
Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

1 Andrew Davison © 2009

Java Art Chapter 5. Program Sonification

Program sonification (also called auralization) is the transformation of an executing
program into auditory information. I’m not talking about an application playing a
sound clip, but the entire program becoming the clip or piece of music. The
motivation for this unusual transformation is the same as for program visualization –
as a way of better understanding what's happening inside code, to aid with its
debugging and modification.

Music is inherently structured, hierarchical, and time-based, which suggests that it
should be a good representation for structured and hierarchical code, whose execution
is also time-based of course. Music offers many benefits as a notation, being both
memorable and familiar. Even the simplest melody utilizes numerous attributes, such
as sound location, loudness, pitch, sound quality (timbre), duration, rate of change,
and ordering. These attributes can be variously matched to code attributes, such as
data assignment, iteration and selection, and method calls and returns. Moving beyond
a melody into more complex musical forms, lets us match recurring themes,
orchestration, and multiple voices to programming ideas such as recursion, code
reuse, and concurrency.

A drawback of music is the difficulty of representing quantitative information (e.g.
that the integer x has the value 2), although qualitative statements are relatively easy
to express (e.g. that the x value is increasing). One solution is lyrics: spoken (or sung)
words to convey concrete details.

I’ll be implementing program sonification using the tracer ideas discussed in the last
two chapters (i.e. employing the Java Platform Debugger Architecture (JPDA),
specifically its Java Debug Interface (JDI) API). The resulting system is shown in
Figure 1.

Figure 1. Sonification of a Java Application.

When a method is called in the monitored application, a word is spoken (an
abbreviation of the method’s name), when Java keywords are encountered in the code,
musical notes are played, and when the program starts, ends, and when a method
returns, sound clips are heard.

Sound generation is managed by the SoundGen thread, which reads messages from a
queue filled by the tracer. The generator utilizes three sound APIs:

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

2 Andrew Davison © 2009

java.applet.AudioClip for playing clips, the MIDI classes in the Java Sound API for
playing notes, and the FreeTTS speech synthesis system
(http://freetts.sourceforge.net/), which is a partial implementation of the Java Speech
API 1.0 (JSAPI, http://java.sun.com/products/java-media/speech/).

I’ll start this chapter by explaining the three sound subsystems for playing clips,
notes, and speaking. These are of general use outside of sonification; for example, the
Speaker class (implemented with FreeTTS) can be used to pronounce any string,
using a range of different voices.

The tracer code is not much different from that shown in previous chapters, but does
illustrate two new ideas. Firstly, the queue between the tracer and sound generation
thread deals with uneven execution speeds. The tracer generates messages at intervals
of tens of milliseconds, but the generator is constrained to run much more slowly,
waiting for each message to be sounded out before moving onto the next.

Secondly, the code shows the advantages of mixing static and dynamic analysis.
Static analysis allows the Java keywords in the program text to be mapped to musical
notes before the program begins execution (making it less costly to run). However,
dynamic optimization of the message queue is also needed to reduce the amount of
processing at runtime.

Although this chapter focuses on sonification, the implementation details are so
similar to those used in the previous chapter on program visualization that it wouldn't
be difficult to combine the two so that the application could be both visualized and
heard at the same time.

More Information on Sonification
One of the best known sonification systems is CAITLIN
(http://www.auralisation.org), which helps novice Pascal programmers with
debugging. The auralization is based on point-of-interests (POIs), such as if-tests and
loops. Each construct is represented by a musical motif, or a short recurring theme.

JListen auralizes Java program to report on events, which are specified by the
programmer using a rule-based language called LSL
(http://www.cs.purdue.edu/homes/apm/listen.html).

CodeSounding is a Java sonification library
(http://www.codesounding.org/indexeng.html), which can add sound-generation
methods to "if", "for", and other statements.

LYCAY is another Java library for the sonification of code, using a mix of parsing
and execution strategies (http://lycay.sourceforge.net/textLetYourCodePlay.html).

The Wikipedia entry on sonification includes a good set of ‘starter’ references
(http://en.wikipedia.org/wiki/Sonification). The International Community for
Auditory Display (ICAD) is a more technical resource on sonification
(http://www.icad.org/). Links to sonification-related research can be found at
http://www.dcs.gla.ac.uk/~stephen/otherlinks.shtml and
http://computing.unn.ac.uk/staff/cgpv1/caitlin/links.htm.

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

3 Andrew Davison © 2009

1. Playing a Clip
Java’s AudioClip class offers a high-level means of loading and playing audio clips.
It supports a large number of file formats, and multiple AudioClips can be played at
the same time.

A major problem with AudioClip is that it doesn't report when a clip finishes. My
SoundGen thread needs this information so that it can wait until the audio has finished
before playing the next sound. There are several hacky work-arounds, such as calling
sleep() for a period based on the audio file's byte size (which can be obtained via a
File object).

Another issue is the lack of low-level access to the sound data (or the audio device it's
playing on), to permit run-time effects like volume changing, panning between
speakers, and echoing.

The best solution to these problems is to move to the Java Sound API, and utilize the
javax.sound.sampled package for manipulating the audio clips. Unfortunately, this
entails a lot of low-level programming involving sound formats (e.g. ALAW and
ULAW), and an understanding of frame sizes, rates, and buffering. Once this high
plateau of knowledge has been reached, calculating a clip’s duration is a (long) one-
liner:

double durationInSecs = clip.getBufferSize() /
 (clip.getFormat().getFrameSize()*clip.getFormat().getFrameRate());

For readers interested in this approach, I explain the details in an online chapter called
"Chapters 7-10. Sound, Audio Effects, and Music Synthesis" at
http://fivedots.coe.psu.ac.th/~ad/jg/. But in this chapter I'll take a much easier path:
I’ll assume that the user supplies the running time of a clip when requesting that it be
played.

