
Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

1 Andrew Davison 2004

M3G Chapter 2. An Animated Model

This chapter is about the animation of a penguin model so it moves in a circle around
the origin on the XZ plane. Figure 1 shows two screenshots of the penguin at different
points in its journey.

Figure 1. A Penguin Moving in a Circle.

Two animations are applied to the penguin: a translation to move the model around
the circumference of a circle, and a rotation so the penguin stays pointing in its
current direction of motion. The animations are implemented using M3G's
AnimationTrack, KeyframeSequence, and AnimationController classes.

Other features of this application:

• we utilize M3G's retained mode, which means that the world is built using a scene
graph;

• the floor is a textured square, implemented in its own Floor class;

• the display mixes 3D rendering and MIDP's drawString(), which adds the
penguin's current coordinates to the top-left of the screen;

• the penguin model is represented by a Mesh object, constructed using coordinate
data generated by the ObjView application described in the previous chapter.
Model creation is wrapped up inside an AnimModel class;

• the scene uses a single directional light source, a light blue background, and a
fixed camera. We also explain how to employ an image as a background.

 The code is available in the AnimM3G/ subdirectory.

My thanks to Kari Pulli, Tomi Aarnio, and Kari J. Kangas of Nokia for helping me to
understand animation using keyframe sequences.

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

2 Andrew Davison 2004

1. UML Diagrams for AnimM3G
Figure 2 shows UML diagrams for the classes in the AnimM3G application. Only the
class names and public/protected methods are shown.

Figure 2. UML Class Diagrams for AnimM3G.

AnimM3G is the MIDlet, and creates an AnimTimer instance to periodically call
update() in an AnimCanvas object.

AnimCanvas creates the scene graph, sets up the animations, and draws the scene.
The floor mesh is created by a Floor object, while the penguin is created in an
AnimModel instance.

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

3 Andrew Davison 2004

2. Creating the Scene
The scene graph constructed by AnimCanvas is shown in Figure 3.

Figure 3. AnimCanvas Scene Graph.

The World node, called scene, is the graph's 'root', with the other nodes hanging
below it. For now, I've hidden the animation behaviour in Figure 3 as an "animated"
hexagon; I'll explain it later (see Figure 6 if you're interested).

The advantages of using a scene graph aren't really apparent in this simple example.
With a Group node it's easy to collect objects together; the 'parent' Group can have
translations, rotations, and other transformations applied to it, affecting all of its
children. This is the function of the transRotGroup node in Figure 3: translation and
rotation animations update the node, thereby affecting the Mesh model (the penguin)
beneath it.

AnimCanvas' constructor calls buildScene() to create the graph:

 private World scene; // global variable

 public AnimCanvas(...)
 { // ... other code
 scene = new World();
 buildScene():
 // ... other code
 }

 private void buildScene()
 // add nodes to the scene graph
 {
 addCamera();
 addLight();
 addBackground();

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

4 Andrew Davison 2004

 animModel = new AnimModel();
 scene.addChild(animModel.getModelGroup()); // add the model

 addFloor();
 } // end of buildScene()

2.1. Adding the Camera
The camera is created in the standard way, and moved up and back with
setTranslation(). The camera's default position is at the origin, pointing along the
negative z-axis into the scene.

 private void addCamera()
 {
 Camera cam = new Camera();
 float aspectRatio = ((float) getWidth()) / ((float) getHeight());
 cam.setPerspective(70.0f, aspectRatio, 0.1f, 50.0f);

 cam.setTranslation(0.0f, 0.5f, 2.0f); // up and back
 // cam.setOrientation(-10.0f, 1.0f, 0, 0);
 // angle downwards slightly

 scene.addChild(cam);
 scene.setActiveCamera(cam);
 }

The commented out call to setOrientation() would rotate the camera around the x-
axis, turning it downwards.

The addChild() call connects the camera to the scene graph, below the scene node.
The camera must also be made active.

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

5 Andrew Davison 2004

A useful position for the camera when a scene is being tested, is directly overhead,
looking downwards. The necessary translation and orientation settings are:

 cam.setTranslation(0.0f, 5.0f, 0.0f);
 cam.setOrientation(-90.0f, 1.0f, 0, 0);

The result for AnimM3G is shown in Figure 4.

Figure 4. AnimM3G Viewed from Above.

