
Java Prog. Techniques for Games. M3G Chapter 3: Morphing Draft #1 (4th Nov. 04)

1  Andrew Davison 2004

M3G Chapter 3. Mighty Morphin' Penguin Flippers

The penguin that dizzily moved in a circle in the previous chapter gets a chance to
stand still in this chapter, but the exercise regime continues, with him having to raise
and lower his flippers for several minutes. Figure 1 shows two shots of the penguin,
one with his flippers up, the other down. At execution time, there's a smooth transition
between these extremes.

Figure 1. Get them Flippers Flapping: Up, Down, Up,...

The flipper movement is achieved through mesh morphing: a penguin base model
(which has its flipper's extended horizontally) is gradually changed into an almost
identical penguinUp target model (which has its flippers up). This is morphed back to
the base shape, and then to a penguinDown target model (flippers down). From the
down position, the penguin raises its flippers again by morphing back to the base case.

Although only one penguin is rendered to the screen, three penguin models are used
in this application: the base version, a version with the flippers raised, and a version
with the flippers lowered.

Java Prog. Techniques for Games. M3G Chapter 3: Morphing Draft #1 (4th Nov. 04)

2  Andrew Davison 2004

The other contribution of this example is a MobileCamera class, which allows the
camera to be translated forwards, backwards, left, right, up, and down, and to be
rotated around the y-axis (i.e. turned left or right), and about the x-axis (i.e. rotated
forward or back). Figure 2 shows the camera moved up, left, and back, and rotated to
look down towards the floor.

Figure 2. The Scene Viewed From on High.

Details about the mobile camera are written to the top-left of the screen: its current
mode (move, rotate, or float), and its position and orientation.

The MobileCamera class can be easily added to other applications to offer camera
mobility. A modified version of it is the basis of the First Person Shooter (FPS)
example in M3G Chapter 5.

The morphing code in this chapter can be found in the /MorphM3G directory.

Java Prog. Techniques for Games. M3G Chapter 3: Morphing Draft #1 (4th Nov. 04)

3  Andrew Davison 2004

1. Class Diagrams for MorphM3G
Figure 3 shows the class diagrams for the MorphM3G application, including public
and protected method names.

Figure 3. Class Diagrams for MorphM3G.

MorphM3G is the top-level MIDlet, and utilizes a TimerTask subclass to trigger
periodic calls to update() in MorphCanvas. Structurally, MorphM3G and MorphTimer
are the same as AnimM3G and AnimTimer in the previous chapter.

The Floor class is the same as the one used in the AnimM3G example: it creates a
square aligned with the XZ plane, centered at (0,0), with an image wrapped over it as
a texture.

MorphModel is in charge of the morphing penguin, utilizing three models stored in
the PenguinUp, PenguinDown, and PenguinBase classes. As you'd expect, these
represent the penguin with it's flippers up, down, and straight out. MorphModel uses
M3G's MorphingMesh class to build the morphing penguin.

Java Prog. Techniques for Games. M3G Chapter 3: Morphing Draft #1 (4th Nov. 04)

4  Andrew Davison 2004

2. The MorphCanvas Class
MorphCanvas carries out three tasks: it build the scene graph, passes key presses and
releases onto the MobileCamera object, and periodically updates and repaints the
scene (in response to calls from MorphTimer). I'll explain each of these below.

2.1. Building the Scene Graph
MorphCanvas creates a 3D scene in retained mode (i.e. it builds a scene graph), in a
similar way to AnimM3GCanvas in the previous chapter. The resulting scene graph
contains a camera, a light, a blue background, a floor (made by the Floor class), and a
morphing penguin constructed by MorphModel. The scene graph is shown
graphically in Figure 4.

Figure 4. The MorphM3G Scene Graph

The new aspects of the graph are the animated MorphingMesh node built by
MorphModel, and the Group and Camera chain built by MobileCamera.