My ClipsPlayer class stores a collection of AudioClip objects in a HashMap whose
keys are their filenames (minus the ".wav" extension).

// globals in the ClipsPlayer class
private final static String SOUND_DIR = "Sounds/";
 // directory holding the clips
private HashMap<String,AudioClip> clipsMap;
 // string is the filename (minus .wav) holding the clip

public ClipsPlayer()
{ clipsMap = new HashMap<String,AudioClip>(); }

When a clip is played, the play() method doesn't return until a specified delay time
has passed.

public boolean play(String name, int delay)
// start playing the clip, and wait for delay ms before returning
{
 if (!clipsMap.containsKey(name))
 addClip(name);

 AudioClip clip = clipsMap.get(name);

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

4 Andrew Davison © 2009

 if (clip == null) {
 System.out.println("No clip found for " + name);
 return false;
 }
 clip.play();
 wait(delay);
 return true;
} // end of play()

private boolean addClip(String name)
// store the AudioClip object for name in the hashmap
{
 AudioClip clip = loadClip(name);
 if (clip != null) {
 clipsMap.put(name, clip);
 System.out.println("Loaded clip for " + name);
 return true;
 }
 return false;
} // end of addClip()

private AudioClip loadClip(String name)
// load name.wav from SOUND_DIR
{
 String fnm = SOUND_DIR + name + ".wav";
 AudioClip clip = null;
 try {
 clip = Applet.newAudioClip(getClass().getResource(fnm));
 }
 catch (Exception e) {
 System.out.println("Could not load " + fnm);
 }
 return clip;
} // end of loadClip()

private void wait(int delay)
{ try {
 Thread.sleep(delay); // in ms
 }
 catch (InterruptedException e)
 { e.printStackTrace(); }
}

ClipsPlayer can be called like so:

ClipsPlayer cp = new ClipsPlayer();
cp.play("windChime", 1930); // a wind chime clip of 1.93 secs
cp.play("keyDrop", 430); // a key dropping clip of 0.43 secs
cp.play("windChime", 1930);

When "windchime.wav" and "keyDrop.wav" are first played, they're loaded into
ClipsPlayer’s HashMap. This will delay their playing slightly, but I'm assuming that
the clips are quite short, and so will be quick to load. Another drawback of the class is
the need to supply a clip’s duration every time it's played. It would be more

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

5 Andrew Davison © 2009

convenient to store it with the AudioClip when it's first loaded, and use that
information each time the clip is played.

2. Playing a Note
The simplest way to play a note is to employ a MIDI synthesizer via the Java Sound
API’s javax.sound.midi package.

A Java program can communicate with a synthesizer by sending it a stream of
messages (as MidiMessage objects). Each message is routed to a particular channel,
which represents a different kind of musical instrument. The idea is shown in greatly
simplified form in Figure 2.

Figure 2. A MIDI Synthesizer.

The javax.sound.midi.MidiSystem class provides access to the MIDI resources on a
machine. A synthesizer is sent MIDI messages via a receiver port, which is obtained
like so:

Synthesizer synthesizer = MidiSystem.getSynthesizer();
synthesizer.open();
Receiver receiver = synthesizer.getReceiver();

MIDI messages can be encoded using three subclasses of MidiMessage:
ShortMessage, SysexMessage, and MetaMessage. The ShortMessage is the most
useful for my needs, since it includes the NOTE_ON and NOTE_OFF messages for
starting and terminating note playing. The MidiChannel class offers noteOn() and
noteOff() methods for building the messages:

void noteOn(int noteNumber, int velocity);
void noteOff(int noteNumber, int velocity);
void noteOff(int noteNumber);

A note number is a MIDI number assigned to a musical note, while velocity is
equivalent to loudness. A note will keep playing after a noteOn() call, until it's

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

6 Andrew Davison © 2009

terminated with noteOff(). The two-argument form of noteOff() affects how quickly
the note fades away.

Playing a note corresponds to sending a NOTE_ON message, letting it play for a
while, and then killing it with a NOTE_OFF message. This can be wrapped up in a
playNote() method (which I’ll be revising a little later on in this chapter):

//globals
private static final int VOLUME = 90; // fixed volume for notes

private Receiver receiver;

public void playNote(int note, int duration, int channel)
// first version; second version given below
{
 ShortMessage msg = new ShortMessage();
 try {
 msg.setMessage(ShortMessage.NOTE_ON, channel, note, VOLUME);
 receiver.send(msg, -1); // -1 means play immediately

 wait(duration);

 // reuse the ShortMessage object
 msg.setMessage(ShortMessage.NOTE_OFF, channel, note, VOLUME);
 receiver.send(msg, -1);
 }
 catch (InvalidMidiDataException e)
 { System.out.println(e); }
} // end of playNote()

private void wait(int duration)
{ try {
 Thread.sleep(duration); // in ms
 }
 catch (InterruptedException e)
 { e.printStackTrace(); }
} // end of wait()

A MIDI message must be sent with a time-stamp. The -1 used above means that the
message should be processed immediately.

The following code fragment plays a round of applause:

for (int i=0; i < 10; i++)
 playNote(39, 1000, 9); // note 39 sent to the drum channel, 9

Channel 9 plays different percussion and audio effects depending on the note numbers
sent to it. Note 39 corresponds to a "hand clap". A complete list of the mappings from
MIDI numbers to drum sounds can be found at
http://www.midi.org/techspecs/gm1sound.php.