All the nodes in a scene graph are subclasses of Node, which is a subclass of
Transformable. This gives a node the ability to be translated, rotated, scaled, and
transformed via a 4 by 4 matrix. The operations are applied to a node's position, p,
according to the equation:

p' = translation * rotation * scaling * matrix_op * p

p' is the resulting new position.

The operations are applied to the node in a right-to-left order. For our camera, the
rotation will be applied first, then it'll be translated. Due to the underlying use of
homogenous coordinates, the rotation and translation components are independent of
each other, so the translation won't be affected by the rotation. For our camera
example in Figure 4, this means that the rotated camera will still be moved up the y-
axis by 5 units, even though it's been turned face downwards.

All transformations can be encoded using only the 4 by 4 matrix component of a
node, but the separation out of the translation, orientation and scale elements allows
them to be animated independently of each other, a capability we're utilizing for the
penguin model.

The matrix component cannot be animated directly, but it can be changed using
setTransform(). We'll explore this coding style in the next chapter, when the penguin
starts waving it's flippers.

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

6 Andrew Davison 2004

2.2. Adding a Light
The code makes use of a default directional light, which emits in white. However,
instead of using the default direction along the negative z-axis, the light is turned
downwards by 45 degrees.

 private void addLight()
 { Light light = new Light(); // default white, directional light
 light.setIntensity(1.25f); // make it a bit brighter
 light.setOrientation(-45.0f, 1.0f, 0, 0); // down and into scene
 scene.addChild(light);
 }

2.3. Adding the Background
A light blue background is added to the scene.

 private void addBackground()
 { Background backGnd = new Background();
 backGnd.setColor(0x00bffe); // a light blue background
 scene.setBackground(backGnd);
 }

An alternative is to draw an image in the background.

 private void addBackground()
 {
 Background backGnd = new Background();
 Image2D backIm = loadImage("/clouds.gif"); // cloudy blue sky
 if (backIm != null) {
 backGnd.setImage(backIm);
 backGnd.setImageMode(Background.REPEAT, Background.REPEAT);
 }
 else
 backGnd.setColor(0x00bffe); // a light blue background

 scene.setBackground(backGnd);
 }

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

7 Andrew Davison 2004

If the image file can't be found, then the background falls back to employing a light
blue colour. The cloudy background is shown in Figure 5.

Figure 5. AnimM3G with Clouds in the Background.

The image is tiled over the background by using the REPEAT mode in both the
horizontal and vertical directions.

loadImage() packages up the common task of loading an image and storing it as an
Image2D object.

 private Image2D loadImage(String fn)
 { Image2D im = null;
 try {
 im = (Image2D)Loader.load(fn)[0];
 }
 catch (Exception e)
 { System.out.println("Cannot make image from " + fn); }
 return im;
 } // end of loadImage()

The static method Loader.load() is an efficient choice here since it returns the required
Image2D object (as the first element of an array of Object3Ds). An alternative would
be to use MIDP's createImage(), but this returns an Image object, which must then be
converted to Image2D in an extra step.

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

8 Andrew Davison 2004

2.4. Adding the Penguin
The AnimModel constructor creates the Group and Mesh nodes for the penguin
shown in Figure 3.

 // global for translating and rotating the model
 private Group transRotGroup;

 public AnimModel()
 {
 // other code ...

 Mesh model = makeModel();

 // reposition the model's start position and size
 model.setTranslation(0.25f, 0.25f, 0.25f); // so at center
 model.scale(0.5f, 0.5f, 0.5f);

 // translation/rotation group for the model
 transRotGroup = new Group();
 transRotGroup.addChild(model);

 // other code ...
 }

Details of the mesh creation, implemented in makeModel(), will be explained later.
The resulting Mesh object is a subclass of Transformable, so can be translated,
rotated, and scaled. In this case, the model is moved up and scaled to make it rest on
the XZ plane at the center, and be a reasonable size in relation to the floor.

A reference to the transRotGroup node is obtained by AnimCanvas calling
AnimModel's getModelGroup():

 public Group getModelGroup()
 { return transRotGroup; }

2.5. Adding the Floor
The addFloor() method in AnimCanvas contains example code for making several
different floors:

 private void addFloor()
 {
 Image2D floorIm = loadImage("/bigGrid.gif");
 // large, so slow to load
 Floor f = new Floor(floorIm, 8); // 8 by 8 size

 // Image2D floorIm = loadImage("/grass.gif");
 // or try "/floor.png"
 // Floor f = new Floor(floorIm, 6); // 6 by 6 size

 scene.addChild(f.getFloorMesh());
 }

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

9 Andrew Davison 2004

The Floor() constructor takes two arguments: an Image2D object representing the
image, and the intended size of the floor. The floor will be centered at the origin of
the XZ plane.

bigGrid.gif is a large green grid (512 by 512 pixels, 39Kb large), shown in Figure 6.

