
Java Prog. Techniques for Games. Chapter NUI-2b. JavaCV Snaps Draft #1 (27th June 2013) 

 1  Andrew Davison 2013 

 

Chapter NUI-2b. Webcam Snaps Using JavaCV 

 

The webcam is at the heart of all the image processing and computer vision 

techniques that I'll be explaining in this book. This chapter is about implementing the 

basic webcam capabilities needed by those examples.  

What's required is not a video stream coming from the camera, but a series of pictures 

or snaps, generated fairly infrequently (e.g. 10 images per second). Very often those 

pictures should be rendered as grayscales rather than in full color to help simplify the 

subsequent processing. It's also useful to have a way to store selected images to files. 

In previous versions of this chapter, I implemented webcam snapping using JMF (the 

Java Media Framework). Unfortunately, JMF has become something of a dinosaur, 

that hasn't been updated since the last century. It can't play popular modern formats, 

such as MPEG-2, MPEG-4, Windows Media, RealMedia, or most QuickTime and 

Flash files. Its content editing functionality is feeble. More seriously for my snapping 

needs is that JMF's cross-platform support is becoming a problem – it appears to be 

impossible (or very, very difficult) to get JMF to run on the 64-bit version of 

Windows. There are forum postings explaining how to do it (see 

https://forums.oracle.com/forums/thread.jspa?threadID=2132405&tstart=8), and other 

posts claiming that the approach doesn't work! 

It's time to move on from dear old JMF. Not unsurprisingly, there are a number of 

alternatives, conveniently listed on the JMF Wikipedia page 

(http://en.wikipedia.org/wiki/Java_Media_Framework). Since my key requirement is 

good support for image processing and computer vision techniques, I've decided to 

use JavaCV, a Java binding for the OpenCV vision library 

(http://code.google.com/p/javacv/). 

The aim is to grab images at a reasonable speed of ten image per second, and display 

them in succession in a JPanel. The panel output includes the average time to take a 

snap and do any processing upon it, which will help me adjust the snapping rate in 

later examples. Figure 1 shows the JavaCV application in action.  

 

Figure 1. JavaCV Webcam Pictures. 

 



Java Prog. Techniques for Games. Chapter NUI-2b. JavaCV Snaps Draft #1 (27th June 2013) 

 2  Andrew Davison 2013 

The information about the picture is written in yellow in the bottom-left corner; in 

Figure 1 it says "Snap Avg. Time 13.5 ms". This shows that a frame is being 

processed in much less time than the 100 ms interval between redraws, which leaves 

plenty of time for additional image processing before the next picture arrives from the 

camera.  

One of the irritations of working with a webcam is making sure that it's been correctly 

installed and identified by the operating system. Section 4 of this chapter describes 

three standalone tools (CommandCam, DevCon, and FFmpeg) that can check out a 

webcam independently of OpenCV and Java. 

Although almost all of this book's examples employ OpenCV in some way, there are 

situations when it's massive capabilities (and size) aren't needed. The next chapter 

briefly puts OpenCV to one side, and implements webcam snapping using vlcj, the 

Java API for the popular VLC media player (http://code.google.com/p/vlcj/). 

 

 

1.  OpenCV and Java 

OpenCV (http://opencv.org/) is a real-time computer vision library with very 

extensive functionality (over 500 high-level and low-level functions). It was 

originally developed at Intel, starting in 1999 as a C library. Its 1.0 version was 

released in 2006, after going through five betas. OpenCV is open source, available on 

all major platforms, and has API interfaces for many programming languages. 

OpenCV 2.0 was released in October 2009, with a new C++ interface, and since 2008 

has been supported by the Willow Garage company. The best starting point is its 

extensive online documentation at http://opencv.org/documentation.html, which has 

links to downloads, manuals, a wiki, examples, and tutorials. The current API 

reference material is at http://docs.opencv.org/2.4.5/modules/refman.html, which will 

be useful when I describe the (lack of) documentation for JavaCV.  

There's an enormous amount of online tutorial material for OpenCV, and a wonderful 

textbook: 

Learning OpenCV: Computer Vision with the OpenCV Library 

Gary Bradski and Adrian Kaehler 

O'Reilly, September 2008 

http://oreilly.com/catalog/9780596516130 

The date of publication is significant, because it indicates that the book (excellently) 

describes the features of OpenCV 1.0 using its C interface. There's nothing on the 

new C++ interface, or other language APIs such as Python, C#, and Java. 

The Yahoo OpenCV group (http://tech.groups.yahoo.com/group/OpenCV/) is 

probably the most active forum for OpenCV.  

I could enumerate the very long list of computer vision capabilities in OpenCV, but 

its easier just to say "everything". The C reference material has nine sections: core 

(core functionality), imgproc (image processing), features2d (feature detection), flann 

(multi-dimensional clustering), objdetect (object detection), video (video analysis), 

highgui (GUI and media I/O), calib3d (3D camera calibration), and ml (machine 

learning). These section names are useful to remember when we look at the JavaCV 

package and class structure. 