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

7 Andrew Davison © 2009

2.1. Note Names and Numbers
It’s a lot easier (at least for programmers with some musical knowledge), to specify a
note using a name derived from the piano keyboard rather than as a MIDI number.

A piano keyboard has a mix of black and white keys, as in Figure 3.

Figure 3. Part of a Piano Keyboard.

Keys are grouped into octaves, each octave consisting of twelve consecutive white
and black keys. The white keys are labeled with the letters 'A' to 'G' and an octave
number. For example, the note C4 is the white key closest to the center of the
keyboard, often referred to as "middle C". The '4' means that the key is in the fourth
octave, counting from the left of the keyboard.

A black key is labeled with the letter of the preceding white key and a sharp (#). For
instance, the black key following C4 is C#4. A note for musicians: for simplicity's
sake, I'll be ignoring flats in this discussion.

Figure 4 shows the keyboard fragment of Figure 3 again, but labeled with note names.
I've assumed that the first white key is C4.

Figure 4. Partial Piano Keyboard with Note Names.

Figure 4 utilizes the C Major scale, where the letters appear in the order C, D, E, F, G,
A, and B.

After B4, the fifth octave begins, starting with C5 and repeating the same sequence as
in the fourth octave. Before C4 is the third octave, which ends with B3.

Having introduced note names, I can now explain their MIDI note numbers. MIDI
notes can range between 0 and 127, extending well beyond the piano’s scope, which
only has 88 standard keys. This means that the note naming scheme gets a little
strange below note 12 (C0), since we have to start talking about octave -1 (e.g. see the
table at http://www.harmony-central.com/MIDI/Doc/table2.html). Additionally, a
maximum value of 127 means that note names only go up to G9; there is no G#9.

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

8 Andrew Davison © 2009

Table 1 shows the mapping of MIDI numbers to notes for the 4th octave.

MIDI Number Note Name

60 C4

61 C#4

62 D4

63 D#4

64 E4

65 F4

66 F#4

67 G4

68 G#4

69 A4

70 A#4

71 B4

Table 1. MIDI Numbers and Note Names.

This table can be used as the basis of the method getKey() which converts a note
name string (e.g. "C4") into a MIDI note number (60):

// globals
/* The note offsets use the "C" major scale, which
 has the order "C D E F G A B", but the offsets are
 stored in the order "A B C D E F G" to simplify their
 lookup. */
private static final int[] cOffsets = {9, 11, 0, 2, 4, 5, 7};
 // A B C D E F G
private static final int C4_KEY = 60;
 // C4 is the "C" in the 4th octave on a piano

private static final int OCTAVE = 12; // note size of an octave

private int getKey(String noteStr)
// Convert a note string (e.g. "C4", "B5#") into a key.
{
 char[] letters = noteStr.toCharArray();
 if (letters.length < 2) {
 System.out.println("Incorrect note syntax; using C4");
 return C4_KEY;
 }

 // look at note letter in letters[0]
 int c_offset = 0;
 if ((letters[0] >= 'A') && (letters[0] <= 'G'))
 c_offset = cOffsets[letters[0] - 'A'];

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

9 Andrew Davison © 2009

 else
 System.out.println("Incorrect letter: " + letters[0] +
 ", using C");
 // look at octave number in letters[1]
 int range = C4_KEY;
 if ((letters[1] >= '0') && (letters[1] <= '9'))
 range = OCTAVE * (letters[1] - '0' + 1); // plus 1 for midi
 else
 System.out.println("Incorrect number: " + letters[1] +
 ", using 4");
 // look at optional sharp in letters[2]
 int sharp = 0;
 if ((letters.length > 2) && (letters[2] == '#'))
 sharp = 1; // a sharp is 1 note higher
 // (represented by the black keys on a piano)
 int key = range + c_offset + sharp;
 // System.out.println("note: " + noteStr + "; key: " + key);

 return key;
} // end of getKey()

The parsing of the string is simpler if I abuse the note name notation by moving the
sharp ‘#’ to the end of the string. Therefore, the user must write "C4#" rather than the
standard C#4.

playNote() can now be revised to accept a note name:

// global
// piano channel used by the synthesizer
private static final int CHANNEL = 0;

public void play(String noteStr, int duration)
// second version; play note string for specified duration
{
 if (receiver == null) {
 System.out.println("No synthesizer to play note: " + noteStr);
 return;
 }

 int note = getKey(noteStr);

 ShortMessage message = new ShortMessage();
 try {
 message.setMessage(ShortMessage.NOTE_ON, CHANNEL, note, VOLUME);
 receiver.send(message, -1);
 wait(duration); // in ms
 message.setMessage(ShortMessage.NOTE_OFF, CHANNEL, note, VOLUME);
 receiver.send(message, -1);
 }
 catch (InvalidMidiDataException e)
 { System.out.println(e); }
} // end of play()

I’ve also hard-wired the code to utilize channel 0, which plays notes as if on a piano.

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

10 Andrew Davison © 2009

2.2. The Rest of the NotesPlayer Class
The NotesPlayer class utilizes getKey() and the final version of playNote(). It also
employs a findReceiver() method to find a named MIDI device and return its receiver
port:

// global
private Receiver receiver;

public NotesPlayer()
{ receiver = findReceiver("Java Sound"); }

private Receiver findReceiver(String name)
// find the receiver MIDI device called name
{
 System.out.println("Searching for device: " + name);
 try {
 MidiDevice.Info[] devices = MidiSystem.getMidiDeviceInfo();
 for(MidiDevice.Info devInfo : devices)
 if (devInfo.getName().startsWith(name)) {
 MidiDevice dev = MidiSystem.getMidiDevice(devInfo);
 if (dev.getMaxReceivers() != 0) {
 System.out.println("Found: " + devInfo.getDescription());
 dev.open();
 System.out.println("Opening the Receiver");
 return dev.getReceiver();
 }
 }
 System.out.println("Device not found");
 }
 catch (MidiUnavailableException e)
 { System.out.println(e); }
 return null;
} // end of findReceiver()

The call to findReceiver() from the NotesPlayer() constructor searches for "Java
Sound" which begins the default name for the synthesizer used by Java.