Figure 6. The bigGrid.gif Image.

The image is displayed with sides of 8 units in the scene, which will cause its red
center to occur at the XZ origin.

bigGrid.gif is intended as a development aid, to check that the model (and any other
objects) are positioned correctly in the scene. Figure 7 shows the penguin's original
position in the scene with the animation code commented away, and bigGrid.gif used
as the floor.

Figure 7. The Penguin's Initial Position in the Scene.

The penguin is offset 0.5 units along the negative x- and z- axes, and is too large. The
start of AnimModel includes code that scales and translates the penguin so it will rest
on the red circle at the center.

 Mesh model = makeModel();

 // reposition the model's start position and size

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

10 Andrew Davison 2004

 model.setTranslation(0.25f, 0.25f, 0.25f); // so at center
 model.scale(0.5f, 0.5f, 0.5f);

The result is shown in Figure 8.

Figure 8. The Penguin Scaled and Translated.

This repositioning is important since the animation assumes that the penguin's starting
position is at the origin.

grass.gif is a 64x64 pixel grass texture, shown as the floor in Figure 9.

Figure 9. A Grass Floor.

A drawback of the Floor class is that it stretches the image to cover the required area
(6 by 6 world units in this case), which can cause pixilation. We'll develop a
TiledFloor class in M3G Chapter 4?? which tiles the floor image over the surface,
producing more realistic texturing.

The constructor for the Floor class creates a floorMesh object (we'll examine how a
bit later), which is accessed by calling Floor's getFloorMesh() method:

 public Mesh getFloorMesh()
 { return floorMesh; }

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

11 Andrew Davison 2004

getFloorMesh(0 is called by addFloor() in AnimCanvas to get a reference to the
floor's mesh, which is then connected to the scene.

3. Animating the Penguin
The "animated" hexagon in Figure 3 is expanded to reveal more detail in Figure 10.

Figure 10. Animation in More Detail.

There are separate animation behaviours for translating and rotating the penguin, both
targeting the transRotGroup node. The transTrack AnimationTrack is aimed at the
translation component of the node, while the rotTrack AnimationTrack updates its
rotational component. The components being modified are called the node's
animation properties.

There's a large range of node properties open to animation, including colour, lighting,
scaling, and morphing weights, although the exact choice depends on the type of node
being affected.

An AnimationTrack instance is always associated with one AnimationController and
one KeyframeSequence object, and can modify a single kind of animation property.
However, a scene graph node may have multiple animation tracks connected to it,
with the tracks linked to different animation properties (as here). Multiple tracks may
also be combined to change to a single property.

An AnimationTrack object may be linked to multiple scene graph nodes, allowing it
to change the same property in several nodes at the same time. A given
KeyframeSequence object or AnimationController can be utilized by several
AnimationTrack objects at once.

At execution time, an AnimationTrack object is passed a world time which it sends
onto its AnimationController instance, whose main role is to convert the world time
into a sequence time. AnimationTrack uses the sequence time to do a lookup in the
KeyframeSequence object to find a frame which holds the animation state at that time.
AnimationTrack uses the frame information to update the animation property in the

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

12 Andrew Davison 2004

target node; any existing data stored in the property is replaced by the new
information.

3.1. AnimationController's Time Equation
AnimationController is supplied with a world time (tw) and converts it to a sequence
time (ts) using the equation:

ts = speed * (tw – tRefw) + tRefs

Values for speed, tRefw, and tRefs can be set by calling methods in the animation
controller:

setPosition(tRefs, tRefw)

and setSpeed(speed, speedStartTimew)

The speedStartTimew value states the world time at which the new speed should start
being used; typically its value is time 0.

The default values for speed, tRefs, and tRefw are 1, 0, and 0 respectively, making the
sequence time the same as the world time (ts == tw)

The equation is further constrained to only being valid when tw is between startTimew
and endTimew. If tw is outside this range then AnimationTrack will be informed that
the animation is inactive. The range is set in AnimationController using:

setActiveInterval(startTimew, endTimew)

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

13 Andrew Davison 2004

3.2. Using KeyframeSequence
Once AnimationTrack has a sequence time, it asks its KeyframeSequence object to
return the frame information for that time instance.