The blue triangles in the MorphingMesh node are my attempt to draw a simplified
penguin. The base penguin is the triangle with horizontal lines leaving its sides (these
are its flippers). It can be morphed into a penguin with its flippers up (labeled as
target 0 in Figure 4), or into a penguin with its flippers down (labeled as target 1). The
'animated' hexagon indicates that the morphing is controlled by an AnimationTrack,
AnimationController, and KeyframeSequence triple. The animation varies the 'mix'
between the base and the two targets, creating a single mesh where the flippers are
moved up or down by some amount.

Java Prog. Techniques for Games. M3G Chapter 3: Morphing Draft #1 (4th Nov. 04)

5  Andrew Davison 2004

The camera is tied to the scene via a Group node, called transGroup, so it can be
easily moved and rotated. The changes to transGroup and the camera are triggered by
the user's key presses.

The World node, called scene, is created in the MorphCanvas constructor, which calls
buildScene() to populate the scene graph.

 private void buildScene()
 // add elements to the scene
 {
 addCamera();
 addLights();
 addBackground();

 MorphModel mm = new MorphModel();
 scene.addChild(mm.getModel()); // add the model

 addFloor();
 }

addLights(), addBackground(), and addFloor() are unchanged from AnimM3G. The
MorphModel object will be described presently.

addCamera() is quite short since MobileCamera encapsulates most of its set-up.

 // global variable
 private MobileCamera mobCam;

 private void addCamera()
 { mobCam = new MobileCamera(getWidth(), getHeight());

 scene.addChild(mobCam.getCameraGroup());
 scene.setActiveCamera(mobCam.getCamera());
 }

The call to getCameraGroup() returns a reference to the Group node at the top of the
camera's scene graph chain, which is attached to the main graph. The getCamera() call
retrieves a reference to the Camera object, so it can be made active.

2.2. Key Processing
Since MorphCanvas is a subclass of MIDP's Canvas class, it handles key presses and
releases by overriding keyPressed() and keyReleased():

 protected void keyPressed(int keyCode)
 { int gameAction = getGameAction(keyCode);
 mobCam.pressedKey(gameAction);
 }

 protected void keyReleased(int keyCode)
 { int gameAction = getGameAction(keyCode);
 mobCam.releasedKey(gameAction);
 }

Java Prog. Techniques for Games. M3G Chapter 3: Morphing Draft #1 (4th Nov. 04)

6  Andrew Davison 2004

The key codes are mapped to game action integers, then passed to the mobile camera
for processing.

2.3. Updating and Repainting
MorphCanvas' update() method is called regularly by the MorphTimer object, as
detailed in Figure 5.

Figure 5. Updating and Repainting MorphM3G.

The update() method:

 public void update()
 { mobCam.update();
 appTime++;
 if (appTime >= nextTimeToAnimate)
 nextTimeToAnimate = scene.animate(appTime) + appTime;
 repaint();
 }

A new feature compared to update() in AnimCanvas is the call to MobileCamera's
update(). The method updates the camera's position if a key is being held down. In
this way, a pressed key will keep the camera moving or rotating.

Another change is that repainting is requested outside the if-block containing the
animate() call. This is to deal with the situation when the camera is moved but the
penguin isn't animated (morphed). If the repaint() call was inside the if-block, then a
camera movement wouldn't necessarily trigger rendering. For example, if the model

Java Prog. Techniques for Games. M3G Chapter 3: Morphing Draft #1 (4th Nov. 04)

7  Andrew Davison 2004

didn't need animating then the if-test would return false, and no repainting would
occur.

paint() is little changed from the version in AnimCanvas, except for three drawString
() calls to report on the mobile camera:

 protected void paint(Graphics g)
 {
 iG3D.bindTarget(g);
 try {
 iG3D.render(scene);
 }
 catch(Exception e)
 { e.printStackTrace(); }
 finally {
 iG3D.releaseTarget();
 }

 // show the camera's details
 g.drawString(mobCam.getKeyMode(), 5,5,
 Graphics.TOP|Graphics.LEFT);
 g.drawString(mobCam.getPosition(), 5,18,
 Graphics.TOP|Graphics.LEFT);
 g.drawString(mobCam.getRotation(), 5,31,
 Graphics.TOP|Graphics.LEFT);
 } // end of paint()

The drawString() calls must be made after the Graphics3D object, iG3D, has released
the graphics context. Only then is the context available to MIDP methods.