NotesPlayer also has a method for closing the receiver port at the end of the note
playing:

public void closeDown()
{ if (receiver != null)
 receiver.close();
}

A typical use of NotesPlayer:

NotesPlayer player = new NotesPlayer();
player.play("C4#", 500);
player.play("D4", 1000);
player.play("E4", 1000);
player.closeDown();

Three notes are played, the first for half a second, the others for a second.

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

11 Andrew Davison © 2009

3. Using a Speech Synthesizer
The Java Speech API (JSAPI, http://java.sun.com/products/java-media/speech/)
covers two speech-related technologies: speech recognition, which converts spoken
language into text, and speech synthesis that goes the other way, rendering text into
spoken audio. I only need the latter, so can make use of FreeTTS,
(http://freetts.sourceforge.net/), a fairly complete implementation of the speech
synthesis parts of JSAPI. The main missing feature is JSML processing (the Java
Speech Markup Language), which can be employed to fine-tune pronunciation, stress,
pauses, and other aspects of speaking, to make a computerized voice sound more
natural.

I downloaded the Windows binary version of FreeTTS v.1.2.2, unzipped it, and stored
it in a convenient location (d:\freetts-1.2\ in my case).

Rather confusingly, there’s initially no JSAPI JAR file in the FreeTTS lib\ directory
(d:\freetts-1.2\lib\); it only appears after the user executes jsapi.exe in that directory.

Many FreeTTS programming examples will not work unless the speech.properties file
in d:\freetts-1.2\ is copied either to your home directory or to the JRE’s lib\ directory
(which for me is c:\Program Files\Java\jre1.6.0_03\lib).

More details on these set-up issues can be found at
http://freetts.sourceforge.net/docs/jsapi_setup.html

Having done all this, the easiest way of testing things is to go to d:\freetts-1.2\bin\,
and type:
> java –jar HelloWorld.jar

It uses an US male voice called "kevin16" to say "hello world".

3.1. Adding Voices
FreeTTS’s "kevin16" voice isn’t that great, as the HelloWorld example illustrates.
Fortunately, FreeTTS supports several better US voices, available from the MBROLA
website (http://tcts.fpms.ac.be/synthesis/mbrola.html).

I downloaded four things: the PC/DOS version of the MBROLA software (in
mbr301d.zip), and three voices called us1, us2, and us3. I moved the unzipped
executable, mbrola.exe, to d:\freetts-1.2\mbrola\, along with the three unzipped voice
folders (us1\, us2\, and us3\).

I checked if the voices had been correctly installed by writing a program that lists all
the voices known to FreeTTS. My ListVoices.java application starts by obtaining a
list of the machine's synthesizer engines by querying javax.speech.Central.

private static EngineList getEngines()
// first version – using JSAPI javax.speech.Central
{
 // Don't set any properties so all synthesizers will be returned
 SynthesizerModeDesc emptyDesc = new SynthesizerModeDesc();

 EngineList engineList = null;
 try {
 engineList = Central.availableSynthesizers(emptyDesc);

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

12 Andrew Davison © 2009

 }
 catch (Exception e)
 { System.out.println(e);
 System.exit(1);
 }
 return engineList;
} // end of getEngines()

Central.availableSynthesizers() is called with a description of the required synthesizer
attributes, which in this case can be anything. Other examples of how to use Central
can be found in its online documentation at http://java.sun.com/products/java-
media/speech/forDevelopers/jsapi-doc/.

Central is a JSAPI class, which is implemented using lower-level FreeTTS classes. If
you don’t mind calling these classes directly, then FreeTTS’s installation can be
simplified. In particular, it's no longer necessary to move the speech.properties file to
the JRE lib\ directory.

I rewrote getEngines() as:

private static EngineList getEngines()
// second version – uses FreeTTS FreeTTSEngineCentral
{
 // Don't set any properties so all synthesizers will be returned
 SynthesizerModeDesc emptyDesc = new SynthesizerModeDesc();

 EngineList engineList = null;
 try {
 FreeTTSEngineCentral central = new FreeTTSEngineCentral();
 engineList = central.createEngineList(emptyDesc);
 }
 catch (Exception e)
 { System.out.println(e);
 System.exit(1);
 }
 return engineList;
} // end of getEngines()

The use of the lower-level FreeTTSEngineCentral class means that I don’t need
Central, and so don’t need to move the speech.properties file at FreeTTS installation
time. The documentation for the FreeTTS-specific classes can be found at d:/freetts-
1.2/javadoc/index.html.