KeyframeSequence maintains a sequence of frames, as illustrated by Figure 11.

Figure 11. A Keyframe Sequence.

Each frame is actually a scalar or vector of data, used to update the animation
property according to the type of that property.

A frame is associated with a time moment in the sequence, and so it's usually
necessary to interpolate between two frames to get a frame value for the required
time.

A sequence may loop, permitting a time occurring beyond the end of the sequence to
be mapped to it, modulo the sequence's duration.

3.3. Initializing the Animation
The animation objects in Figure 10 are created by setUpAnimation() in AnimModel:

 private void setUpAnimation()
 {
 // creation animation controller
 AnimationController animController = new AnimationController();
 animController.setActiveInterval(0, 1500);
 // animController.setSpeed(2.0f, 0);

 // creation translation animation track
 KeyframeSequence transKS = translateFrames();
 AnimationTrack transTrack =
 new AnimationTrack(transKS, AnimationTrack.TRANSLATION);
 transTrack.setController(animController);
 transRotGroup.addAnimationTrack(transTrack);

 // creation rotation animation track
 KeyframeSequence rotKS = rotationFrames();
 AnimationTrack rotTrack =
 new AnimationTrack(rotKS, AnimationTrack.ORIENTATION);
 rotTrack.setController(animController);

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

14 Andrew Davison 2004

 transRotGroup.addAnimationTrack(rotTrack);
 } // end of setUpAnimation()

The time equation for animController in setUpAnimation() utilizes the default settings
for speed and tRefw, and tRefs (1, 0, and 0 respectively), so the sequence time is the
same as the world time (ts == tw). The call to setActiveInterval() means that the
animation will start immediately, and remain active until the world time reaches 1500
time units.

A simple way of speeding up a sluggish animation is with setSpeed(). For example,
 animController.setSpeed(2.0f, 0);

will change the time equation to:

ts = 2 * tw

This causes the sequence to be updated twice as fast, starting from when tw == 0 (i.e.
from the beginning of the animation).

The animation property modified by an animation track is specified in its constructor:
AnimationTrack.TRANSLATION for transTrack, and
AnimationTrack.ORIENTATION for rotTrack.

3.4. Translation Keyframes
The translation animation makes the penguin move around a circle of radius 0.5 units,
centered at the origin on the XZ plane. Figure 12 shows this circle, as viewed from
above, together with the frame indices where the information will be stored.

Figure 12. Translation Frame Information for the Penguin.

The first frame (index no. 0) will place the penguin on the negative x-axis at (-0.5, 0,
0). The triangles used in Figure 12 are meant to indicate that the penguin's orientation
is unaffected by the translations.

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

15 Andrew Davison 2004

The next step is to map the frame information in Figure 12 into a frame sequence,
complete with timing information. The result is Figure 13.

Figure 13. Translation Frame Sequence for the Penguin.

There's an interval of 10 time units between each frame, a total duration of 80 time
units, and the sequence loops. The interpolation strategy defines a curved path
between the coordinates in the frames.

The corresponding code is in translateFrames():

 private KeyframeSequence translateFrames()
 {
 KeyframeSequence ks =
 new KeyframeSequence(8, 3, KeyframeSequence.SPLINE);
 /* Use a spline to interpolated between the points, so the
 movement is curved */

 // move clockwise in a circle;
 // each frame is separated by 10 sequence time units
 ks.setKeyframe(0, 0, new float[] { -0.5f, 0.0f, 0.0f });
 ks.setKeyframe(1, 10, new float[] { -0.3536f, 0.0f, 0.3536f });
 ks.setKeyframe(2, 20, new float[] { 0.0f, 0.0f, 0.5f });
 ks.setKeyframe(3, 30, new float[] { 0.3536f, 0.0f, 0.3536f });
 ks.setKeyframe(4, 40, new float[] { 0.5f, 0.0f, 0.0f });
 ks.setKeyframe(5, 50, new float[] { 0.3536f, 0.0f, -0.3536f });
 ks.setKeyframe(6, 60, new float[] { 0.0f, 0.0f, -0.5f });
 ks.setKeyframe(7, 70, new float[] { -0.3536f, 0.0f, -0.3536f });

 ks.setDuration(80); // one cycle takes 80 sequence time units
 ks.setValidRange(0, 7);
 ks.setRepeatMode(KeyframeSequence.LOOP);

 return ks;
 }

Each frame is a coordinate for the penguin, so the information is encoded as an array
of three floats, for the (x,y,z) position.