Java Prog. Techniques for Games. Chapter NUI-2b. JavaCV Snaps Draft #1 (27th June 2013) 

 3  Andrew Davison 2013 

Basic image processing features include filtering, edge detection, corner detection, 

sampling and interpolation, and color conversion. The GUI capabilities mean that an 

OpenCV program can be written without the use of OS-specific windowing features, 

although in JavaCV it's just as portable to use Swing/AWT. 

 

1.1. JavaCV 

JavaCV is a Java wrapper around OpenCV (http://code.google.com/p/javacv/). It's 

documentation is quite brief, mostly amounting to useful examples at 

http://code.google.com/p/javacv/#Quick_Start_for_OpenCV, and some others in the 

library download.  

Unfortunately, there are no Java API documentation pages as yet.  Probably the 

easiest way of finding out about a particular class, such as JavaCV's FrameGrabber 

used in this chapter, is via a Google Search for "JavaCV FrameGrabber filetype:java". 

This should bring up JavaCV's source code file for that class as the first hit, with the 

other links going to examples that use the class. 

An alternative is to utilize a JAR browsing tool to examine the JAR files that make up 

the JavaCV download. javacv.jar contains the core classes, and is located in the 

javacv-bin\ directory. I use the JD-GUI browser 

(http://java.decompiler.free.fr/?q=jdgui) which decompiles the class files on-the-fly as 

you open them, and adds links between related classes. It can also permanently 

decompile the JAR, saving the source which you can text search with a grep-like tool 

such as "Windows Grep" (http://www.wingrep.com/). 

Most JavaCV methods have similar names to their OpenCV counterparts, so a good 

way to find out about a particular method, such as JavaCV's cvCvtColor(), is to type 

"cvCvtColor opencv" into Google search, or look up the method in the index of the  

Learning OpenCV book. 

An invaluable source is the JavaCV forum in Google groups 

(http://groups.google.com/group/javacv), which is actively monitored by the JavaCV 

developer. Some care must be taken when looking at old posts prior to 2011 because 

they refer to an out-of-date JNA-mapping of JavaCV to OpenCV. 

 

1.2.  Loading and Displaying an Image with JavaCV 

The easiest way to introduce JavaCV, is through a simple example, ShowImage.java, 

which loads an image from a file and displays it in a window. ShowImage.java is the 

"hello world" of the OpenCV community, seemingly appearing in every tutorial for 

the library. For instance, it's the first example in Learning OpenCV (on p.17 of the 

first edition).  

ShowImage.java reads a filename from the command line, loads it into a JavaCV 

window (a CanvasFrame object), and then waits for the user to press a key while the 

focus is inside that window. When the keypress is detected, the application exits. The 

execution of ShowImage.java is shown in Figure 2. 



Java Prog. Techniques for Games. Chapter NUI-2b. JavaCV Snaps Draft #1 (27th June 2013) 

 4  Andrew Davison 2013 

 

Figure 2. The ShowImage Example. 

 

The code for ShowImage.java: 

 

import com.googlecode.javacv.*; 

import static com.googlecode.javacv.cpp.opencv_core.*; 

import static com.googlecode.javacv.cpp.opencv_highgui.*; 

 

 

public class ShowImage   

{ 

  public static void main(String[] args) 

  { 

    if (args.length != 1) { 

      System.out.println("Usage: run ShowImage <input-file>"); 

      return; 

    } 

 

    System.out.println("Loading image from " + args[0] + "..."); 

    IplImage img = cvLoadImage(args[0]); 

    System.out.println("Size of image: (" + img.width() +  

                                     ", " + img.height() + ")"); 

 

    // display image in canvas 

    CanvasFrame canvas = new CanvasFrame(args[0]); 

    canvas.setDefaultCloseOperation(CanvasFrame.DO_NOTHING_ON_CLOSE); 

 

    canvas.showImage(img); 

 

    try { 

      canvas.waitKey();   // wait for keypress on canvas 

    } 

    catch(InterruptedException e) {} 

 

    canvas.dispose(); 

  }  // end of main() 

 

}  // end of ShowImage class 

 

The listing above includes import lines, which I usually leave out. They illustrate an 

important JavaCV coding style – the static import of the classes containing the 



Java Prog. Techniques for Games. Chapter NUI-2b. JavaCV Snaps Draft #1 (27th June 2013) 

 5  Andrew Davison 2013 

required OpenCV native functions. In this case, ShowImage utilizes functions from 

com.googlecode.javacv.cpp.opencv_core and 

com.googlecode.javacv.cpp.opencv_highgui. These JavaCV package names are 

derived from the OpenCV C API documentation section names, core and highgui.  

The static imports mean that class names from these Java packages don't need to be 

prefixed to their method names. For instance, in ShowImage.java, I can write 

cvLoadImage(args[0]) without having to add the class name before cvLoadImage(). 

This makes the code very like its C version: 

  IplImage* img = cvLoadImage( argv[1] );   // C code, not Java 

The CanvasFrame class is a JavaCV original, which implements OpenCV windowing 

functions such as cvNamedWindow() and cvShowImage() as CanvasFrame's 

constructor and the showImage() method respectively. CanvasFrame.waitKey() 

parallels OpenCV's cvWaitKey() which waits for a key press. 