Java Prog. Techniques for Games. M3G Chapter 3: Morphing Draft #1 (4th Nov. 04)

8  Andrew Davison 2004

3. Creating the Penguin Meshes
MorphM3G uses three penguin models: one acting as the base model (a penguin with
its flippers straight out), and two target models (flippers up, flippers down). How are
these penguins made?

The base penguin was created first, using the MilkShape 3D modeler. A screenshot of
the penguin under construction is shown in Figure 6.

Figure 6. The Penguin in MilkShape 3D.

When finished, the model was exported as an OBJ file, then converted to Java
methods using our ObjView utility (see M3G Chapter 1 for information on ObjView).

I returned to the model in MilkShape 3D, and moved the mesh vertices representing
the flippers, taking care not to delete or create any vertices. The resulting mesh was
saved as a new OBJ file, and converted to Java methods using ObjView. This process
was carried out twice, once to create methods for the PenguinUp class, once for
PenguinDown.

The overall strategy is illustrated by Figure 7.

Figure 7. From Penguin Mesh to Methods.

Java Prog. Techniques for Games. M3G Chapter 3: Morphing Draft #1 (4th Nov. 04)

9  Andrew Davison 2004

3.1. The Penguin Model Classes
Three classes were created: PenguinBase, PenguinUp, and PenguinDown, all with the
same essential structure aside from their ObjView generated methods. I'll examine
PenguinBase; the other two are basically the same.

The only public method in PenguinBase is getVertexBuffer(), which returns a
VertexBuffer wrapping up the vertices, normals, and texture coordinates for the
penguin.

 public VertexBuffer getVertexBuffer()
 {
 // create vertices
 short[] verts = getVerts();
 VertexArray va = new VertexArray(verts.length / 3, 3, 2);
 va.set(0, verts.length / 3, verts);

 // create normals
 byte[] norms = getNormals();
 VertexArray normArray = new VertexArray(norms.length / 3, 3, 1);
 normArray.set(0, norms.length / 3, norms);

 // create texture coordinates
 short[] tcs = getTexCoordsRev();
 VertexArray texArray = new VertexArray(tcs.length / 2, 2, 2);
 texArray.set(0, tcs.length / 2, tcs);

 float[] pbias = { (1.0f / 255.0f), (1.0f / 255.0f),
 (1.0f / 255.0f)};

 VertexBuffer vb = new VertexBuffer();
 vb.setPositions(va, (2.0f / 255.0f), pbias); // scale, bias
 vb.setNormals(normArray);
 vb.setTexCoords(0, texArray, (1.0f / 255.0f), null);

 return vb;
 } // end of getVertexBuffer()

The vertices are obtained by calling getVerts(), the normals from getNormals(), and
the texture coordinates from getTexCoordsRev() (which calls getTexCoords()). These
methods are all generated by ObjView.

getVertexBuffer() also defines the scale and bias for the vertices and texture
coordinates. These settings must be the same for all the penguin classes, but ObjView
ensures this, by automatically scaling all the penguin models in the same way.

ObjView also generates the getStripLengths() and setMatColours() methods; these are
utilized in the MorphModel class described next.

Java Prog. Techniques for Games. M3G Chapter 3: Morphing Draft #1 (4th Nov. 04)

10  Andrew Davison 2004

4. Creating the Morphing Penguin
As the class diagrams in Figure 3 indicate, the MorphModel class employs the
PenguinBase, PenguinUp, and PenguinDown classes to create the morphing penguin.
The resulting scene graph node, an instance of M3G's MorphingMesh class, is shown
in Figure 4. MorphModel also sets up the animation mechanism which morphs the
penguin model over time.