Once I have an engines list, the voices they offer can be displayed:

EngineList engineList = getEngines();

// loop over the synthesizers
for (int e = 0; e < engineList.size(); e++) {
 SynthesizerModeDesc desc = (SynthesizerModeDesc) engineList.get(e);

 // loop over all the voices for this synthesizer
 Voice[] voices = desc.getVoices();
 for (Voice voice : voices)
 System.out.println(" " + desc.getEngineName() +
 ": Voice: " + voice.getName() +
 "; Gender: " + genderStr(voice.getGender()));

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

13 Andrew Davison © 2009

}

The gender information is represented by integer constants, so genderStr() changes it
to more useful text:

private static String genderStr(int gender)
{
 switch (gender) {
 case Voice.GENDER_FEMALE: return "female";
 case Voice.GENDER_MALE: return "male";
 case Voice.GENDER_NEUTRAL: return "neutral";
 case Voice.GENDER_DONT_CARE:
 default: return "unknown";
 }
} // end of genderStr()

All this code is wrapped up inside a ListVoices class, which can be compiled and
executed like so:

> set "TTS=d:\freetts-1.2\lib"

> javac -cp "%TTS%\jsapi.jar;%TTS%\freetts.jar;
 %TTS%\freetts-jsapi10.jar;." ListVoices.java

> java -Dmbrola.base=d:\freetts-1.2\mbrola
 -cp "%TTS%\jsapi.jar;%TTS%\freetts.jar;
 %TTS%\freetts-jsapi10.jar;." ListVoices

Not every program requires jsapi.jar, freetts.jar, and freetts-jsapi10.jar, in the
compilation and execution calls, but many do.

If we want to employ the three MBROLA US voices, then the call to java.exe must
include the mbrola.base property (which states the location of the directory holding
the mbrola.exe executable).

In general, its useful to package up these lengthy compilation and execution calls in
DOS batch files, to save on typing.

The output of the call to ListVoices will be something like:

FreeTTS en_US time synthesizer: Voice: alan; Gender: male
FreeTTS en_US general synthesizer: Voice: kevin; Gender: male
FreeTTS en_US general synthesizer: Voice: kevin16; Gender: male
FreeTTS en_US general synthesizer: Voice: mbrola_us1; Gender: female
FreeTTS en_US general synthesizer: Voice: mbrola_us2; Gender: male
FreeTTS en_US general synthesizer: Voice: mbrola_us3; Gender: male

The alan, kevin, and kevin16 voices come with FreeTTS, and the three US voices
from MBROLA. I need a good quality, general voice for speaking words, so will use
mbrola_us1 from now on.

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

14 Andrew Davison © 2009

3.2. Making a Program Speak
I'll introduce the main elements of JSAPI by writing a Speaker class, which reads a
string from the command line and speaks it. An example call to Speaker:

> java -Dmbrola.base=d:\freetts-1.2\mbrola
 -cp "%TTS%\jsapi.jar;%TTS%\freetts.jar;
 %TTS%\freetts-jsapi10.jar;." Speaker "my name is jane"

Speaker is passed "my name is jane", and says it using the US female voice
mbrola_us1.

A speech synthesis application (such as Speaker) typically passes through seven
stages:

1) The desired properties for the synthesizer are collected together in a mode
descriptor. The descriptor might include the name of the synthesizer that we
require, its intended mode of use, and the chosen language.

2) The synthesizer engine is created, using the mode descriptor as a guide.

3) The synthesizer is moved to the ALLOCATED state, which causes it to load
resources.

4) Once in the ALLOCATED state, various tweaks can be applied to the engine,
such as changing its voice.

5) The synthesizer is moved into an ALLOCATION sub-state called RESUMED,
which makes it ready to process text into speech. It's also a good idea to make sure
that its speaking queue, where text is stored waiting for processing, is in the
QUEUE_EMPTY state. This ensures that the supplied text will be processed as
quickly as possible.

6) The text is passed to the engine, which renders it into speech. It’s possible to have
the application wait for the speaking to finish by making it suspend until the
speaking queue is once again empty.

7) The synthesizer is closed down by moving it to the DEALLOCATED state,
making it release its resources.

All these stages are present in the Speaker class, called from main():

public static void main(String[] args)
{
 String msg;
 if (args.length != 1) {
 System.out.println("Usage: Speaker \"sentence to be said\"");
 msg = "You must tell me what to say";
 }
 else
 msg = args[0];

 Speaker speaker = new Speaker();
 speaker.say(msg);
 speaker.closeDown();
} // end of main()

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

15 Andrew Davison © 2009

The Speaker constructor carries out stages 1-5, say() implements stage 6, and
closeDown() performs stage 7.

The Speaker() method:

// globals
private static final String VOICE = "mbrola_us1";
private Synthesizer synthesizer;

public Speaker()
{
 try {
 System.out.println("General Synthesizer using \"" + VOICE +
 "\" voice being initialized...");

 // specify the required synthesizer properties (stage 1)
 SynthesizerModeDesc desc = new SynthesizerModeDesc(
 null, // engine name (don't care)
 "general", // mode name -- general usage
 Locale.US, // locale
 null, // prefer a running synthesizer (don't care)
 null); // voice (none specified yet)

 // create the synthesizer (stage 2)
 FreeTTSEngineCentral central = new FreeTTSEngineCentral();
 // so no need for "speech.properties"
 EngineList list = central.createEngineList(desc);
 if(list.size() > 0) {
 EngineCreate creator = (EngineCreate)list.get(0);
 synthesizer = (Synthesizer)creator.createEngine();
 }

 if (synthesizer == null) {
 System.err.println("Cannot create synthesizer");
 System.exit(1);
 }

 // allocate resources (stage 3)
 synthesizer.allocate();
 synthesizer.waitEngineState(Synthesizer.ALLOCATED);

 // modify synthesizer properties (stage 4)
 SynthesizerProperties synProps =
 synthesizer.getSynthesizerProperties();
 synProps.setVoice(getVoice(VOICE));

 // get synthesizer ready to speak (stage 5)
 synthesizer.resume();

 // wait until the synthesizer is ready to speak
 synthesizer.waitEngineState(Synthesizer.RESUMED);
 synthesizer.waitEngineState(Synthesizer.QUEUE_EMPTY);
 System.out.println("Synthesizer ready");
 }
 catch (Exception e)
 { System.out.println(e);
 System.exit(1);
 }

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

16 Andrew Davison © 2009

} // end of Speaker()

The SynthesizerModeDesc class is used to create a mode descriptor. The null
arguments in its constructor mean that the description doesn't care about the engine
name, running behavior, or voices that the synthesizer offers. The descriptor only
requires that the synthesizer can manage general speech, in American English.

