

 if (distMoved > MIN_MOVE_REPORT) {

 System.out.println("COG: (" + cogPoint.x + ", " +

 cogPoint.y + ")");

 System.out.println(" Dist moved: " + distMoved +

 "; angle: " + angle);

 }

} // end of reportCOGChanges()

2.3. Rendering Motion Detection

Figure 1 shows that the panel only contains three elements: the webcam image in the

background, a crosshairs image, and statistics written in yellow at the bottom left

corner.

All rendering is done through calls to the panel's paintComponent():

// globals

private IplImage snapIm; // current webcam snap

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 14 © Andrew Davison 2013

private Point cogPoint;

public void paintComponent(Graphics g)

{

 super.paintComponent(g);

 g.setFont(msgFont);

 // draw the image, crosshairs, and stats

 if (snapIm != null) {

 g.drawImage(snapIm.getBufferedImage(), 0, 0, this);

 if (cogPoint != null)

 drawCrosshairs(g, cogPoint.x, cogPoint.y);

 // image is centered at COG

 g.setColor(Color.YELLOW);

 String statsMsg = String.format("Snap Avg. Time: %.1f ms",

 ((double) totalTime / imageCount));

 g.drawString(statsMsg, 5, HEIGHT-10);

 }

 else {// no image yet

 g.setColor(Color.BLUE);

 g.drawString("Loading from camera " + CAMERA_ID +

 "...", 5, HEIGHT-10);

 }

} // end of paintComponent()

drawCrosshairs() draws a pre-loaded PNG image (see Figure 9) so it's centered at the

center-of-gravity coordinates.

Figure 9. The Crosshairs Image.

3. Smoothing the Motion Detection

JCVMotionDetector differs from CVMotionDetector in only one way: the addition of

smoothing to the center-of-gravity point. In the first version of calcMove(), a point

was stored in a global called cogPoint, and retrieved by calls to getCOG(). In

JCVMotionDetector, calcMove() adds the new point to an array. This array includes

the last few center-of-gravity points as well as the current one:

// in JCVMotionDetector

// globals

private static final int LOW_THRESHOLD = 64;

private static final int MAX_PTS = 5; //size of smoothing array

private IplImage prevImg, currImg, diffImg;

private Point[] cogPoints; // array for smoothing COG point

private int ptIdx, totalPts;

// in the JCVMotionDetector constructor:

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 15 © Andrew Davison 2013

cogPoints = new Point[MAX_PTS];

ptIdx = 0;

totalPts = 0;

public void calcMove(IplImage currFrame)

// smoothing version

{

 if (currFrame == null) {

 System.out.println("Current frame is null");

 return;

 }

 if (currImg != null) // store old current as the previous image

 prevImg = currImg;

 currImg = convertFrame(currFrame);

 cvAbsDiff(currImg, prevImg, diffImg);

 cvThreshold(diffImg, diffImg, LOW_THRESHOLD, 255,

 CV_THRESH_BINARY);

 Point cogPoint = findCOG(diffImg);

 if (cogPoint != null) { // store in points array

 cogPoints[ptIdx] = cogPoint;

 ptIdx = (ptIdx+1)%MAX_PTS; // index cycles around array

 if (totalPts < MAX_PTS)

 totalPts++;

 }

} // end of calcMove()

A new point is added to a fixed-size array (5 elements in my code), so there's an

upper-bound on the number of 'old' points which can be stored. When the array is full,

a new point replaces the oldest one.

getCOG() is also changed – instead of returning a cogPoint global, it calculates an

average point from the values stored in the array:

public Point getCOG()

{

 if (totalPts == 0)

 return null;

 int xTot = 0;

 int yTot = 0;

 for(int i=0; i < totalPts; i++) {

 xTot += cogPoints[i].x;

 yTot += cogPoints[i].y;

 }

 return new Point((int)(xTot/totalPts), (int)(yTot/totalPts));

} // end of getCOG()

This code implements a form of smoothing since it averages the current and previous

centers-of-gravity, which reduces variations in its position over time. Unfortunately,

this also means that if the user moves quickly, then the crosshairs movement will lag

behind. This lag time can be shortened by reducing the size of the smoothing array,

thereby reducing the number of old points that affect the current one.

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 16 © Andrew Davison 2013

4. Background/Foreground Segmentation

OpenCV supports background/foreground segmentation via two Mixture of Gaussians

(MOG) implementations, a widely used form of background modeling that allows a

static camera to detect moving objects. The APIs for the BackgroundSubtractorMOG

class, and the somewhat faster BackgroundSubtractorMOG2, can be found at

http://docs.opencv.org/modules/video/doc/motion_analysis_and_object_tracking.htm.

The documentation includes links to the papers that proposed the algorithms. Another

source of information are the comments in the C++ header file for these functions,

opencv\build\include\opencv2\video\background_segm.hpp, which comes with the

OpenCV download.

The essential idea of both algorithms is to use a history of video frames to segment

the scene into several Gaussian distributions (or clusters) representing the

background, foreground, and shadows. The darkest pixel areas are labeled as shadow,

the regions that are changing the most are added to the foreground Gaussian cluster

(or clusters), and the areas changing the least are assigned to the background.

This description highlights the somewhat misleading use of the words 'foreground'

and 'background' in the algorithm, which suggests a depth-measuring aspect which

isn't there. A pixel area is added to the 'foreground' if it has changed between frames,

which typically denotes movement in the scene. Conversely, 'background' areas are

those which remain unchanged between frames over a period of time.