MorphModel's constructor builds the model and sets up the animation:

 // global variable
 private MorphingMesh morphModel;

 public MorphModel()
 {
 morphModel = makeMorph();
 // reposition the model's start position and size
 morphModel.setTranslation(0.15f, 0.15f, 0.1f); // at origin
 morphModel.scale(0.5f, 0.5f, 0.5f);

 setUpAnimation(morphModel);
 }

The translation and scaling applied to the MorphingMesh positions it at the origin on
the XZ plane, and makes it a reasonable size.

4.1. Building a MorphingMesh
A MorphingMesh is a special kind of mesh, which may contain several VertexBuffer
objects rather than just the one found in an ordinary Mesh object. The format of a
MorphingMesh object is shown in Figure 8.

Figure 8. The Components of a MorphingMesh Object.

Java Prog. Techniques for Games. M3G Chapter 3: Morphing Draft #1 (4th Nov. 04)

11  Andrew Davison 2004

The additional VetexBuffers are for the morph targets, which hold the shapes that are
'mixed' with the base VertexBuffer to create the mesh that is actually rendered to the
screen. The equation for generating the mesh is:

resulting_mesh = base + ∑ [weighti * (targeti - base)]

The weights express how much of each target is used in the resulting mesh. Typically
the weights are in the range 0 to 1: 0 meaning no contribution, and 1 denoting fully
used. However, the weights can be anything, including negative values.

The programmer will usually fix the weight so their sum equals 1, which will stop the
resulting mesh from growing larger than the largest VertexBuffer component.
However, there's nothing stopping the weights from adding up to a smaller or larger
value, but the resulting mesh may look strange.

There are more stringent requirements for the properties of the VertexBuffers. The
targets must hold the same types of VertexArrays as the base, contain the same
number of vertices in each array as those in the base, the same number of components
per vertex, and use the same component sizes. These restrictions can be easily met if
the various targets are all generated from the same model as the base, and only differ
in the position of some of their mesh vertices.

All the VertexBuffers share the same IndexBuffer and Appearance nodes.

The MorphingMesh object for the penguin is created in makeMorph():

 // global constants
 private static final int NUM_TARGETS = 2;
 private static final String MODEL_TEXTURE = "/model.gif";

 private MorphingMesh makeMorph()
 /* The model base is PenguinBase, and its two targets
 are PenguinUp (flippers up) and PenguinDown (flippers down).
 */
 { VertexBuffer base = (new PenguinBase()).getVertexBuffer();

 VertexBuffer[] targets = new VertexBuffer[NUM_TARGETS];
 targets[0] = (new PenguinUp()).getVertexBuffer(); // PenguinUp
 targets[1] = (new PenguinDown()).getVertexBuffer(); //PenguinDown

 IndexBuffer indBuf = new TriangleStripArray(0,getStripLengths());
 Appearance app = makeAppearance(MODEL_TEXTURE);

 MorphingMesh m = new MorphingMesh(base, targets, indBuf, app);
 return m;
 }

The VertexBuffers for the base and two targets are obtained from the penguin classes.

The IndexBuffer is created with the help of getStripLength(), which is one of the
methods generated by ObjView. There will be three copies of this method to choose
from, output for the base and the two targets. If care was taken when the targets were
created, the three methods should be the same. If they're not, then a vertex was
created or deleted when the targets were formed, and the programmer will have to go
back and reconstruct them.

Java Prog. Techniques for Games. M3G Chapter 3: Morphing Draft #1 (4th Nov. 04)

12  Andrew Davison 2004

The Appearance node is built with makeAppearance(), which is identical to the one
used for the penguin mesh in AnimM3G. The node has a Material node initialized
with the setMatColours() method output by ObjView, and modulates (combines) that
colour with a texture.

Three copies of the setMatColours() method will be available to choose from, but they
should all be the same. It doesn't really matter if they're different, but only one of
them can be used in the MorphingMesh.

5. Animating the Penguin
The scene graph in Figure 4 shows the animation part of MorphingModel as a
hexagon. Figure 9 replaces the hexagon with the standard triple of AnimationTrack,
AnimationController and KeyframeSequence. Details about these classes were given
in the previous chapter.

Figure 9. The Animation of the MorphingMesh Object.