The several calls to Synthesizer.waitEngineState() force the Speech object to wait
until the synthesizer enters a desired state. For example, the call to
Synthesizer.resume() in stage 5 requests that the synthesizer moves into the
RESUMED state. The subsequent waitEngineState() calls waits for that state to be
attained.

Once the synthesizer is in an ALLOCATED state, its behavior can be adjusted using a
SynthesizerProperties object. The code above only sets the voice, but it’s also possible
to change attributes such as the pitch and speaking rate. SynthesizerProperties settings
are considered to be hints, so may have no effect, depending on the synthesizer.

Specifying a Voice
The getVoice() method searches through the voices associated with the synthesizer,
looking for the specified voice. If it's present then its corresponding Voice object is
returned, and subsequently employed by the synthesizer.

private Voice getVoice(String voiceName)
{
 // get the properties for this synthesizer engine
 SynthesizerModeDesc desc =
 (SynthesizerModeDesc) synthesizer.getEngineModeDesc();
 Voice[] voices = desc.getVoices();

 // check if voiceName is a known Voice for this engine
 Voice voice = null;
 for(int i = 0; i < voices.length; i++) {
 if (voices[i].getName().equals(voiceName)) {
 voice = voices[i];
 break;
 }
 }
 if (voice == null) {
 System.err.println("Synthesizer could not find the " +
 voiceName + " voice");
 System.exit(1);
 }
 return voice;
} // end of getVoice()

Speaking a Response
The say() method requests that a message is spoken, and returns when the speech is
finished.

public void say(String msg)

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

17 Andrew Davison © 2009

{
 try {
 synthesizer.speakPlainText(msg, null);
 // add msg to the speaking queue

 // wait for the queue to empty (i.e. until msg has been said)
 synthesizer.waitEngineState(Synthesizer.QUEUE_EMPTY);
 }
 catch (Exception e)
 { System.out.println(e); }
} // end of sayMessage()

The second argument of Synthesizer.speakPlainText() can be assigned a reference to a
SpeakableListener object. The SpeakableListener interface processes SpeakableEvent
events which report on the progress of the spoken output. That level of complexity is
unnecessary here, since the application only needs to wait until the sentence has been
said.

Closing Down the Synthesizer
As the application finishes, it calls Speaker's closeDown() method to terminate the
synthesizer:

public void closeDown()
{
 try {
 synthesizer.cancel(); // cancel any speaking
 synthesizer.deallocate(); // free the engine's resources
 }
 catch (Exception e)
 { System.out.println(e); }
}

Any currently executing speech is cancelled before the resources are deallocated; this
corresponds to stage 7 in the list above.

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

18 Andrew Davison © 2009

4. Back to Sonification
Over the last 15 pages or so, I’ve described three audio ‘building blocks’: the
ClipsPlayer class for playing clips, NotesPlayer which uses a MIDI synthesizer to
generate notes, and Speaker which reads out strings using the FreeTTS
implementation of JSAPI. Now it’s time to return to my Sonification application, first
shown in Figure 1 (and repeated here as Figure 5 to save you having to flick back to
the beginning).

Figure 5. Sonification of a Java Application (Again).

SoundTrace is a tracer employing the Java Debug Interface (JDI) API, while sound
generation is managed by a thread which reads messages from a queue filled by the
tracer. SoundGen utilizes ClipsPlayer, NotesPlayer, and Speaker to generate audio
output.

Figure 6 shows the UML class diagrams for the sonifier, with only public methods
listed for each class.

Figure 6. SoundTrace Class Diagrams

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

19 Andrew Davison © 2009

The three classes at the top left of Figure 6 (SoundTrace, StreamRedirecter, and
SoundEventsMonitor) contain the tracer code.

SoundTrace.java is little more than a renamed SimpleTrace.java from Java Art
Chapter 3. It sets up the command-line launching connection which starts the JVM
and creates a local link with the JVM on the same machine. It passes the application’s
name and input arguments over to the JVM, and employs the StreamRedirecter class
to redirect the JVM’s output and error streams to stdout and stderr. StreamRedirecter
is unchanged from previous chapters.

SoundEventsMonitor is a subset of JDIEventMonitor from Java Art Chapter 3, and
I’ll only describe the parts which are new or differ significantly from before.
SoundEventsMonitor monitors incoming JDI events for a program running in the
JVM. When a method is called, a word is spoken, when keywords in the code are
encountered, musical notes are played, and when the program starts, ends, and when a
method returns, sound clips are played.

SoundEventsMonitor maintains two types of audio information:

1) it uses the MethodWords and MethodWord classes to store the words that will be
spoken when methods are called in the application being traced;

2) it calls AppNotes and FileNotes to analyze the application's code, and all the lines
containing keywords are assigned musical notes. This is a form of static analysis
since the program files are scanned before their code is executed, at class load
time.

Three types of messages are placed onto the blocking queue going to the SoundGen
thread:
 $w <word to be said>
 $n <note to be played>
 $c <wav filename (a clip) to be played> <duration(ms)>

For example:
 $w foo // say the word "foo"
 $n C4 // play the note C4
 $c zap 500 // play zap.wav which lasts for 500ms

SoundGen reads these audio messages, passing them to the relevant audio object
(ClipsPlayer, NotesPlayer, or Speaker).