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

16 Andrew Davison 2004

3.5. Rotation Keyframes
The rotation animation keeps turning the penguin so it always faces the current
forward direction as it moves around the circle. This is illustrated in Figure 14.

Figure 14. Facing Front as the Penguin Moves.

The rotations are clockwise around the positive y-axis, and the penguin will complete
a 360 degree turn by the time it reaches its starting point again.

This behaviour becomes the series of rotations shown in Figure 15, which includes the
frame indices where they will appear.

Figure 15. Rotations for Facing Front.

These become the rotation frame sequence in Figure 16.

Figure 16. Rotation Frame Sequence for the Penguin.

The time period between each frame, the total duration, and the use of looping
matches those for the translation keyframe sequence.

The corresponding code is in rotationFrames():

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

17 Andrew Davison 2004

 private KeyframeSequence rotationFrames()
 {
 KeyframeSequence ks =
 new KeyframeSequence(8, 4, KeyframeSequence.SLERP);
 /* the interpolation is a constant speed rotation */

 // rotate clockwise in a complete loop;
 // each frame is separated by 10 sequence time units
 ks.setKeyframe(0, 0, rotYQuat(0));
 ks.setKeyframe(1, 10, rotYQuat(45));
 ks.setKeyframe(2, 20, rotYQuat(90));
 ks.setKeyframe(3, 30, rotYQuat(135));
 ks.setKeyframe(4, 40, rotYQuat(180));
 ks.setKeyframe(5, 50, rotYQuat(225));
 ks.setKeyframe(6, 60, rotYQuat(270));
 ks.setKeyframe(7, 70, rotYQuat(315));

 ks.setDuration(80); // one cycle takes 80 sequence time units
 ks.setValidRange(0, 7);
 ks.setRepeatMode(KeyframeSequence.LOOP);

 return ks;
 } // end of rotationFrames()

3.6. Rotations Using Quaternions
Rotational animations use quaternions, which are generated by the rotYQuat() method
in rotationFrames().

Before we consider quaternions, it's helpful to look at the more intuitive axis-angle
method for defining a rotation. The rotation is specified in terms of an angle to turn
through about a given axis vector. The axis can be any vector, not just the usual x-, y-,
or z- axes. The axis-angle is specified with 4 variables: a unit vector V made up of x,
y, and z components, and the angle:

axis-angle = [Vx, Vy, Vz, angle]

There's a simple translation from an axis-angle to a corresponding quaternion q,
which also has four elements:

q = [sin(angle/2)*Vx, sin(angle/2)*Vy, sin(angle/2)*Vz, cos(angle/2)]

These four values are often called the i, j, and k coefficients and the scalar component,
reading left-to-right.

As an example, consider a rotation of 90 degrees around the y-axis. The axis-angle for
this rotation is:

axis-angle = [0, 1, 0, 90]

The equivalent quaternion is:

q = [0,
2
2 , 0,

2
2]

since cos(45) = sin(45) =
2
2 .

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

18 Andrew Davison 2004

One question is why bother with quaternions when axis-angles seem to be equivalent,
and easier to understand? One reason is the ease of interpolating between rotations
expressed as quaternions.

A quaternion can be viewed as a point resting on a 4D sphere (if that seems a tad
mind-boggling, then just image a 3D sphere instead). An interpolation between two
quaternions follows the path of the great circle linking the two points. A great circle
in 3D space is the plane cutting through the two points on the sphere's surface and the
center of the sphere. More prosaically, the great circle is the shortest distance between
the points when we travel over the sphere's surface.

This form of interpolation is known as slerping (spherical interpolation), and is
utilized by the sequence defined in rotationFrames() above.

An advantage of slerping is that it maintains a constant angular velocity as the
quaternion is adjusted during interpolation. This makes the rotation smooth, without
sudden changes.

Another benefit of quaternions is that performing successive rotations is simply a
matter of multiplying the quaternions together.