The crucial element is the property being affected by the AnimationTrack object; in
this example, it's the morph weights of the MorphingMesh (the weighti values in the
equation given above). There are two targets (flippers up, flippers down), so two
weights need to be controlled.

Figure 9 is implemented by setUpAnimation() in MorphModel.

 private void setUpAnimation(MorphingMesh morphModel)
 /* The animation adjusts the morph weights to switch between the
 base and the targets. */
 {
 // creation animation controller
 AnimationController animController = new AnimationController();
 animController.setActiveInterval(0, 1500);
 animController.setSpeed(4.0f, 0); // flap quickly

 // creation morph weights animation track
 KeyframeSequence morphKS = morphFrames();
 AnimationTrack morphTrack = new AnimationTrack(morphKS,
 AnimationTrack.MORPH_WEIGHTS);
 morphTrack.setController(animController);
 morphModel.addAnimationTrack(morphTrack); // affect morphModel

Java Prog. Techniques for Games. M3G Chapter 3: Morphing Draft #1 (4th Nov. 04)

13  Andrew Davison 2004

 } // end of setUpAnimation()

The morph weights are influenced by specifying the
AnimationTrack.MORPH_WEIGHTS property in the AnimationTrack constructor.

The AnimationController is set to run for 1500 world time units, and the speed setting
means that the sequence time runs 4 times faster than the world time, making the
penguin flap its flippers quickly.

The most important element of the animation code is the key frame sequence, which
is illustrated by Figure 10.

Figure 10. The Key Frame Sequence for the MorphingMesh Animation.

The changes to the two target's morph weights are shown above the triangles
representing the penguin. Weight0 is for target0, the penguin with it's flippers up.
Weight1 is for target1, the penguin with its flippers down.

As the sequence progresses, the weights are adjusted so the flippers move up from
their horizontal position in the base, then down, then back up to be nearly horizontal,
before the sequence repeats. When the target weights are both 0, only the base
penguin is rendered.

Figure 10 is coded by morphFrames().

 private KeyframeSequence morphFrames()
 {
 KeyframeSequence ks =
 new KeyframeSequence(8, 2, KeyframeSequence.LINEAR);

 /* Morphing weights make the penguin's flippers flap up, then
 down, then back to the starting base position.
 First weight is for the up target, the second for the
 down target.
 */
 ks.setKeyframe(0, 0, new float[] { 0.0f, 0.0f }); // at base
 ks.setKeyframe(1, 10, new float[] { 0.5f, 0.0f });
 ks.setKeyframe(2, 20, new float[] { 1.0f, 0.0f }); // totally up
 ks.setKeyframe(3, 30, new float[] { 0.5f, 0.0f });
 ks.setKeyframe(4, 40, new float[] { 0.0f, 0.0f }); //back at base
 ks.setKeyframe(5, 50, new float[] { 0.0f, 0.5f });
 ks.setKeyframe(6, 60, new float[] { 0.0f, 1.0f }); //totally down
 ks.setKeyframe(7, 70, new float[] { 0.0f, 0.5f });

Java Prog. Techniques for Games. M3G Chapter 3: Morphing Draft #1 (4th Nov. 04)

14  Andrew Davison 2004

 ks.setDuration(80);
 ks.setValidRange(0, 7);
 ks.setRepeatMode(KeyframeSequence.LOOP);

 return ks;
 } // end of morphFrames()

This method returns the KeyframeSequence object that is utilized by setUpAnimation
().

6. The MobileCamera Class
The mobile camera combines several design aims:

• The main application domain for the camera will be virtual world navigation.

• The camera can move forwards, backwards, left, right, up, and down, and rotate
clockwise and anti-clockwise around the y- and x- axes. Rotations around the z-
axis, which would allow the camera to swing to the left and right (like a ship
rolling at sea), aren't supported; they don't seem necessary for most applications.

• A y-axis rotation affects subsequent translation directions. In other words, if the
camera is turned left or right, then 'forward' means the new forward-facing
direction, with corresponding changes to the meanings of left, right, and back.