CanvasFrame is implemented as a subclass of Java's JFrame, and so it's possible to 

dispense with OpenCV's key-waiting coding style. Instead, we can write: 

   canvas.setDefaultCloseOperation(CanvasFrame.EXIT_ON_CLOSE);    

which will cause the application to exit when the close box is pressed. We should, at 

the very least, include the line: 

    canvas.setDefaultCloseOperation(CanvasFrame.DO_NOTHING_ON_CLOSE);    

This disables the close box on the CanvasFrame so it's not possible to make the 

window disappear without terminating the application. CanvasFrame's maximize 

window box also doesn't redraw the window contents correctly without some extra 

coding.  

In my opinion, OpenCV's highGUI functions are good for prototyping and debugging 

image processing code, but an application should utilize Java's Swing for its finished 

user interface. 

Another important element of this example is the IplImage class, which corresponds 

to the IplImage struct in OpenCV. JavaCV uses this data structure for image storage, 

not Java's BufferedImage class. 

 

1.3. Java OpenCV 

Early in 2013, Willow Garage (the current maintainers of OpenCV) released a Java 

binding for the library (http://docs.opencv.org/2.4.4-

beta/doc/tutorials/introduction/desktop_java/java_dev_intro.html), and also updated 

the Java API for Android. There are probably three advantages to using their "Java 

OpenCV" instead of JavaCV:  

1. The API  bindings are automatically updated when OpenCV is updated, so are 

always current. 

2. The API is designed to match the C++ bindings for OpenCV, so are somewhat 

more object-oriented than the C-inspired JavaCV.   

3. There's online Java OpenCV documentation at http://docs.opencv.org/java/2.4.5/ 



Java Prog. Techniques for Games. Chapter NUI-2b. JavaCV Snaps Draft #1 (27th June 2013) 

 6  Andrew Davison 2013 

Perhaps the API's main drawback is its newness (I'm writing this in June 2013), which 

means that there's currently a lot more online examples and help (in the shape of 

forum posts) for JavaCV.  

Since the majority of the coding for this book was finished before Java OpenCV was 

released, I've decided to stick with JavaCV. However, as a taster of the new API, 

section 3 briefly outlines how to convert the JavaCV webcam snapper into a Java 

OpenCV version. 

 

 

2.  Snapping Pictures with JavaCV 

The class diagrams for the SnapPics application, with only the public methods visible, 

are shown in Figure 3. 

 

Figure 3. Class Diagrams for SnapPics. 

 

The SnapPics class is in charge of creating the PicsPanel display panel that utilizes the 

JavaCV FrameGrabber class. SnapPics does two things of note: clicking its close box 

triggers a call to closeDown() in PicsPanel, and it listens for a keypress to trigger a 

call to takeSnap() in PicsPanel. Both of these are coded in the SnapPics constructor: 

 

// global 

private PicsPanel pp; 

 

public SnapPics() 

{ 

  super( "Snaps Pics (with JavaCV)" ); 

  Container c = getContentPane(); 

  c.setLayout( new BorderLayout() );   

 

  // Preload the opencv_objdetect module to work around a known bug. 

  Loader.load(opencv_objdetect.class); 

 

  pp = new PicsPanel();   

  c.add(pp, BorderLayout.CENTER); 

 

  addKeyListener( new KeyAdapter() { 



Java Prog. Techniques for Games. Chapter NUI-2b. JavaCV Snaps Draft #1 (27th June 2013) 

 7  Andrew Davison 2013 

    public void keyPressed(KeyEvent e) 

    {  

      int keyCode = e.getKeyCode(); 

      if ((keyCode == KeyEvent.VK_NUMPAD5) ||  

          (keyCode == KeyEvent.VK_ENTER) || 

          (keyCode == KeyEvent.VK_SPACE)) 

        pp.takeSnap(); 

    } 

   }); 

 

  addWindowListener( new WindowAdapter() { 

    public void windowClosing(WindowEvent e) 

    { pp.closeDown();    // stop snapping pics 

      System.exit(0); 

    } 

  }); 

 

  setResizable(false); 

  pack();   

  setLocationRelativeTo(null); 

  setVisible(true); 

} // end of SnapPics() 

 

The keypress listener responds to the user pressing 5 on the number pad, enter, or 

space. In response, PicsPanel saves a grayscale version of the current webcam image 

to a file in the pics/ subdirectory, like the one in Figure 4. 

 

 

Figure 4. A Saved Grayscale Image. 

 

A bug in JavaCV requires SnapPics to preload its opencv_objdetect module; this isn't 

needed for every application, but introduces no execution overhead so is included in 

all my examples. 