A nice introduction to quaternions, with a gaming slant, can be found at:
http://www.gamasutra.com/features/19980703/quaternions_01.htm

The penguin is only going to rotate around the y-axis, so rotYQuat() can be
specialized. In particular, the quaternion's i and k coefficients (the sin(angle)/2*Vx
and sin(angle/2)*Vz values) will always be 0. The resulting method:

 private float[] rotYQuat(double angle)
 /* Calculate the quaternion for a clockwise rotation of
 angle degrees about the y-axis. */
 {
 double radianAngle = Math.toRadians(angle)/2.0;
 float[] quat = new float[4];
 quat[0] = 0.0f; // i coefficient
 quat[1] = (float) Math.sin(radianAngle); // j coef
 quat[2] = 0.0f; // k coef
 quat[3] = (float) Math.cos(radianAngle); // scalar component
 return quat;
 }

rotYQuat() returns a 4-element float array, which becomes the frame information for
the given rotation angle. The four elements correspond to the quaternion's i, j, and k
coefficients and its scalar component.

3.7. Why Use a transRotGroup Group Node?
The animation tracks target the transRotGroup node rather than the penguin Mesh
node beneath it. Why did I do this since a mesh is a Transformable object, and so
could be the animation target? The reason is to separate the two forms of translation
applied to the mesh. The mesh is being repeatedly translated via animation, but it's
also initially translated and scaled when first placed in the scene:

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

19 Andrew Davison 2004

 Mesh model = makeModel();
 model.setTranslation(0.25f, 0.25f, 0.25f); // so at center
 model.scale(0.5f, 0.5f, 0.5f);

If the translation animation was applied directly to the Mesh object, it would
overwrite the existing translation, and the penguin would rotate with half it's body
invisible, and offset from the center.

The ability to create hierarchies of nodes is an important benefit of the scene graph
mechanism. Transformations carried out on a node apply to all of its descendents as
well, but not to its ancestors higher in the graph.

This can be understood by considering your own arm, with the shoulder, elbow, wrist
and finger joints taking the roles of transformable nodes linked by bone and sinew
into a hierarchy. If you rotate your wrist, it affects your hand and fingers, but not your
elbow and shoulder.

It's no surprise that animated articulated 3D figures use node hierarchies extensively,
as we'll see in the context of M3G when we examine a skinned mesh example in M3G
Chapter 4??.

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

20 Andrew Davison 2004

4. Updating the Application
The animation progresses due to a TimerTask set up in the AnimM3G object. A timer
ticks every PERIOD (50) ms and calls the AnimTimer object (which is a subclass of
TimerTask). It calls the update() method in the AnimCanvas object, which updates the
scene graph's animations and requests a repaint. This sequence is shown in Figure 17.

Figure 17. Updating the AnimM3G Application.

The timer and the AnimTimer inner class are defined in the AnimM3G class.

The update() method in AnimCanvas requires some global variables, and the
animation needs to be initialized:

 // global timing information
 private int appTime = 0;
 private int nextTimeToAnimate;

 public AnimCanvas(AnimM3G top)
 { // other code...
 // start the animation
 nextTimeToAnimate = scene.animate(appTime);
 }

 public void update()
 // called by the TimerTask every PERIOD (50) ms
 { appTime++;
 if (appTime >= nextTimeToAnimate) {
 nextTimeToAnimate = scene.animate(appTime) + appTime;

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

21 Andrew Davison 2004

 repaint();
 }
 }

The only change carried out on the scene graph is to trigger an update of the
translation and rotation animations. This is achieved by calling animate() on the top-
level node, scene. The animation request percolates down through the graph,
eventually reaching the transRotGroup node. The animate() argument is passed to the
AnimationTrack objects linked to the node as the current world time, and the frame
information is updated accordingly.

animate() returns a validity interval, the amount of time before another call to animate
() will have an effect. We use this to reduce the frequency of the animate() calls,
avoiding needless processing.

animate()'s argument acts as the world time, being incremented each time update() is
called, every 50ms. This shows that a world time needn't be a time at all; here it's
really a counter of the number of timer ticks.

5. Rendering the Scene
The repaint request sent to the KVM from update() will eventually trigger a paint()
call. paint() renders the 3D scene, then draws the penguin's coordinates.

 private Graphics3D iG3D; // global

 public AnimCanvas(AnimM3G top)
 { // other code...
 iG3D = Graphics3D.getInstance();
 }

 protected void paint(Graphics g)
 {
 iG3D.bindTarget(g);
 try {
 iG3D.render(scene);
 }
 catch(Exception e)
 { e.printStackTrace(); }
 finally {
 iG3D.releaseTarget();
 }

 // show the model's coordinates
 g.drawString(animModel.getPosition(), 5,5,
 Graphics.TOP|Graphics.LEFT);
 }

The graphics context, g, must be released by the Graphics3D object before MIDP
Canvas operations, such as drawString(), can be utilized.