• A z-axis rotation does not affect the translation directions. For example, if the
camera is rotated towards the floor, then 'up' stills mean straight up the positive y-
axis. The motivation for this design is that when the camera is rotated forwards or
back, it's to look at something, not to head towards it.

• The camera supports ten operations: six forms of translation (forward, left, right,
back, up, and down) and four rotations (y-axis turn left, y-axis turn right, x-axis
roll forward, and x-axis roll backwards). We don't want to assign these operations
to ten distinct keys; instead, we only utilize the four arrow keys. This is achieved
by dividing the operations into three groups: move, rotate, and float. 'Move'
contains four operations (left, right, forward, back), 'rotate' has four (the x- and y-
axis rotations), and float has two (up and down). These groups (or modes, as we
call them) are switched between by using the 'select' key on the phone.

• Holding a key down causes the current operation to be repeated.

• The current mode of operation, and position and rotation details for the camera,
can be reported to the screen.

• The MobileCamera class should be easy to integrate into different applications.

Java Prog. Techniques for Games. M3G Chapter 3: Morphing Draft #1 (4th Nov. 04)

15  Andrew Davison 2004

6.1. Mobile Camera Creation
Figure 4 shows the complete scene graph for the MorphM3G application; the
fragment related to the mobile camera is shown again in Figure 11.

Figure 11. The Scene Graph Branch for the Mobile Camera.

The translation and y-axis rotations are applied to the transGroup Group node, and x-
axis rotations operate upon the camera (Camera is a subclass of Transformable, so can
be rotated). This separation means that x-axis changes do not affect the camera's
translations (and its y-axis rotations), since they occur lower down, in a child node.
However, we do want translations to be affected by y-axis rotations, so they're applied
to the same node.

The MobileCamera() constructor sets up the scene graph branch, and initializes the
position and orientation of the camera.

 // global constants and variables
 // initial x-axis rotation and position
 private static final float X_ANGLE = -10.0f; // degrees
 private static final float X_POS = 0.0f;
 private static final float Y_POS = 0.5f;
 private static final float Z_POS = 2.0f;

 // for storing the camera's current x- and y- rotations
 private float xAngle, yAngle;

 // scene graph elements for the camera
 private Transform trans = new Transform();
 private Group transGroup;
 private Camera cam;

 public MobileCamera(int width, int height)
 {
 cam = new Camera();
 float aspectRatio = ((float) width) / ((float) height);
 cam.setPerspective(70.0f, aspectRatio, 0.1f, 50.0f);
 cam.postRotate(X_ANGLE, 1.0f, 0, 0); // apply x-axis rots

 // translation an y-axis rotation group for the model
 transGroup = new Group();

Java Prog. Techniques for Games. M3G Chapter 3: Morphing Draft #1 (4th Nov. 04)

16  Andrew Davison 2004

 trans.postTranslate(X_POS, Y_POS, Z_POS);
 transGroup.setTransform(trans);
 transGroup.addChild(cam);

 // store initial rotations
 xAngle = X_ANGLE; yAngle = 0.0f;
 } // end of MobileCamera()

The camera will face along the negative z- axis by default, but is moved up and back
from its default position at the origin, and rotated slightly downwards around the x-
axis.

The camera is rotated by calling postRotate() on the orientation component of the
node. You may recall from the last chapter that a Transformable node has four
components: one for translation, one for orientation, one for scaling, and a 4x4 matrix
for general-purpose transforms.

The Group node is translated by having setTransform() set its matrix component.
Why use the matrix rather than the node's translation component? The reason is that
later we must combine translations and y-axis rotations, which is easier if they're
applied through the matrix component.

The Group node and Camera are globals, and can be accessed from MorphCanvas
with getCameraGroup() and getCamera().

6.2. Key Presses and Releases
Key presses and releases are caught in MorphCanvas, and their corresponding game
action codes are passed to MobileCamera's pressedKey() and releasedKey() methods.

MobileCamera records when keys are pressed and released, by using a set of global
booleans. The current operation mode (move, rotate, or float) is also stored.