Figure 10 shows my running MogCog.java application, which utilizes two

CanvasFrame displays in a similar way to the motion detector test-rig back in Figure

2.

Figure 10. The MogCog Detector.

The left-hand canvas shows the current grabbed image, and adds a large blue circle at

the center-of-gravity (COG) of the foreground (i.e. moving) region. The right-hand

canvas displays the foreground mask generated using the

BackgroundSubtractorMOG2 class.

One difference between the image difference display in Figure 2 and the foreground

mask in Figure 10 is that the mask covers more of the head while the difference image

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 17 © Andrew Davison 2013

only highlights it's left and right edges. This is achieved by adjusting the parameters

supplied to the BackgroundSubtractorMOG2 object, which would otherwise only

display similar edge information.

The main() method for MogCog spends a little time initializing the

BackgroundSubtractorMOG2 instance, and then enters a timed loop which repeatedly

grabs a camera image, and extracts a COG from the foreground mask.

// globals

private static final int DELAY = 100; // ms

private static CvMemStorage contourStorage;

public static void main(String[] args) throws Exception

{

 // Preload the opencv_objdetect module to work around a known

 Loader.load(opencv_objdetect.class);

 contourStorage = CvMemStorage.create();

 System.out.println("Initializing frame grabber...");

 OpenCVFrameGrabber grabber = new OpenCVFrameGrabber(CV_CAP_ANY);

 grabber.start();

 IplImage grab = grabber.grab();

 int width = grab.width();

 int height = grab.height();

 IplImage fgMask = IplImage.create(width, height, IPL_DEPTH_8U, 1);

 IplImage background = IplImage.create(width, height,

 IPL_DEPTH_8U, 3);

 CanvasFrame grabCanvas = new CanvasFrame("Camera");

 grabCanvas.setLocation(0, 0);

 CanvasFrame mogCanvas = new CanvasFrame("MOG Info");

 mogCanvas.setLocation(width+5, 0);

 BackgroundSubtractorMOG2 mog =

 new BackgroundSubtractorMOG2(300, 16, false);

 mog.set("nmixtures", 3); // was 5

 System.out.println("Num. mixtures: " + mog.getInt("nmixtures"));

 System.out.println("Shadow detect: " +

 mog.getBool("detectShadows"));

 try {

 System.out.println("Background ratio: " +

 mog.getDouble("backgroundRatio"));

 }

 catch (RuntimeException e)

 { System.out.println(e); }

 // process the grabbed camera image

 while (grabCanvas.isVisible() && mogCanvas.isVisible()) {

 long startTime = System.currentTimeMillis();

 grab = grabber.grab();

 if (grab == null) {

 System.out.println("Image grab failed");

 break;

 }

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 18 © Andrew Davison 2013

 mog.apply(grab, fgMask, 0.005); // get foreground mask

 mog.getBackgroundImage(background);

 // reduce noise in mask

 cvErode(fgMask, fgMask, null, 5);

 cvDilate(fgMask, fgMask, null, 5);

 cvSmooth(fgMask, fgMask, CV_BLUR, 5);

 cvThreshold(fgMask, fgMask, 128, 255, CV_THRESH_BINARY);

 mogCanvas.showImage(fgMask); // show foreground mask

 // mogCanvas.showImage(background); // show background

 Point pt = findCOG(fgMask); // same method as earlier

 if (pt != null) // draw the COG as a blue circle

 cvCircle(grab, cvPoint(pt.x, pt.y), 16,

 CvScalar.BLUE, CV_FILLED, CV_AA, 0);

 grabCanvas.showImage(grab);

 long duration = System.currentTimeMillis() - startTime;

 System.out.println("Processing time: " + duration);

 if (duration < DELAY) {

 try {

 Thread.sleep(DELAY - duration);

 }

 catch(InterruptedException e) {}

 }

 }

 grabber.stop();

 grabCanvas.dispose();

 mogCanvas.dispose();

} // end of main()

The COG is calculated using findCOG() which is unchanged from the code in section

1.4. The only difference is that it utilizes the foreground mask (i.e. the black and

white image in the right-hand canvas of Figure 10) rather than the difference image

(the black and white image in the right-hand canvas of Figure 2). Consequentially, I

won't explain the mathematics behind the moments calculations in findCOG() again.

The initialization of the BackgroundSubtractorMOG2 object is handled by:

BackgroundSubtractorMOG2 mog =

 new BackgroundSubtractorMOG2(300, 16, false);

mog.set("nmixtures", 3);

The three parameters in the constructor are the length of the frame history, a distance

measure for the size of the each Gaussian cluster, and a boolean indicating whether

shadows should be collected as a cluster.

The large frame history means that the Gaussian cluster for the background will be

based on a lot of historical information (assuming that the background is fairly static),

and so it should be easier for the algorithm to distinguish movement in the scene.

The number of mixtures (the nmixtures parameter) sets the number of clusters used to

distinguish the background and foreground elements. I've reduced the value from the

default of 5 to 3 since I'm not collecting shadow information.

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 19 © Andrew Davison 2013

In OpenCV version 2.4.2 only the detectShadows, history, and nmixtures parameters

can be set/get, although this was fixed in v.2.4.6. Just to be on the safe side, I

surround the get() call for the background ratio in a try-catch block to deal with a

potential runtime exception.