The call to getPosition() in AnimModel returns a string holding the model's
transRotGroup coordinates, rounded to 2 decimal places.

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

22 Andrew Davison 2004

 // globals for examining the model's position
 private float transMat[] = new float[16];
 private Transform modelTransform = new Transform();
 private float xCoord, yCoord, zCoord;

 public String getPosition()
 {
 transRotGroup.getCompositeTransform(modelTransform);
 modelTransform.get(transMat);

 // store coords rounded to 2 dp
 xCoord = ((int)((transMat[3]+0.005)*100.0f))/100.0f;
 yCoord = ((int)((transMat[7]+0.005)*100.0f))/100.0f;
 zCoord = ((int)((transMat[11]+0.005)*100.0f))/100.0f;

 return "Posn: (" + xCoord + ", " + yCoord + ", " + zCoord + ")";
 }

The call to getCompositeTransform() combines the node's separate Transformable
components – the translation, rotation, scaling and matrix elements – into a single 4
by 4 matrix, which is copied into a one-dimensional transMat[] array. The translation
component is stored in the last column of the composite matrix, as the top three
values:

1000
333231
232221
131211

tzrrr
tyrrr
txrrr

These correspond to the 4th, 8th, and 12th elements of the transMat[] array.

The translation information is only for the transRotGroup node; it doesn't include any
translations carried out by children of the node. For this example, it means that the 0.5
unit translation of the penguin up the y-axis, applied to the Mesh object, is not
included.

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

23 Andrew Davison 2004

6. Making the Penguin
The penguin is a Mesh object, which can be represented graphically as Figure 18.

Figure 18. Parts of a Mesh.

VertexBuffer stores various kinds of coordinate information, and the IndexBuffer
explains how that information should be divided into triangle strips. There may be
multiple IndexBuffers, indicating that the coordinates represent separate submeshes.
Each submesh will have its own Appearance node.

The penguin mesh doesn't use submeshs, employing a single VertexBuffer,
IndexBuffer and Appearance node, as shown in makeModel() from AnimModel.

 private Mesh makeModel()
 {
 VertexBuffer modelVertBuf = makeGeometry();
 IndexBuffer modelIdxBuf =
 new TriangleStripArray(0, getStripLengths());
 Appearance modelApp = makeAppearance(MODEL_TEXTURE);

 Mesh m = new Mesh(modelVertBuf, modelIdxBuf, modelApp);
 return m;
 }

The getStripLengths() method is generated by the ObjView application described in
the previous chapter. ObjView reads in a Wavefront OBJ file and outputs at most six
methods:

• private short[] getVerts()
return an array holding position vertices;

• private byte[] getNormals()
return an array holding normals;

• private short[] getTexCoords()
return an array holding texture coordinates;

• private int[] getStripLengths()
return an array holding the lengths of each triangle strip;

• private Material setMatColours()
sets the material colours and shininess;

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

24 Andrew Davison 2004

• private short[] getColourCoords()
return an array holding colour coordinates.

OBJ files do not support colour coordinates, and so getColourCoords() will never be
generated. The functionality to create the method was included in case ObjView is
extended in the future.

ObjView outputs the methods to a text file, and then the programmer must cut-and-
paste them into his code.

6.1. VertexBuffer Creation
The different forms of information that may be present in a VertexBuffer are
illustrated in Figure 19.

Figure 19. VertexBuffer Elements.

The normals, colours, and texture coordinates are optional, but if they're present then
their arrays must represent the same number of coordinates as are in the positions
array.

Our makeGeometry() method builds a VertexBuffer using positions, normals, and one
array of texture coordinates, obtained from the ObjView-generated getVerts(),
getNormals(), and getTexCoords() methods. makeGeometry() is coded in almost the
same way as the makeGeometry() method described in the last chapter.

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

25 Andrew Davison 2004

6.2. Appearance Creation
The surface appearance of a model can be composed from many components, as
Figure 20 shows.

Figure 20. Appearance Elements.

The two most commonly used components are Material and Texture2D: the Material
node dictates colour and shininess, while a model's texture (or textures) are handled
by Texture2D. Our getAppearance() method uses both, modulating the texture so that
the material's colour and shininess will be present. The code is very similar to the
getAppearance() method of the previous chapter.

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

26 Andrew Davison 2004

7. Making the Floor
The only purpose of the Floor class is to create a Mesh object representing the floor.
The mesh is a square resting on the XZ plane, centered at the origin. The lengths of its
sides are specified by a size variable input via the Floor's constructor.