 // global constants and variables
 // key mode constants
 private static final int MOVE = 0; // move left, right, fwd, back
 private static final int ROTATE = 1; // turn left, right, up, down
 private static final int FLOAT = 2; // move up, down
 private static final int NUM_MODES = 3;

 // booleans for remembering key presses
 private boolean upPressed = false;
 private boolean downPressed = false;
 private boolean leftPressed = false;
 private boolean rightPressed = false;

 private int keyMode = MOVE; // current key mode

 public void pressedKey(int gameAction)
 { switch(gameAction) {
 case Canvas.UP: upPressed = true; break;
 case Canvas.DOWN: downPressed = true; break;
 case Canvas.LEFT: leftPressed = true; break;
 case Canvas.RIGHT: rightPressed = true; break;
 case Canvas.FIRE: keyMode = (keyMode + 1) % NUM_MODES; break;
 default: break;

Java Prog. Techniques for Games. M3G Chapter 3: Morphing Draft #1 (4th Nov. 04)

17  Andrew Davison 2004

 }
 }

 public void releasedKey(int gameAction)
 { switch(gameAction) {
 case Canvas.UP: upPressed = false; break;
 case Canvas.DOWN: downPressed = false; break;
 case Canvas.LEFT: leftPressed = false; break;
 case Canvas.RIGHT: rightPressed = false; break;
 default: break;
 }
 }

The four booleans, upPressed, downPressed, leftPressed, and rightPressed, correspond
to the four arrow keys, and are set true when the key is pressed, and changed back to
false when the key is released.

The keyMode variable can cycle through three integer values representing the
possible operation modes for the camera.

6.3. Updating the Mobile Camera
The reason for remembering key presses, is that the camera's update() method is
periodically called, and uses the current key mode and the boolean settings to decide
how the camera should be moved or rotated.

Figure 5 shows how MorphTimer triggers update() in MorphCanvas, which then calls
update() in the MobileCamera.

The update() method calls a specialized update method depending on the key mode.

 public void update()
 { switch(keyMode) {
 case MOVE: updateMove(); break;
 case ROTATE: updateRotation(); break;
 case FLOAT: updateFloating(); break;
 default: break;
 }
 }

6.3.1. Updating the Camera's Position

A translation is applied to the matrix component of the transGroup node.

 // translation increments
 private static final float MOVE_INCR = 0.1f;

 private void updateMove()
 {
 transGroup.getTransform(trans);
 if (upPressed) // move forward
 trans.postTranslate(0, 0, -MOVE_INCR);
 else if (downPressed) // move backwards
 trans.postTranslate(0, 0, MOVE_INCR);
 else if (leftPressed) // move to the left

Java Prog. Techniques for Games. M3G Chapter 3: Morphing Draft #1 (4th Nov. 04)

18  Andrew Davison 2004

 trans.postTranslate(-MOVE_INCR, 0, 0);
 else if (rightPressed) // move to the right
 trans.postTranslate(MOVE_INCR, 0, 0);
 transGroup.setTransform(trans);
 } // end of updateMove()

The current transform for the Group node is retrieved by the getTransform() call, and
stored in trans. The postTranslate() method 'adds' the translation represented by the
key press boolean to the transform. The updated transform is stored back in the Group
node with setTransform().

The same coding approach is used in updateFloating(), which uses postTranslate() to
move the camera up or down.

6.3.2. Updating the Camera's Orientation
When a camera is rotated around the y-axis, its current location will affect the final
position. Figure 12 shows how a triangle's position is changed as it is rotated
clockwise around the y-axis from it's starting (x,z) position.

Figure 12. Rotating a Triangle.

This is not the behaviour we want for the mobile camera. It's current position should
not change when it is rotated.

For the triangle example, it's position is maintained if the rotation is applied in three
steps. First, move the triangle to the origin, then rotate it, then move it back to its old
position. These operations are illustrated by Figure 13.

Figure 13. Rotating a Triangle with Extra Translations.

This approach leaves the triangle in the same location, which is the behaviour we
want for the camera.