The assignment of the pixels in an image to different Gaussian clusters is carried out

by the apply() method, which is called inside the while-loop after a new image has

been grabbed:

mog.apply(grab, fgMask, 0.005);

The third parameter (0.005) is a learning rate, which is often set to -1, indicating a

default rate at which objects that have stopped moving in the foreground are

reassigned to the background cluster. I've set the learning rate close to 0, to slow

down this reassignment.

Combined with this low learning rate, I also ensure that the while-loop is provided

with several seconds of views of the background with no foreground objects. This

supplies the algorithm with a history of video frames for it to learn the background.

This process can be seen in action by observing changes to the right-hand display

canvas which shows the foreground mask. When the application starts, it is all white,

indicating that everything is considered to be in the foreground. After a few seconds

the mask turns completely black, signifying that all of the scene has been reassigned

to the background cluster.

The image assigned to fgMask is a 8-bit binary image which often contains quite a bit

of noise, and so the calls to cvErode(), cvDilate(), cvSmooth(), and cvThreshold() in

main() are intended to remove those small specks and combine adjacent white regions

into larger blobs.

main() contains code for accessing the background image generated by

BackgroundSubtractorMOG2:

IplImage background =

 IplImage.create(width, height, IPL_DEPTH_8U, 3);

 :
mog.getBackgroundImage(background);

 :
mogCanvas.showImage(fgMask); // show foreground mask

// mogCanvas.showImage(background); // show background

If the display code for the right-hand canvas is replaced to show the background

image rather than the foreground mask, then the MogCog application will look

something like Figure 11.

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 20 © Andrew Davison 2013

Figure 11. MogCog Showing the Background Image.

The ghostly white parts of the right-hand image demonstrate how parts of my white

shirt are gradually being reassigned from the foreground to the background.

Another difference from the difference image test-rig described at the start of this

chapter is the use of Thread.sleep() inside main()'s while-loop. This implements a

simple timed loop which ensures that each image grab occurs after 100 ms or more.

This reduces the looping speed since a single iteration without any delay takes around

80 ms to complete on my slow test machine.

5. Movement Detection Using Optical Flow

Optical flow tracks the movement of pixel-level elements across consecutive frames

in a video stream. In dense optical flow, the tracking tries to follow every pixel, which

can be rather tricky if the picture lacks detail (e.g. a polar bear dancing in a snow

storm). Sparse optical flow concentrates on following pixels that are easy to identify

(also called features or corners) due to their difference in intensity, texturing, or color

from neighboring pixels.

OpenCV supports a number of techniques for findings corners; I'll be using an

algorithm due to Shi and Tomasi, implemented as the function

cvGoodFeaturesToTrack(), which selects pixels surrounded by rapidly changing

intensities.

I'll obtain the optical flow of these corners using the cvCalcOpticalFlowPyrLK()

function. It implements the pyramidal Lucas-Kanade (LK) method, which uses level-

of-detail pyramids to detect varying amounts of movement between consecutive

frames.

Chapter 10 ("Tracking and Motion") of Learning OpenCV by Bradski and Kaehler

contains a great introduction to these methods, including details on the maths behind

the LK method. My code is partly based on their example and also code from

http://www.ccs.neu.edu/course/cs7380/f10/HW2/examples/c/lkdemo.c. A briefer,

slide introduction to these techniques by David Stavens can be found at

http://ai.stanford.edu/~dstavens/cs223b/, along with source code.

My OpticalFlowMove application is shown in action in Figure 12.

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 21 © Andrew Davison 2013

Figure 12. Displaying Optical Flow.

The movement of the selected corners between the previous frame and the current one

are drawn as blue arrows.

Unlike the movement tracking approaches from earlier in this chapter, optical flow

isn't represented by a single blob of pixels but as multiple individual directions

(vectors). This presents a number of problems when trying to determine an average

center-of-gravity (COG) for the movement. For example, although Figure 12 shows

that the user is moving right-to-left, the directions span a wide range of angles. Also,

there are quite a few directions which are 'incorrect', due to the misidentification of

corners.

My solution is to store the directions in an array of lists, with each list containing

directions ranging over a small number of angles. My code uses a 20 degrees range

for each list, resulting in an array of at most 18 lists. The largest list is used to

calculate the COG, and the smaller lists are ignored. This approach is satisfactory if

the scene contains a single overriding direction of movement (e.g. as in Figure 12).

It's less ideal if there are multiple sources of movement, such as two people walking

past each other.