 

2.1.  Snapping a Picture Again and Again and ... 

PicsPanel is threaded so it can keep repeatedly calling FrameGrabber.grab() without 

causing the GUI parts of the panel to block. The thread is executed by PicsPanel's 

run() method: 

 

// globals 

private static final int DELAY = 100;  // ms 



Java Prog. Techniques for Games. Chapter NUI-2b. JavaCV Snaps Draft #1 (27th June 2013) 

 8  Andrew Davison 2013 

private static final int CAMERA_ID = 0; 

 

 

private volatile boolean isRunning; 

private volatile boolean takeSnap = false; 

 

// used for the average ms snap time info 

private long totalTime = 0; 

private int imageCount = 0; 

 

private IplImage snapIm = null; 

 

 

public void run() 

{ 

  FrameGrabber grabber = initGrabber(CAMERA_ID); 

  if (grabber == null) 

    return; 

 

  long duration; 

  int snapCount = 0; 

  isRunning = true; 

 

  while (isRunning) { 

    long startTime = System.currentTimeMillis(); 

 

    snapIm = picGrab(grabber, CAMERA_ID);  

 

    if (takeSnap) {   // save the current images 

      saveImage(snapIm, PIC_FNM, snapCount); 

      snapCount++; 

      takeSnap = false; 

    } 

 

    imageCount++; 

    repaint(); 

 

    duration = System.currentTimeMillis() - startTime; 

    totalTime += duration; 

    if (duration < DELAY) { 

      try { 

        Thread.sleep(DELAY-duration); //wait until DELAY has passed 

      }  

      catch (Exception ex) {} 

    } 

  } 

  closeGrabber(grabber, CAMERA_ID); 

}  // end of run() 

 

Each iteration of the loop is meant to take DELAY (100) milliseconds. The snap 

processing time is stored in the duration variable, and used to modify the loop's sleep 

period. If the snap duration exceeds the DELAY time, then the loop doesn't sleep at 

all. 

A DELAY value of 100 ms makes the webcam picture update at  about 10 

frames/second (10 FPS), which is adequate for most computer vision application.  

The camera source must be manipulated from a single thread, which includes the 

initialization of the device, grabbing pictures, and closing the link at the end. If this 

rule isn't followed, then the application may crash, and can cause Windows to start 



Java Prog. Techniques for Games. Chapter NUI-2b. JavaCV Snaps Draft #1 (27th June 2013) 

 9  Andrew Davison 2013 

acting strangely. Consequently, all interactions with the device are localized inside 

run()'s thread. 

 

Initializing the Frame Grabber 

JavaCV's FrameGrabber is an abstract class which supports a wide range of different 

types of webcam and camera software via its concrete subclasses 

DC1394FrameGrabber, FlyCaptureFrameGrabber, OpenKinectFrameGrabber, 

PS3EyeFrameGrabber, VideoInputFrameGrabber, and FFmpegFrameGrabber.  

A FrameGrabber instance cycles through these classes until it finds one that can 

access the camera (the current order is "DC1394", "FlyCapture", "OpenKinect", 

"PS3Eye", "VideoInput", "OpenCV", "FFmpeg"). The last three are probably the most 

commonly used : "VideoInput" (i.e. the VideoInputFrameGrabber class)  works with 

DirectShow on Windows, "OpenCV" makes use of the OpenCV's CvCapture 

functionality, and "FFmpeg" employs the FFmpeg package (http://www.ffmpeg.org/).  

The OpenCV download comes with parts of the FFmpeg libraries (in 

C:\opencv\3rdparty\ffmpeg\opencv_ffmpeg.dll), including it's capture functions; if 

they're insufficient then you'll have to download the rest of FFmpeg. 

The JavaCV FrameGrabber class hides all of this complexity, and only requires the 

user to supply the ID number of the webcam that is to be accessed. This ID is almost 

always 0, as used in my initGrabber() method: 

 

// globals 

// image size == panel size 

private static final int WIDTH = 640;   

private static final int HEIGHT = 480; 

 

private static final int CAMERA_ID = 0; 

 

private FrameGrabber initGrabber(int ID) 

{ 

  FrameGrabber grabber = null; 

  System.out.println("Initializing grabber for " +  

                        videoInput.getDeviceName(ID) + " ..."); 

  try { 

    grabber = FrameGrabber.createDefault(ID); 

    grabber.setFormat("dshow");       // use DirectShow 

    grabber.setImageWidth(WIDTH);    

                        // default resolution is 320x240 

    grabber.setImageHeight(HEIGHT); 

    grabber.start(); 

  } 

  catch(Exception e)  

  {  System.out.println("Could not start grabber");   

     System.out.println(e); 

     System.exit(1); 

  } 

  return grabber; 

}  // end of initGrabber() 

 

The FrameGrabber class contains useful methods for getting and setting camera 

attributes such as the format and image dimensions. Probably the easiest way of 



Java Prog. Techniques for Games. Chapter NUI-2b. JavaCV Snaps Draft #1 (27th June 2013) 

 10  Andrew Davison 2013 

finding out what these methods are is to do a Google search for "JavaCV 

FrameGrabber filetype:java", as I mentioned above. 

PicsPanel assumes that the webcam has the ID 0; what if it doesn't? On Windows, it's 

easy to get a list of webcam IDs with JavaCV's videoInput class (which utilizes 

DirectShow behind the scenes). The ListDevices class shows how: 

 

public class ListDevices 

{ 

  public static void main( String args[] ) 

  {   

    int numDevs = videoInput.listDevices(); 

    System.out.println("No of video input devices: " + numDevs); 

    for (int i = 0; i < numDevs; i++) 

      System.out.println(" " + i + ": " +  

                             videoInput.getDeviceName(i)); 

  }  // end of main() 

 

} // end of ListDevices class 

 

On my test PC, ListDevices prints the following: 

 

No of video input devices: 5 

 0: USB2.0 Camera 

 1: Kinect Virtual Camera : Depth 

 2: Kinect Virtual Camera : Image 

 3: Kinect Virtual Camera : SmartCam 

 4: Video Blaster WebCam 3/WebCam Plus (VFW) 

 

The webcam I'm using is the USB camera, which has ID 0.  