4.1. Initializing Event Monitoring
The SoundEventsMonitor constructor initializes the AppNotes and MethodWords
objects, and sets up the blocking queue connection to the SoundGen thread.

// globals
private final VirtualMachine vm; // the JVM

// musical data objects
private AppNotes appNotes;
 // stores musical notes representing the application code

private MethodWords methodWords;
 // stores words that will be spoken when methods are called

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

20 Andrew Davison © 2009

// sound generation objects
private BlockingQueue<String> sndQueue; // holds sound messages
private SoundGen soundGen; // processes the sound messages

public SoundEventsMonitor(VirtualMachine jvm)
{
 super("SoundEventsMonitor");
 vm = jvm;

 appNotes = new AppNotes();
 methodWords = new MethodWords();

 // initialize the message queue and the sound generation thread
 sndQueue = new LinkedBlockingQueue<String>();
 soundGen = new SoundGen(sndQueue);
 soundGen.start();

 setEventRequests();
} // end of SoundEventsMonitor()

Four types of program events are requested in setEventRequests().

private void setEventRequests()
{
 EventRequestManager mgr = vm.eventRequestManager();

 // report 'method entries'
 MethodEntryRequest menr = mgr.createMethodEntryRequest();
 for (int i = 0; i < excludes.length; ++i)
 menr.addClassExclusionFilter(excludes[i]);
 menr.setSuspendPolicy(EventRequest.SUSPEND_EVENT_THREAD);
 menr.enable();

 // report 'method exits'
 MethodExitRequest mexr = mgr.createMethodExitRequest();
 for (int i = 0; i < excludes.length; ++i)
 mexr.addClassExclusionFilter(excludes[i]);
 mexr.setSuspendPolicy(EventRequest.SUSPEND_EVENT_THREAD);
 mexr.enable();

 // report 'class loads'
 ClassPrepareRequest cpr = mgr.createClassPrepareRequest();
 for (int i = 0; i < excludes.length; ++i)
 cpr.addClassExclusionFilter(excludes[i]);
 cpr.enable();

 // report 'thread starts'
 ThreadStartRequest tsr = mgr.createThreadStartRequest();
 tsr.enable();
} // end of setEventRequests()

Method entry and exits are monitored so that various sounds can be generated. Class
loads must be observed so that the corresponding Java file can be analyzed by
AppNotes and FileNotes to create musical notes for its keywords. A thread start
triggers code stepping so the correct note can be played when a line is executed.

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

21 Andrew Davison © 2009

4.2. Handling Events
As in JDIEventMonitor in Java Art Chapter 3, SoundEventsMonitor calls
handleEvent() to process an incoming event:

private void handleEvent(Event event)
{
 // method entry/exit events
 if (event instanceof MethodEntryEvent)
 methodEntryEvent((MethodEntryEvent) event);
 else if (event instanceof MethodExitEvent)
 methodExitEvent((MethodExitEvent) event);

 // class load events
 else if (event instanceof ClassPrepareEvent)
 classPrepareEvent((ClassPrepareEvent) event);

 // thread start events
 else if (event instanceof ThreadStartEvent)
 threadStartEvent((ThreadStartEvent) event);

 // step event -- a line of code is about to be executed
 else if (event instanceof StepEvent)
 stepEvent((StepEvent) event);

 // VM events
 else if (event instanceof VMStartEvent)
 vmStartEvent((VMStartEvent) event);
 else if (event instanceof VMDeathEvent)
 vmDeathEvent((VMDeathEvent) event);
 else if (event instanceof VMDisconnectEvent)
 vmDisconnectEvent((VMDisconnectEvent) event);

 else
 throw new Error("Unexpected event type");
} // end of handleEvent()

handleEvent() deals with methods, classes, threads, and step events. The JVM-related
processing in vmStartEvent(), vmDeathEvent(), and vmDisconnectEvent() is
unchanged from JDIEventMonitor.

Entering a Method
Method entry triggers the playing of a clip if the method is main(), and a method word
is spoken.

// global
private MethodWords methodWords;
 // stores the words that will be spoken when methods are called

private void methodEntryEvent(MethodEntryEvent event)
{
 Method meth = event.method();
 String className = meth.declaringType().name();

 System.out.println();

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

22 Andrew Davison © 2009

 if (meth.isConstructor()) // use class name for the constructor
 System.out.println("entered " + className + " constructor");
 else
 System.out.println("entered " + className+"."+meth.name() +"()");

 if (meth.name().equals("main")) // program starting so play clip
 saySound("$c windChime 1930");

 // report method entry by saying a word
 String word = methodWords.getWord(className, meth);
 if (word != null) {
 System.out.println(" saying " + word);
 saySound("$w " + word);
 }
 else
 System.out.println("Could not find method word to say");
} // end of methodEntryEvent()

The clip played when main() starts is a wind chime which lasts for 1.93 seconds. The
word spoken for a method is retrieved from the MethodWords object.

saySound() doesn’t say the sound directly; it puts a message onto the blocking queue
so it can be processed by the SoundGen thread.

// global
private BlockingQueue<String> sndQueue; // holds sound messages

private void saySound(String msg)
{ try {
 sndQueue.put(msg);
 }
 catch(InterruptedException e) {}
}

Leaving a Method
methodExitEvent() is called when all the code in a method has been executed, and the
application is about to return to the calling function. A return from main() (i.e. the
termination of the application) is signaled by playing a clip of a key dropping, while
other returns are represented by a ‘zapping’ sound.

private void methodExitEvent(MethodExitEvent event)
{
 Method meth = event.method();
 String className = meth.declaringType().name();

 if (meth.isConstructor())
 System.out.println("exiting " + className + " constructor");
 else
 System.out.println("exiting " + className + "."
 + meth.name() + "()");

 // report method return/ program exit
 if (meth.name().equals("main")) // program is exiting
 saySound("$c keyDrop 430");
 else // the method is returning

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

23 Andrew Davison © 2009

 saySound("$c zap 500");
 System.out.println();
} // end of methodExitEvent()

Clip playing is only requested in methodEntryEvent() and methodExitEvent(), and so
I’ve hard-wired the details of the clip messages into those methods.