OpticalFlowMove.java consists of a lengthy main() function and several support

methods. main() starts by initializing a large number of data structures required by the

OpenCV methods, but its heart is a loop which can be summarized like so:

prevGray = grab an image;

while (display window is visible) {

 grayGrab = grab an image;

 cornersA = select corners from prevGray using

 cvGoodFeaturesToTrack();

 cornersB = find those same corners in grayGrab using

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 22 © Andrew Davison 2013

 cvCalcOpticalFlowPyrLK();

 draw cornersA-to-cornersB directions as blue arrows;

 prevGray = grayGrab;

}

The data structure initialization, the creation of a FrameGrabber, and the initial

grabbing of an image is coded like so:

// globals

private static final int MAX_CORNERS = 300;

// group directions into lists based on their angles

private static final int ANGLE_RANGE = 20;

 // degree range for each list

private static final int NUM_ANGLE_LISTS = 360/ANGLE_RANGE;

 // number of lists

private static int width, height; // of a grabbed image

public static void main(String[] args) throws Exception

{

 // work around a known JavaCV bug

 Loader.load(opencv_objdetect.class);

 System.out.println("Initializing frame grabber...");

 OpenCVFrameGrabber grabber = new OpenCVFrameGrabber(CV_CAP_ANY);

 grabber.start();

 CanvasFrame grabCanvas = new CanvasFrame("Optical Flow");

 IplImage grab = grabber.grab();

 // grab an image for the initial 'previous' frame

 width = grab.width();

 height = grab.height();

 grabCanvas.showImage(grab);

 IplImage prevGray = toGray(grab);

 // (image) buffers for corner selection

 IplImage eigenIm = IplImage.create(width, height,

 IPL_DEPTH_32F, 1);

 IplImage tempIm = IplImage.create(width, height,

 IPL_DEPTH_32F, 1);

 // (image) buffers for the level-of-detail pyramids

 IplImage pyramidA = IplImage.create(width+8, height/3,

 IPL_DEPTH_32F, 1);

 IplImage pyramidB = IplImage.create(width+8, height/3,

 IPL_DEPTH_32F, 1);

 // corners arrays

 int[] cornerCount = { MAX_CORNERS };

 CvPoint2D32f cornersA = new CvPoint2D32f(MAX_CORNERS);

 CvPoint2D32f cornersB = new CvPoint2D32f(MAX_CORNERS);

 boolean findCorners = true;

 // selected corners info arrays

 byte[] cornersFound = new byte[MAX_CORNERS];

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 23 © Andrew Davison 2013

 float[] trackErrs = new float[MAX_CORNERS];

 int plk_flags = 0; // Lucas-Kanade method flags

 CvPoint cogBall = null;

 // null means that no COG will be displayed

 // direction lists array

 @SuppressWarnings("unchecked")

 // avoid warnings about using generics in arrays

 ArrayList<Direction>[] angledDirs = new ArrayList[NUM_ANGLE_LISTS];

 for (int i=0; i < NUM_ANGLE_LISTS; i++)

 angledDirs[i] = new ArrayList<Direction>();

 // enter the processing loop; see below

 // :

 } // end of main()

The angledDirs[] array holds the lists of Direction objects; each Direction instance is

created from a pair of corresponding corners found in the previous and current

images.

The selection of corners uses intensities differences between a pixel and its neighbors,

so each grabbed image is converted into an equalized grayscale by toGray() before the

processing begins:

private static IplImage toGray(IplImage img)

{

 // blur image to get reduce camera noise

 cvSmooth(img, img, CV_BLUR, 3);

 // convert to grayscale

 IplImage grayImg = IplImage.create(img.width(), img.height(),

 IPL_DEPTH_8U, 1);

 cvCvtColor(img, grayImg, CV_BGR2GRAY);

 cvEqualizeHist(grayImg, grayImg);

 // spread out the grayscale range

 return grayImg;

} // end of toGray()

The second half of main() contains the processing loop, shown below:

// globals

private static final int DELAY = 100; // ms

private static final int WIN_SIZE = 10; // size of search window

public static void main(String[] args) throws Exception

{

 // initialization of data structures; see above

 // :

 // process the grabbed camera image

 while (grabCanvas.isVisible() &&

 ((grab = grabber.grab()) != null)) {

 long startTime = System.currentTimeMillis();

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 24 © Andrew Davison 2013

 IplImage grayGrab = toGray(grab);

 // find corners

 cornersA.position(0); // reset position in array

 if (findCorners)

 cvGoodFeaturesToTrack(prevGray, eigenIm, tempIm,

 cornersA, cornerCount, 0.01, 5, null, 3, 0, 0.04);

 cornersA.position(0); // reset position in arrays

 cornersB.position(0);

 /* calculate new positions of the corners (in cornersB)

 based on how the corners in cornersA move between

 the previous image (prevGray) and the

 current image (grayGrab)

 */

 cvCalcOpticalFlowPyrLK(prevGray, grayGrab,

 pyramidA, pyramidB,

 cornersA, cornersB, cornerCount[0],

 cvSize(WIN_SIZE,WIN_SIZE), 5,

 cornersFound, trackErrs,

 cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 20, 0.3),

 plk_flags);

 // store the corner pairs (A --> B) as 'directions'

 int numDirs = storeDirs(cornersA, cornersB, cornerCount[0],

 cornersFound, angledDirs, grab);

 cogBall = updateCOG(cogBall, angledDirs, numDirs);

 if (cogBall != null)

 cvCircle(grab, cogBall, 10, CvScalar.RED, CV_FILLED, CV_AA, 0);

 grabCanvas.showImage(grab);

 prevGray = grayGrab;

 // save image as previous for next time around

 if (numDirs > 0) {

 /* swap corners and pyramids data to speed up

 the next call to cvCalcOpticalFlowPyrLK() */

 CvPoint2D32f swapCorners = cornersA;

 cornersA = cornersB;

 // no need to recalculate cornersA next time around

 cornersB = swapCorners;

 findCorners = false;

 IplImage swapPyramid = pyramidA;

 pyramidA = pyramidB;