Section 4 talks about three standalone tools for testing the webcam outside of JavaCV. 

 

Taking a Picture 

The call to FrameGrabber.grab() is wrapped up in some exception handling code in 

PicsPanel.picGrab(): 

 

private IplImage picGrab(FrameGrabber grabber, int ID) 

{ 

  IplImage im = null; 

  try { 

    im = grabber.grab();  // take a snap 

  } 

  catch(Exception e)  

  {  System.out.println("Problem grabbing image for " + ID);  } 

  return im; 

}  // end of picGrab() 

 

PicGrab returns an instance of JavaCV's main image class, IplImage, which isn't the 

same as Java's BufferedImage, but includes methods for converting between the two. 

 



Java Prog. Techniques for Games. Chapter NUI-2b. JavaCV Snaps Draft #1 (27th June 2013) 

 11  Andrew Davison 2013 

Terminating the Grabber 

When the user presses the close box in the JFrame, PicsPanel.closeDown() sets the 

isRunning boolean to false. This will eventually cause the loop inside PicsPanel.run() 

to finish, and closeGrabber() is executed:  

 

private void closeGrabber(FrameGrabber grabber, int ID) 

{ 

  try { 

    grabber.stop(); 

    grabber.release(); 

  } 

  catch(Exception e)  

  {  System.out.println("Problem stopping camera " + ID);  } 

}  // end of closeGrabber() 

 

The call to FrameGrabber.release() isn't strictly necessary since JavaCV will 

automatically release the camera at garbage collection time. 

 

2.2.  Painting the Panel 

The paintComponent() method draws the webcam picture in the panel, and writes the 

average snap time at the bottom-left.  

 

// globals 

private static final int WIDTH = 640;   

private static final int HEIGHT = 480; 

 

// used for the average ms snap time info 

private long totalTime = 0; 

private int imageCount = 0; 

private Font msgFont; 

 

private IplImage snapIm = null; 

 

 

public void paintComponent(Graphics g) 

{  

  super.paintComponent(g); 

  g.setFont(msgFont); 

 

  // draw the image and stats  

  if (snapIm != null) { 

    g.setColor(Color.YELLOW); 

    g.drawImage(snapIm.getBufferedImage(), 0, 0, this); 

    String statsMsg = String.format("Snap Avg. Time:  %.1f ms", 

                       ((double) totalTime / imageCount)); 

    g.drawString(statsMsg, 5, HEIGHT-10);   

                      // write stats in bottom-left corner 

  } 

  else  { // no image yet 

    g.setColor(Color.BLUE); 

    g.drawString("Loading from camera " + CAMERA_ID +  

                                       "...", 5, HEIGHT-10); 

  } 

} // end of paintComponent() 

 



Java Prog. Techniques for Games. Chapter NUI-2b. JavaCV Snaps Draft #1 (27th June 2013) 

 12  Andrew Davison 2013 

paintComponent() is called when the application is first made visible, which occurs 

before an image has been retrieved from the camera. In that case, paintComponent() 

draws the string "Loading from camera" and the ID at the bottom left of the panel. 

When there is an image, it is the JavaCV image format IplImage, and so needs to be 

converted to a BufferedImage before being drawn. It's easy to switch between the two 

formats with IplImage.createFrom() and IplImage. getBufferedImage(): 

 

// BufferedImage to IplImage 

BufferedImage im = /* a Java BufferedImage */ 

IplImage cvImg = IplImage.createFrom(im);  

 

// IplImage to BufferedImage 

BufferedImage im2 = cvImg.getBufferedImage(); 

 

2.3.  Saving a Snap 

Being able to save a snap is useful in several of the later examples for debugging the 

image processing outcomes. The current image is saved when the user presses 5 on 

the number pad, space, or enter, which triggers a call to PicsPanel.takeSnap(). It sets a 

global boolean takeSnap to true, which is detected inside the loop in run(); the 

relevant code fragment: 

 

// code fragment in PicsPanel.run() 

if (takeSnap) {   // save the current images 

  saveImage(snapIm, PIC_FNM, snapCount); 

  snapCount++; 

  takeSnap = false; 

} 

 

saveImage() saves a grayscale version of the image as a JPG file whose name includes 

a digit which is incremented after each save: 

 

// globals 

private static final int WIDTH = 640;   

private static final int HEIGHT = 480; 

 

// directory and filenames used to save images 

private static final String SAVE_DIR = "pics/";  

 

 

private void saveImage(IplImage snapIm, String saveFnm,  

                                              int snapCount) 

{ if (snapIm == null) { 

    System.out.println("Not saving a null image"); 

    return; 

  } 

 

  IplImage grayImage  = IplImage.create(WIDTH, HEIGHT,  

                                              IPL_DEPTH_8U, 1); 

  cvCvtColor(snapIm, grayImage, CV_BGR2GRAY); 

 

  String fnm = (snapCount < 10) ?  