The simplicity of the geometry means that its VertexBuffer can be constructed
directly, without the need for ObjView to generate methods from an OBJ model. The
floor's vertices are shown in Figure 21, as viewed from above.

Figure 21. Floor Vertices.

The position coordinates must be stored in their VertexArray in a counter-clockwise
order, so the 'front' face of the floor is pointing upwards. The first coordinate can be
anything, but the usual convention is to use the bottom-left one. It's labeled as point 0
in the figure.

The IndexBuffer for the mesh must encode the shape as triangle strips. We can
represent a square by a single triangle strip made of 4 points: {1,2,0,3}. The initial
triangle in the strip, {1,2,0}, is given in anti-clockwise order, so the entire strip will
face upwards.

The floor will not reflect light, so will not require normals (or Material information).

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

27 Andrew Davison 2004

The texture coordinates as shown in Figure 22.

Figure 22. Texture Coordinates for the Floor.

Figure 22 gives the (s,t) texture coordinates for the four points of the floor. In a rather
non-standard way, M3G places the (s,t) origin at the top-left rather than the bottom-
left, so t increases going down the page.

The coordinates should be stored in their VertexArray in counter-clockwise order, so
the texture will face upwards. The first coordinate in the array will be mapped to point
0 in the mesh, and so should be the (0,1) texture coordinate; this corresponds to the
bottom-left of the texture image.

The Floor() constructor builds the Mesh using a makeGeometry() method to create the
VertexBuffer, and makeAppearance() for the appearance.

 private Mesh floorMesh; // global

 public Floor(Image2D floorIm, int size)
 {
 VertexBuffer floorVertBuf = makeGeometry(size);

 int[] indices = {1,2,0,3}; // one quad
 int[] stripLens = {4};
 IndexBuffer floorIdxBuf =
 new TriangleStripArray(indices, stripLens);

 Appearance floorApp = makeAppearance(floorIm);

 floorMesh = new Mesh(floorVertBuf, floorIdxBuf, floorApp);
 } // end of Floor()

makeGeometry() adds positions and texture coordinates to a VertexBuffer:

 private VertexBuffer makeGeometry(int size)
 {
 // create vertices
 short pt = (short)(size/2);
 short npt = (short) (-size/2); // negative pt
 short[] verts = {npt,0,pt, pt,0,pt, pt,0,npt, npt,0,npt};
 VertexArray va = new VertexArray(verts.length/3, 3, 2);

Java Prog. Techniques for Games. M3G Chapter 2. Animated Model Draft #2 (26th Oct 04)

28 Andrew Davison 2004

 va.set(0, verts.length/3, verts);

 // create texture coordinates
 short[] tcs = {0,1, 1,1, 1,0, 0,0};
 VertexArray texArray = new VertexArray(tcs.length/2, 2, 2);
 texArray.set(0, tcs.length/2, tcs);

 VertexBuffer vb = new VertexBuffer();
 vb.setPositions(va, 1.0f, null); // no scale, bias
 vb.setTexCoords(0, texArray, 1.0f, null);

 return vb;
 }

The vertices and texture coordinates are defined according to Figures 21 and 22.

makeAppearance() doesn't need to create a Material node since the floor won't be
reflecting light. However, a PolygonMode object is employed for perspective
correction and switching off culling.

 private Appearance makeAppearance(Image2D floorIm)
 {
 Appearance app = new Appearance();

 if (floorIm != null) {
 Texture2D tex = new Texture2D(floorIm);
 tex.setFiltering(Texture2D.FILTER_NEAREST,
 Texture2D.FILTER_NEAREST);
 tex.setWrapping(Texture2D.WRAP_CLAMP, Texture2D.WRAP_CLAMP);

 app.setTexture(0, tex);
 }

 // add perspective correction, and switch off culling
 PolygonMode floorPolygonMode = new PolygonMode();
 floorPolygonMode.setPerspectiveCorrectionEnable(true);
 floorPolygonMode.setCulling(PolygonMode.CULL_NONE);

 app.setPolygonMode(floorPolygonMode);

 return app;
 } // end of makeAppearance()

The perspective correction request may mean that the texture will be more accurately
drawn as the floor recedes into the distance, but it depends on the underlying
hardware.

The absence of culling will cause the underside of the floor to be displayed (complete
with a reversed floor texture). This adds some inefficiency to the rendering, but is
useful during game development so the position of objects can be judged from
different viewpoints.