 // use pyramidB as the 'A' pyramid next time around

 pyramidB = pyramidA;

 plk_flags |= CV_LKFLOW_PYR_A_READY; // pyramid 'A' initialized

 }

 else { // no directions found

 // call cvGoodFeaturesToTrack() next time to improve matters

 findCorners = true;

 cornerCount[0] = MAX_CORNERS;

 plk_flags = 0;

 }

 long duration = System.currentTimeMillis() - startTime;

 System.out.println(" Processing time: " + duration);

 if (duration < DELAY) {

 try {

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 25 © Andrew Davison 2013

 Thread.sleep(DELAY - duration);

 }

 catch(InterruptedException e) {}

 }

 } // end of processing loop

 grabber.stop();

 grabCanvas.dispose();

} // end of main()

The call to cvGoodFeaturesToTrack() is:

cvGoodFeaturesToTrack(prevGray, eigenIm, tempIm,

 cornersA, cornerCount, 0.01, 5, null, 3, 0, 0.04);

The grayscale image in prevGray is examined, and suitable corners are stored in the

cornersA array, along with the number of those corners in cornerCount.

The two arguments of cvGoodFeaturesToTrack() which most effect the subsequent

speed and accuracy of the optical flow calculation are the minimum quality level for

selecting a corner (which is set to 0.01 in the code above) and the minimum distance

between corners (set to 5 pixels above).

The smaller the quality level, the smaller the intensity change necessary to classify a

pixel as a corner. This will increase the total number of corners, which will slow

down the subsequent flow processing.

One way to limit the number of corners is to reduce the MAX_CORNERS constant

(currently set at 300) which puts an upper bound on the number of corners that are

stored in the corners arrays.

If cvGoodFeaturesToTrack()'s minimum pixel distance is increased (e.g. from 5 to

10), then there will be more space between the selected corners, which will reduce

their total number.

A full description of all the arguments for cvGoodFeaturesToTrack() can be found on

the OpenCV API documentation page

http://docs.opencv.org/modules/video/doc/motion_analysis_and_object_tracking.html

, or on p.318 of the first edition of Learning OpenCV by Bradski and Kaehler.

The call to the cvCalcOpticalFlowPyrLK() is:

cvCalcOpticalFlowPyrLK(prevGray, grayGrab,

 pyramidA, pyramidB,

 cornersA, cornersB, cornerCount[0],

 cvSize(WIN_SIZE,WIN_SIZE), 5,

 cornersFound, trackErrs,

 cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 20, 0.3),

 plk_flags);

The algorithm calculates the new positions of the previous image's (prevGray) corners

relative to the current image (grayGrab). The previous image corners are read from

the cornersA array, and the newly calculated positions are stored in cornersB.

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 26 © Andrew Davison 2013

A side-effect is the creation of two level-of-detail pyramids (pyramidA and

pyramidB) which are used when calculating the movement of the corners. The

success (or failure) of matching the corners in cornersA to new positions in cornersB

is recorded in the cornersFound and trackErrs arrays. cornersFound will contain a

sequence of 1's and 0's denoting success or failure for tracking each corner, while

trackErrs gives a numerical value for the distance between the paired corners (smaller

is better).

The cvTermCriteria term in cvCalcOpticalFlowPyrLK() specifies termination criteria

for ending the flow calculation, including the maximum number of iterations of the

algorithm (20) and an epsilon value (0.3) representing the required accuracy of the

results.

The easiest way to affect cvCalcOpticalFlowPyrLK()'s speed is to adjust the window

size (WIN_SIZE is 10 in the above code) which represents the number of neighboring

pixels considered. Another parameter to adjust is the number of pyramid levels (5).

Reducing either will make the algorithm faster, at the expense of accuracy.

A full description of all the arguments for cvCalcOpticalFlowPyrLK() can be found

on the OpenCV API documentation page

http://docs.opencv.org/modules/video/doc/motion_analysis_and_object_tracking.html

, or on p.330-331 of the first edition of Learning OpenCV.

5.1. Reusing Corners Information

At the end of the processing loop, the current image is assigned to the previous image

variable (prevGray), ready for the next iteration. It's also possible to reuse corners and

pyramid data in a similar way.

If the findCorners boolean is set to true (as it is in the first iteration of the processing

loop), then cvGoodFeaturesToTrack() is called to assign corners to the cornersA

array. This is not necessary for subsequent iterations since a side-effect of

cvCalcOpticalFlowPyrLK() is to generate corners for the current image, stored in

cornersB. This data can be reassigned to the cornersA variable at the same time that

the current image becomes the new previous picture. This means that it is unnecessary

to call cvGoodFeaturesToTrack() during the next loop, thereby saving quite a lot of

processing time.

A similar trick can be applied to the pyramid data employed in

cvCalcOpticalFlowPyrLK(). For the first iteration, the method needs to calculate

level-of-detail pyramids for both the previous and current images, which are stored as

pyramidA and pyramidB. However, on subsequent iterations, pyramidA can be

assigned the pyramidB data from the previous loop. cvCalcOpticalFlowPyrLK() is

informed on this optimization by having its plk_flags argument set to

CV_LKFLOW_PYR_A_READY.

After applying both optimizations, the average execution time for an iteration of the

processing loop drops from around 80 ms to about 40 ms on my slow test machine.