              SAVE_DIR + saveFnm + "0" + snapCount +".jpg" : 

              SAVE_DIR + saveFnm + snapCount +".jpg"; 



Java Prog. Techniques for Games. Chapter NUI-2b. JavaCV Snaps Draft #1 (27th June 2013) 

 13  Andrew Davison 2013 

  System.out.println("Saving image " + fnm); 

  cvSaveImage(fnm, grayImage); 

}  // end of saveImage() 

 

When cvCvtColor() is called with the CV_BGR2GRAY constant, a grayscale version 

of the image is written to the IplImage object created with a single 8-bit channel. 

JavaCV's cvSaveImage() is utilized rather than Java's ImageIO.write() so there's no 

need to convert IplImage into BufferedImage. Figure 4 shows an example of what's 

saved. 

 

 

3.  Java OpenCV Grabber 

Just a few months ago (as I write this in June 2013), OpenCV finally got it's very own 

Java binding. What changes are needed to convert SnapPics from JavaCV into "Java 

OpenCV"? 

There's no changes at the top-level, in the SnapPics class, since all the grabber 

functionality is located inside PicsPanel. Almost all the important adjustments occur 

in the new version of PicsPanel.run(): 

 

// Java OpenCV Version 

private static final int DELAY = 100;  // ms  

private static final int CAMERA_ID = 0; 

 

private Mat snapIm = null; 

 

 

public void run() 

{ 

  VideoCapture grabber = initGrabber(CAMERA_ID); 

  if (grabber == null) 

    return; 

 

  long duration; 

  int snapCount = 0; 

  isRunning = true; 

 

  while (isRunning) { 

    long startTime = System.currentTimeMillis(); 

 

    snapIm = new Mat();         

    grabber.read(snapIm); 

 

    if (takeSnap) {   // save the current images 

      saveImage(snapIm, PIC_FNM, snapCount); 

      snapCount++; 

      takeSnap = false; 

    } 

 

    imageCount++; 

    repaint(); 

 

    duration = System.currentTimeMillis() - startTime; 

    totalTime += duration; 

    if (duration < DELAY) { 



Java Prog. Techniques for Games. Chapter NUI-2b. JavaCV Snaps Draft #1 (27th June 2013) 

 14  Andrew Davison 2013 

      try { 

        Thread.sleep(DELAY-duration); 

      }  

      catch (Exception ex) {} 

    } 

  } 

  grabber.release(); 

}  // end of run() 

 

Java OpenCV has a VideoCapture  class (see http://docs.opencv.org/java/2.4.5/), 

which is fairly similar to JavaCV's FrameGrabber. 

The set-up of the VideoCapture object is done inside a new version of initGrabber(): 

 

// Java OpenCV Version 

private static final int WIDTH = 640;   

private static final int HEIGHT = 480; 

 

 

private VideoCapture initGrabber(int ID) 

{ 

  VideoCapture grabber = new VideoCapture(ID); 

  if ((grabber == null) || (!grabber.isOpened())) { 

    System.out.println("Cannot connect to webcam: " + ID); 

    System.exit(1); 

  } 

  else { 

    System.out.println("Connected to webcam: " + ID); 

    grabber.set(Highgui.CV_CAP_PROP_FRAME_WIDTH, WIDTH); 

    grabber.set(Highgui.CV_CAP_PROP_FRAME_HEIGHT, HEIGHT); 

        // make sure of image size 

  } 

  return grabber; 

}  // end of initGrabber() 

 

The VideoCapture constructor uses a camera ID in the same way as FrameGrabber, 

and allows the width and height of the grabbed image to be set. However, there's no 

way to specify the DirectShow format, which fits in with OpenCV's aim of being OS-

independent.  

There's also no equivalent of JavaCV's videoInput class, which makes it impossible to 

code a ListDevices class to print ID details. Platform-specific information about a 

camera requires standalone tools outside of OpenCV, as explained in section 4. 

Since VideoCapture.read() and VideoCapture.release() can not  raise exceptions, they 

are called directly in the run() method above. In fact, VideoCapture.read() returns a 

boolean, which will be false if the image couldn't be retrieved, but I don't bother 

testing for it in run(). 

There's no image class in Java OpenCV, whereas JavaCV has IplImage. Instead, 

OpenCV saves the image returned from a webcam read as a matrix of type Mat. This 

only affects the coding when the 'image' has to be converted into a Java 

BufferedImage in paintComponent(): 

 

// Java OpenCV Version 

public void paintComponent(Graphics g) 

{  



Java Prog. Techniques for Games. Chapter NUI-2b. JavaCV Snaps Draft #1 (27th June 2013) 

 15  Andrew Davison 2013 

  super.paintComponent(g); 

  g.setFont(msgFont); 

 

  // draw the image and stats on the panel 

  if (snapIm != null) { 

    g.setColor(Color.YELLOW); 

    g.drawImage( matToImage(snapIm), 0, 0, this); 