Java Prog. Techniques for Games. M3G Chapter 3: Morphing Draft #1 (4th Nov. 04)

19  Andrew Davison 2004

One of the difficulties of following this strategy is knowing the current position of the
camera (the equivalent of the (x,z) coordinate for the triangle in Figure 13). It's not
enough to record the key presses made by the user, since the location of the camera
depends on the exact sequence of translations and rotations. For instance, three
forward moves by the camera will end at very different spots if there's a rotation of 30
degrees at the start, middle, or end of the sequence.

We obtain the current position of the camera by examining the matrix component of
the Group node.

 // globals for examining the camera's (x,y,z) position
 private Transform trans = new Transform();
 private float transMat[] = new float[16];
 private float xCoord, yCoord, zCoord;

 private void storePosition()
 // extract the current (x,y,z) position from transGroup
 {
 transGroup.getTransform(trans);
 trans.get(transMat);
 xCoord = transMat[3];
 yCoord = transMat[7];
 zCoord = transMat[11];
 }

getTransform() returns the matrix component of the node, which has the form:



















1000
333231
232221
131211

tzrrr
tyrrr
txrrr

The camera's current (x,y,z) position are in the 4th, 8th, and 12th elements of the
transMat[] array.

storePosition() is called as part of the processing in updateRotation():

 private void updateRotation()
 {
 if (upPressed) { // rotate up around x-axis
 cam.postRotate(ANGLE_INCR, 1.0f, 0, 0);
 xAngle += ANGLE_INCR;
 }
 else if (downPressed) { // rotate down around x-axis
 cam.postRotate(-ANGLE_INCR, 1.0f, 0, 0);
 xAngle -= ANGLE_INCR;
 }
 else if (leftPressed) // rotate left around the y-axis
 yAngle += ANGLE_INCR;
 else if (rightPressed) // rotate right around the y-axis
 yAngle -= ANGLE_INCR;

 // angle values are modulo 360 degrees
 if (xAngle >= 360.0f)
 xAngle -= 360.0f;

Java Prog. Techniques for Games. M3G Chapter 3: Morphing Draft #1 (4th Nov. 04)

20  Andrew Davison 2004

 else if (xAngle <= -360.0f)
 xAngle += 360.0f;

 if (yAngle >= 360.0f)
 yAngle -= 360.0f;
 else if (yAngle <= -360.0f)
 yAngle += 360.0f;

 // apply the y-axis rotation to transGroup
 if (leftPressed || rightPressed) {
 storePosition();
 trans.setIdentity();
 trans.postTranslate(xCoord, yCoord, zCoord);
 trans.postRotate(yAngle, 0, 1.0f, 0);
 transGroup.setTransform(trans);
 }
 } // end of updateRotation()

updateRotation() has to deal with rotations around the x-axis as well as those around
the y-axis. The x-axis rotations are straightforward to handle: the Camera node is
adjusted by calling postRotate().

If the left or right keys are pressed then the yAngle value is updated, and the
transGroup node is changed at the end of the method. The trans Transform is set to
identity, multiplied by the current camera translation, and then its rotation. When this
is applied to transGroup, its new position p' will be:

p' = Trans * Rot

Matrix operations are applied to the node right-to-left, so the node will be rotated by
yAngle, then translated by (xCoord, yCoord, zCoord). This corresponds to the last
two steps shown in Figure 13. We bypass the need to translate the node to the origin
by overwriting the node's old transform (it's old position) with the setTransform() call.

6.4. Reporting

MorphCanvas can call getKeyMode(), getPosition() and getRotation() to obtain the
key mode, position, and rotation of the camera. getPosition() is of interest:

 public String getPosition()
 {
 storePosition();
 // round coords to 2 dp
 float x = ((int)((xCoord+0.005)*100.0f))/100.0f;
 float y = ((int)((yCoord+0.005)*100.0f))/100.0f;
 float z = ((int)((zCoord+0.005)*100.0f))/100.0f;
 return "Pos: (" + x + ", " + y + ", " + z + ")";
 }

The call to storePosition() populates the xCoord, yCoord, and zCoord global variables
with the latest position for the camera. A string is constructed which rounds these
numbers to two decimal places, and is then sent back to the caller.