However, care must be taken when reusing the corners and pyramid data since it

means that any poor corners tracking by cvCalcOpticalFlowPyrLK() will be retained

in subsequent loops, leading to a gradual worsening of the corners results. Visually

this will result in fewer direction arrows being drawn on the image as time progresses.

One fix is to monitor the number of direction vectors (via the numDirs variable), and

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 27 © Andrew Davison 2013

if it drops to 0 then the processing loop should 'reinstate' calls to

cvGoodFeaturesToTrack() and have cvCalcOpticalFlowPyrLK() create both

pyramids.

The numDirs variable is set when my code creates direction vectors from the corners

information. If your application doesn't do this, then it's possible to monitor the

number of corners, through the cornerCount variable. But this is a less reliable

measure since the number of corners hardly ever drops to 0 because noise in the

images ensures that a few 'fake' corners are always detected.

5.2. From Corners to Directions

My storeDirs() method uses each corresponding corner coordinate in cornersA and

cornersB to create a Direction object, and adds the directions to the relevant lists in

the angledDirs[] array.

// globals

private static final int ANGLE_RANGE = 20;

 // degree range for each list

private static final int NUM_ANGLE_LISTS = 360/ANGLE_RANGE;

 // number of lists

private static final int MIN_DIR_LENGTH = 15;

private static int storeDirs(CvPoint2D32f cornersA,

 CvPoint2D32f cornersB,

 int cornerCount, byte[] cornersFound,

 ArrayList<Direction>[] angledDirs, IplImage grab)

{

 for (int i=0; i < NUM_ANGLE_LISTS; i++) // clear array's lists

 angledDirs[i].clear();

 int numDirs = 0;

 cornersA.position(0); // reset position in corner arrays

 cornersB.position(0);

 int numErrs = 0;

 int numLongs = 0;

 int numShorts = 0;

 // save corners as directions

 for(int i = 0; i < cornerCount; i++) {

 if (cornersFound[i] == 0) // not found

 numErrs++;

 else {

 cornersA.position(i);

 cornersB.position(i);

 Direction dir = new Direction(cornersA, cornersB);

 /* if a direction's length is within a 'good' range,

 then store and draw it */

 double lenDir = dir.getLength();

 if (lenDir > width/8)

 numLongs++;

 else if (lenDir < MIN_DIR_LENGTH)

 numShorts++;

 else {

 dir.drawArrow(grab); // draw direction on grabbed image

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 28 © Andrew Davison 2013

 addDir(angledDirs, dir);

 numDirs++;

 }

 }

 }

/* // useful during debugging

 if (numErrs > 0)

 System.out.println("No. of feature errors: " + numErrs);

 if (numLongs > 0)

 System.out.println("No. of too long dirs: " + numLongs);

 if (numShorts > 0)

 System.out.println("No. of too short dirs: " + numShorts);

*/

 return numDirs;

} // end of storeDirs()

storeDirs() filters out a significant number of corners, thereby reducing the number of

directions. If the cornersFound[] value for a corner is 0, then

cvCalcOpticalFlowPyrLK() was unable to track that corner between the two frames,

and so no Direction object is made. Additionally, the length of each Direction

instance is tested to see if it is either too short or too long. The assumption is that

directions with 'abnormal' lengths are caused by noise or incorrect tracking, and so

shouldn't be added to the angledDirs[] array or drawn on the image.

The angledDirs[]'s direction lists are divided into angle ranges of 20 degrees.

Consequently, addDir() method uses the direction's angle to determine which list

should be used:

//globals

private static final int ANGLE_RANGE = 20;

private static final int NUM_ANGLE_LISTS = 360/ANGLE_RANGE;

private static void addDir(ArrayList<Direction>[] angledDirs,

 Direction dir)

{ int angleIndex = (dir.getAngle()+180)/ANGLE_RANGE;

 if (angleIndex == NUM_ANGLE_LISTS)

 angleIndex = 0;

 angledDirs[angleIndex].add(dir);

} // end of addDir()

Direction.getAngle() returns an integer degree value between -180 and 180, which is

mapped to a positive range (0 to 360) before being scaled using ANGLE_RANGE.

The result is used as an index into the array to determine which list to utilize.

5.3. Representing a Direction

The Direction class stores the two corners supplied to its constructor as CvPoint

objects, and calculates the length and angle between those points.

// globals

private CvPoint p0, p1;

private double length;

private double angle; // in radians

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 29 © Andrew Davison 2013

public Direction(CvPoint2D32f cornersA, CvPoint2D32f cornersB)

{

 p0 = cvPoint(Math.round(cornersA.x()), Math.round(cornersA.y()));

 p1 = cvPoint(Math.round(cornersB.x()), Math.round(cornersB.y()));

 double xDist = p1.x() - p0.x();

 double yDist = p1.y() - p0.y();

 length = Math.sqrt((xDist*xDist) + (yDist*yDist));

 angle = Math.atan2(yDist, xDist);

} // end of Direction()

Direction.drawArrow() draws a blue arrow representing the direction onto the

supplied image. The code uses three calls to cvLine() – one for the arrow body, and

two shorter lines for the branches of the arrow head:

// global

private static final int THICKNESS = 2; // of drawn line

public void drawArrow(IplImage im)

{

 // draw the direction line

 cvLine(im, p0, p1, CvScalar.BLUE, THICKNESS, CV_AA, 0);

 int arrowHeadLen = (int)Math.round(length/4);