    String statsMsg = String.format("Snap Avg. Time:  %.1f ms", 

                         ((double) totalTime / imageCount)); 

    g.drawString(statsMsg, 5, HEIGHT-10);   

  } 

  else  {// no image yet 

    g.setColor(Color.BLUE); 

    g.drawString("Loading from camera " +  

                      CAMERA_ID + "...", 5, HEIGHT-10); 

  } 

} // end of paintComponent() 

 

matToImage() converts the matrix into JPG byte format, extracts the raw bytes, and 

fills a BufferedImage object: 

 

private BufferedImage matToImage(Mat snapIm) 

{ 

  MatOfByte matOfByte = new MatOfByte(); 

  Highgui.imencode(".jpg", snapIm, matOfByte);  

  byte[] byteArray = matOfByte.toArray(); 

 

  BufferedImage bufImage = null; 

  try { 

    InputStream in = new ByteArrayInputStream(byteArray); 

    bufImage = ImageIO.read(in); 

  }  

  catch (Exception e) { 

    System.out.println("Could not convert matrix  

                                      to a BufferedImage"); 

  } 

  return bufImage; 

}  // end of matToImage() 

 

Saving the image isn't nearly as tricky since OpenCV has matrix-saving functions. 

There's no need to bother with BufferedImage or Java's ImageIO.write(): 

 

// Java OpenCV Version 

private void saveImage(Mat snapIm, String saveFnm, int snapCount) 

{ 

  if (snapIm == null) { 

    System.out.println("Not saving a null image"); 

    return; 

  } 

 

  Mat grayImage = new Mat(WIDTH, HEIGHT, CvType.CV_8UC1); 

  Imgproc.cvtColor(snapIm, grayImage, Imgproc.COLOR_BGR2GRAY); 

 

  String fnm = (snapCount < 10) ?  

              SAVE_DIR + saveFnm + "0" + snapCount +".jpg" : 

              SAVE_DIR + saveFnm + snapCount +".jpg"; 

  System.out.println("Saving image " + fnm); 

  Highgui.imwrite(fnm, grayImage); 



Java Prog. Techniques for Games. Chapter NUI-2b. JavaCV Snaps Draft #1 (27th June 2013) 

 16  Andrew Davison 2013 

}  // end of saveImage() 

 

The conversion of the image to a grayscale uses the same approach as in JavaCV, but 

with slightly differently named methods and constants. 

 

 

4. Checking the Camera 

A problematic aspect of webcam snapping is making sure that the camera is working. 

Of course, one solution is to simply plug the camera in and fire up the SnapPics 

application. But what's to be done when nothing appears in the JPanel? 

Although SnapPics is quite small, it rests atop a large number of libraries (i.e. 

JavaCV, OpenCV, OS imaging support, such as DirectShow, and the camera driver). 

What part of that stack of software is causing the non-appearance of the webcam 

picture? 

A related issue is how to discover the camera ID that's required by JavaCV's 

FrameGrabber and Java OpenCV's VideoCapture classes. Almost always, an ID of 0 

is the right guess, but what if the ID is something else? 

I find it useful to have tools for testing and examining a webcam that are independent 

of JavaCV and OpenCV. I'll briefly outline three: CommandCam, DevCon and 

FFmpeg 

 

4.1. CommandCam 

CommandCam is a command line webcam image grabber for Windows utilizing 

DirectShow (http://batchloaf.wordpress.com/commandcam/). It can provide details 

about all the cameras connected to the device, and allows you to snap a single image 

and store it as a bitmap. 

For example, on my test machine: 

> commandcam /devlist 

produces: 

 

Available capture devices: 

  Device name: USB2.0 Camera 

  Device name: Kinect Virtual Camera : Depth 

  Device name: Kinect Virtual Camera : Image 

  Device name: Kinect Virtual Camera : SmartCam 

  Device name: Video Blaster WebCam 3/WebCam Plus (VFW) 

 

This information doesn't include ID numbers, but the devices are listed in the same 

order used by FrameGrabber and CaptureDevice, so you can guess the ID.   

A more detailed list of information is provided by the "/devlistdetail" argument: 

> commandcam /devlistdetail 

Available capture devices: 

 

Capture device 1: 



Java Prog. Techniques for Games. Chapter NUI-2b. JavaCV Snaps Draft #1 (27th June 2013) 

 17  Andrew Davison 2013 

  Device name: USB2.0 Camera 

  Device path: \\?\usb#vid_1e4e&pid_0102&mi_00#6&244eccde&0&0000# 

{65e8773d-8f56-11d0-a3b00a0c9223196}\global 

 

Capture device 2: 

  Device name: Kinect Virtual Camera : Depth 

  Device path: Kinect Virtual Camera : Depth 

 

Capture device 3: 

  Device name: Kinect Virtual Camera : Image 

  Device path: Kinect Virtual Camera : Image 

 

Capture device 4: 

  Device name: Kinect Virtual Camera : SmartCam 

  Device path: Kinect Virtual Camera : SmartCam 

 

Capture device 5: 

  Device name: Video Blaster WebCam 3/WebCam Plus (VFW) 

  Device path: Video Blaster WebCam 3/WebCam Plus (VFW) 

 

The numbering of the devices in the output is misleading since OpenCV starts 

counting from 0 not from 1. The device path information for the USB camera includes 

its vendor ID (1e4e) and product ID (0102), which can be useful when manipulating 

the camera as a USB device. 