 CvPoint arrowEnd = new CvPoint();

 // compute coords of end of first segment of arrow head

 arrowEnd.x((int)Math.round(p1.x() -

 arrowHeadLen * Math.cos(angle + Math.PI/4)));

 arrowEnd.y((int)Math.round(p1.y() -

 arrowHeadLen * Math.sin(angle + Math.PI/4)));

 // draw the first segment

 cvLine(im, arrowEnd, p1, CvScalar.BLUE, THICKNESS, CV_AA, 0);

 // compute coords of end of second segment

 arrowEnd.x((int)Math.round(p1.x() -

 arrowHeadLen * Math.cos(angle - Math.PI/4)));

 arrowEnd.y((int)Math.round(p1.y() -

 arrowHeadLen * Math.sin(angle - Math.PI/4)));

 // draw the second segment

 cvLine(im, arrowEnd, p1, CvScalar.BLUE, THICKNESS, CV_AA, 0);

} // end of drawArrow()

5.4. Calculating a Center-of-gravity (COG)

Back in main() in the OpticalFlowMove class, the COG is represented by a CvPoint

which is updated at the end of each processing loop by updateCOG(). The main

problem is how to summarize hundreds of direction vectors as a single position. My

solution is to employ angledDirs[] – the mean position is calculated using only the

directions from the biggest list, which means it's based on the most common direction.

The details are delegated to findMeanPos(), while updateCOG() mostly deals with

deciding whether the COG point should be drawn on the grabbed image. The code for

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 30 © Andrew Davison 2013

updateCOG():

// globals

private static final int MAX_WITHOUT_DIRS = 30;

 // num of iterations before COG disappears

private static int noDirsCount = 0;

private static CvPoint updateCOG(CvPoint cogBall,

 ArrayList<Direction>[] angledDirs, int numDirs)

{ if (numDirs == 0) {

 noDirsCount++;

 if (noDirsCount > MAX_WITHOUT_DIRS) {

 cogBall = null; // means that COG will not be drawn

 noDirsCount = 0;

 }

 }

 else { // there are some directions

 CvPoint meanPos = findMeanPos(angledDirs, numDirs);

 if (meanPos != null)

 cogBall = meanPos;

 }

 return cogBall;

} // end of updateCOG()

Each time that updateCOG() receives an empty angledDirs[] array, a global counter

noDirsCount is incremented. When it reaches a prescribed maximum

(MAX_WITHOUT_DIRS), the COG is set to null causing the point to disappear

from the image.

findMeanPos() calculates a mean direction position in two steps: first the biggest list

is found in angledDirs[]. The mean midpoint of the directions in that list is calculated,

and returned as a new position for the COG.

// globals

private static final int ANGLE_RANGE = 20;

private static final int NUM_ANGLE_LISTS = 360/ANGLE_RANGE;

private static final int MIN_DIRS_IN_LIST = 5;

private static CvPoint findMeanPos(

 ArrayList<Direction>[] angledDirs, int numDirs)

{

 CvPoint meanPos = null;

 if (numDirs > 0) {

 // find the largest group of directions

 int maxListSize = 0;

 int largestListIdx = -1;

 for (int i=0; i < NUM_ANGLE_LISTS; i++) {

 if (angledDirs[i].size() > maxListSize) {

 maxListSize = angledDirs[i].size();

 largestListIdx = i;

 }

 }

 if (largestListIdx != -1) {

 // find the mean midpoint in the largest list

 ArrayList<Direction> popDirs = angledDirs[largestListIdx];

 int listSize = popDirs.size();

 // group must be at least MIN_DIRS_IN_LIST in size

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 31 © Andrew Davison 2013

 if (listSize > MIN_DIRS_IN_LIST) {

 int xTot = 0;

 int yTot = 0;

 for (Direction d : popDirs) {

 CvPoint midpt = d.getMid();

 xTot += midpt.x();

 yTot += midpt.y();

 }

 meanPos = new CvPoint(xTot/listSize, yTot/listSize);

 }

 }

 }

 return meanPos;

} // end of findMeanPos()

findMeanPos()'s result may be null if no directions are found, or the largest list isn't

long enough (i.e. greater than MIN_DIRS_IN_LIST). A null result will cause

updateCOG() to leave the COG position unchanged.

5.5. More Accurate Corners

The processing loop inside main() relies on two OpenCV functions highlighted in the

code fragment below:

// inside main()

CvPoint2D32f cornersA = new CvPoint2D32f(MAX_CORNERS);

CvPoint2D32f cornersB = new CvPoint2D32f(MAX_CORNERS);

 // used as arrays in JavaCV

 :

// find corners

cornersA.position(0);

if (findCorners)

 cvGoodFeaturesToTrack(prevGray, eigenIm, tempIm,

 cornersA, cornerCount, 0.01, 5, null, 3, 0, 0.04);

cornersA.position(0);

cornersB.position(0);

cvCalcOpticalFlowPyrLK(prevGray, grayGrab,

 pyramidA, pyramidB,

 cornersA, cornersB, cornerCount[0],

 cvSize(WIN_SIZE,WIN_SIZE), 5,

 cornersFound, trackErrs,

 cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 20, 0.3),

 plk_flags);

The corners array, cornersA, filled by cvGoodFeaturesToTrack() will consist of

integer pixel locations, and cvCalcOpticalFlowPyrLK() will track those corners in the

current image, filling cornersB with their new locations.

Integer coordinates are good enough for this application, but occasionally it's useful to

pinpoint a corner more exactly inside a pixel. Subpixel corners, which utilize floating

point accuracy, are generally necessary if fine-grained measurements or velocities

need to be calculated, or the task involves camera calibration. This explains why

corners array are typically defined as a sequence of floats (e.g. the CvPoint2D32f

type in JavaCV).

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 32 © Andrew Davison 2013

Subpixel locations can be calculated using the cvFindCornerSubPix() function which

replaces the integer pixel values in the supplied corners array with floating point

positions based on extrapolating from the intensities gradients of neighboring pixels

in the image.

This approach would result in the code fragment above being changed to:

// inside main()

CvPoint2D32f cornersA = new CvPoint2D32f(MAX_CORNERS);

CvPoint2D32f cornersB = new CvPoint2D32f(MAX_CORNERS);

 // used as arrays in JavaCV

 :

// find corners

cornersA.position(0);

if (findCorners) {

 cvGoodFeaturesToTrack(prevGray, eigenIm, tempIm,

 cornersA, cornerCount, 0.01, 5, null, 3, 0, 0.04);

 cvFindCornerSubPix(prevGray, cornersA, cornerCount[0],

 cvSize(WIN_SIZE, WIN_SIZE), cvSize(-1, -1),

 cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 20, 0.3));

}

cornersA.position(0);

cornersB.position(0);

cvCalcOpticalFlowPyrLK(prevGray, grayGrab,

 pyramidA, pyramidB,

 cornersA, cornersB, cornerCount[0],

 cvSize(WIN_SIZE,WIN_SIZE), 5,

 cornersFound, trackErrs,

 cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 20, 0.3),

 plk_flags);

The key change is the inclusion of a call to cvFindCornerSubPix() between

cvGoodFeaturesToTrack() and cvCalcOpticalFlowPyrLK().

cvFindCornerSubPix() uses termination criteria in the same way as

cvCalcOpticalFlowPyrLK(), and the same arguments can be used for both.

cvFindCornerSubPix() utilizes a window size (WIN_SIZE) to determine how many

neighboring pixels to examine for gradient information, and varying that value will

affect the execution time. In my tests, the above method added about 20 ms to each

iteration.

A full description of all the arguments for cvFindCornerSubPix() can be found on the

OpenCV API documentation page

http://docs.opencv.org/modules/video/doc/motion_analysis_and_object_tracking.html

, or on p.319-321 of the first edition of Learning OpenCV.

6. Comparing the Movement Detection Approaches

In this chapter, I've looked at three ways of detecting movement:

 image differencing of consecutive video frames

 background/foreground segmentation

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 33 © Andrew Davison 2013

 optical flow

Movement detection using image differences and moments is simple to implement

and executes quickly. However, it also have some limitations, the main one being that

it isn't really detecting movement, only change. For example, if the scene being

monitored contains a flashing light, then that will be detected.

The same advantages and disadvantages apply to background/foreground

segmentation using BackgroundSubtractorMOG2, with the additional confusion of

the technique's name. It's quite easy for users to be misled into thinking that depth

(distance from the camera) is somehow employed in the segmentation process. As

we've seen, this is not the case, with the foreground being distinguished only by its

rate of change (i.e. movement) relative to a static background. Indeed, if elements

close to the camera are stationary, then they'll be placed in the background, while

more distant, moving objects will be added to the foreground mask.

The use of moments assumes that all the change (i.e. the white pixels in the difference

image or foreground mask) form a single shape, and so a single center-of-gravity is

returned. Of course, in a busy scene, such as a traffic intersection, there will be many

distinct shapes (i.e. cars) moving about. This code will position the crosshairs at the

'center' of all this movement, which may not be of much use. Another example of this

problem is shown in Figure 13.

Figure 13. Waving Hands and the Crosshairs.

My waving hands in Figure 13 are treated as a single shape, so the crosshairs are

positioned between them, in thin air!

Unlike image differencing and background/foreground segmentation, optical flow

tracks multiple interesting features (i.e. corners) in the image, and so can distinguish

between multiple sources of movement, as in Figure 14.

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 34 © Andrew Davison 2013

Figure 14. Optical Flow of Two Hands.

However, my optical flow application makes the assumption that there is a single

most important direction of movement in the scene, and calculates a position for the

red COG circle based on that simplification.

7. Using Motion to Shoot Missiles

In an earlier draft of this book, I included a chapter using the image difference motion

detector code to control a toy missile launcher. The Dream Cheeky launcher, shown in

Figure 15, has a base that can be rotated left, right, up, or down via USB commands

to point at a target, and includes an all-important 'fire' instruction for shooting.

Figure 15. The Dream Cheeky Missile Launcher.

The attachment on top of the missile turret is a webcam, which can be used as the

image source rather than the usual camera. Since it's attached to the launcher, it

always points in the same direction as the missiles.

Java Prog. Techniques for Games. NUI Chapter 3. Motion Detection Draft #4 (13th September 2013)

 35 © Andrew Davison 2013

Regretfully, shooting stuff doesn't have much to do with vision-based user interfaces,

and so it's not included here. An online version is available at

http://fivedots.coe.psu.ac.th/~ad/jg/nui04/.