Taking a picture is done with the "/preview" argument, and an optional device number 

("/devnum") or device name ("/devname") to specify a camera other than the first. For 

example: 

 

> commandcam /preview /devnum 1 

Capture device: USB2.0 Camera 

Capture resolution: 640x480 

Captured image to image.bmp 

 

On one of my Windows 7 test machine, the preview window always remains black (or 

momentarily shows an image before turning black), but a snap is correctly saved to 

image.bmp. 

 

4.2. DevCon 

Microsoft's DevCon command-line utility is as an alternative to Window's GUI 

Device Manager which allows you enable, disable, restart, update, remove, and query 

devices (http://support.microsoft.com/kb/311272). It gives more information on a 

webcam's status than CommandCam, but doesn't support picture snapping. All the 

commands I need use the "=image" argument to focus on imaging devices only. The 

"status" command lists details about connected devices: 

 

>devcon status =image 

 

USB\VID_1E4E&PID_0102&MI_00\6&244ECCDE&0&0000 

    Name: USB2.0 Camera 

    Driver is running. 

1 matching device(s) found. 

 



Java Prog. Techniques for Games. Chapter NUI-2b. JavaCV Snaps Draft #1 (27th June 2013) 

 18  Andrew Davison 2013 

This identifies the single camera which is currently plugged into my PC. 

The "driverfiles" argument provides information on the device driver: 

 

>devcon driverfiles =image 

 

USB\VID_1E4E&PID_0102&MI_00\6&244ECCDE&0&0000 

    Name: USB2.0 Camera 

    Driver installed from C:\Windows\INF\usbvideo.inf [USBVideo]. 1 

file(s) used by driver: C:\Windows\system32\drivers\usbvideo.sys 

1 matching device(s) found. 

 

4.3. FFmpeg 

A drawback of the two previous tools is their limitation to Windows. FFmpeg is a 

cross-platform collection of software and libraries which supports the recording, 

conversion and streaming of audio and video (http://www.ffmpeg.org/). I only need 

the ffmpeg.exe command line tool to grab and encode video. 

The FFmpeg site contains lots of documentation, with image capture explained at 

http://ffmpeg.org/trac/ffmpeg/wiki/How%20to%20capture%20a%20webcam%20inpu

t 

The following command lists DirectShow supported devices: 

> ffmpeg -list_devices true -f dshow -i dummy 

After a large amount of help information has been printed by ffmpeg, the useful stuff 

is: 

 

DirectShow video devices 

  "USB2.0 Camera" 

  "Kinect Virtual Camera : Depth" 

  "Kinect Virtual Camera : Image" 

  "Kinect Virtual Camera : SmartCam" 

  "Video Blaster WebCam 3/WebCam Plus (VFW)" 

DirectShow audio devices 

  "Rear Mic (SigmaTel High Definit" 

 

The ordering of the output indicates the numbering that should be used by the camera 

ID in FrameGrabber and CaptureDevice; my USB camera is ID 0. 

More details about a particular device can be obtained with the "-list_options" 

parameter: 

> ffmpeg -list_options true -f dshow -i video="USB2.0 Camera" 

The relevant part of the output is: 

 

DirectShow video device options 

Pin "Capture" 

  pixel_format=yuyv422  min s=640x480 fps=30 max s=640x480 fps=30 

  pixel_format=yuyv422  min s=640x480 fps=30 max s=640x480 fps=30 

  pixel_format=yuyv422  min s=352x288 fps=30 max s=352x288 fps=30 

  pixel_format=yuyv422  min s=352x288 fps=30 max s=352x288 fps=30 

  pixel_format=yuyv422  min s=320x240 fps=30 max s=320x240 fps=30 

  pixel_format=yuyv422  min s=320x240 fps=30 max s=320x240 fps=30 

  pixel_format=yuyv422  min s=176x144 fps=30 max s=176x144 fps=30 



Java Prog. Techniques for Games. Chapter NUI-2b. JavaCV Snaps Draft #1 (27th June 2013) 

 19  Andrew Davison 2013 

  pixel_format=yuyv422  min s=176x144 fps=30 max s=176x144 fps=30 

  pixel_format=yuyv422  min s=160x120 fps=30 max s=160x120 fps=30 

  pixel_format=yuyv422  min s=160x120 fps=30 max s=160x120 fps=30 

 

This indicates that the camera is able to record at 640x480 resolution, with a frame 

rate of 30 fps. In SnapPics, the DELAY interval is 100 ms which translates to a frame 

rate of 1000/100 = 10 fps, so is within the capabilities of the device. 

Testing the camera is done by recording some video: 

> ffmpeg -f dshow -s 640x480 -i video="USB2.0 Camera" webcam.flv 

This uses DirectShow to record video and audio into the webcam.flv file at a 

resolution of 640x480 pixels. A lot of extra information is printed to the command 

line during the recording, including the on-going frame rate, which settles down to 30 

fps soon after the recording has started. 

 

 