If more clips were used, across more methods, then it would be better to store the clip
details (i.e. the event trigger name, wave filename, and duration) in a separate class,
which could perhaps load it’s information at start-up time.

Loading a Class
classPrepareEvent() is called after a new class has been loaded, which is a good time
to parse the class’s file to build a collection of musical notes, and use the class’s
method names to create the words stored in methodWords.

// globals
private AppNotes appNotes;
private MethodWords methodWords;

private void classPrepareEvent(ClassPrepareEvent event)
{
 ReferenceType ref = event.referenceType();

 List<Field> fields = ref.fields();
 List<Method> methods = ref.methods();
 String className = ref.name();

 String fnm;
 try {
 fnm = ref.sourceName(); // get filename of the class
 appNotes.add(fnm); // create musical notes for code in fnm
 }
 catch (AbsentInformationException e)
 { fnm = "??"; }

 System.out.println("loaded class: " + className + " from " +
 fnm + " - fields=" + fields.size() +
 ", methods=" + methods.size());

 methodWords.addMethods(className, methods);
 // convert method names into words
} // end of classPrepareEvent()

Starting a Thread

When a new thread starts running, the tracer needs to switch on single stepping so it
can monitor which lines are being executed.

private void threadStartEvent(ThreadStartEvent event)
{
 ThreadReference thr = event.thread();

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

24 Andrew Davison © 2009

 if (thr.name().equals("Signal Dispatcher") ||
 thr.name().equals("DestroyJavaVM") ||
 thr.name().startsWith("AWT-")) // AWT threads
 return;

 if (thr.threadGroup().name().equals("system"))
 return; //ignore system threads

 setStepping(thr);
} // end of threadStartEvent()

setStepping() asks the JVM to issue step events, which are sent out just before each
line is executed.

private void setStepping(ThreadReference thr)
{
 EventRequestManager mgr = vm.eventRequestManager();
 StepRequest sr = mgr.createStepRequest(thr, StepRequest.STEP_LINE,
 StepRequest.STEP_INTO);
 sr.setSuspendPolicy(EventRequest.SUSPEND_EVENT_THREAD);
 for (int i = 0; i < excludes.length; ++i)
 sr.addClassExclusionFilter(excludes[i]);
 sr.enable();
} // end of setStepping()

There are a few different kinds of step requests, but the most common is a
combination of STEP_INTO and STEP_LINE which means that every line in every
method will be examined.

Single Stepping Event Handling
After setStepping() has requested single stepping, StepEvents will start to be added to
the event queue, and handleEvent() will process them by calling stepEvent().

An event contains the location of the line that's about to be executed, which includes
the code’s filename and line number. These are passed to the AppNotes object to help
retrieve a note string if that line contains a keyword. If a note is found (e.g. "C4"),
then it’s sent as an "$n" message over to SoundGen.

private void stepEvent(StepEvent event)
{
 Location loc = event.location();
 try { // get the line of code
 String fnm = loc.sourceName(); // get filename of code
 int lineNum = loc.lineNumber();
 String note = appNotes.getNote(fnm, lineNum);

 // play note for the line
 if (note != null) {
 System.out.println(fnm + "." + lineNum + ": play " + note);
 saySound("$n " + note);
 }
 }
 catch (AbsentInformationException e) {}
} // end of stepEvent()

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

25 Andrew Davison © 2009

4.3. Extracting Words from Method Names
The MethodWords class is little more than a wrapper around an ArrayList of
MethodWord objects, along with several methods for adding to and searching through
the list:

// global in MethodWords class
private ArrayList<MethodWord> mWords;
 // stores the words that will be spoken when methods are called

public MethodWords()
{ mWords = new ArrayList<MethodWord>(); }

addMethod() is typical of the class's code. It adds a MethodWord object to the list, if
that object isn’t already there.

public void addMethod(String className, Method meth)
{
 if (getWord(className, meth) != null) // already present
 return; // don't add

 MethodWord mw;
 if (meth.isConstructor()) // use class name for the constructor
 mw = new MethodWord(className, className, this);
 else
 mw = new MethodWord(className, meth.name(), this);
 mWords.add(mw);
} // end of addMethod()

A minor complication of addMethod() (and several other methods in MethodWords)
is the need to map the Method object into a method name. I set the constructor's
method name to be its class name, rather than the "<init>" string returned by
Method.name().

The primary aim of a MethodWord object is to map the class and method names onto
a word, which can be spoken by the FreeTTS speech synthesizer. The tricky part is
that each word must be unique and preferable short.

// globals in MethodWord class
private String className, methodName;
private String wordToSay;

public MethodWord(String cName, String mName, MethodWords mWords)
{
 className = cName;
 methodName = mName;
 wordToSay = buildWord(methodName, mWords);
 System.out.println(className + ":" + methodName +
 "() is represented by the word \"" + wordToSay + "\"");
} // end of MethodWord()

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

26 Andrew Davison © 2009

The trickiness is hidden inside buildWord() which tries a number of different word
creation strategies, testing each one for uniqueness against the existing words in the
MethodWords object, mWords.

private String buildWord(String mName, MethodWords mWords)
{
 if (mName.length() < MIN_LEN)
 // if method name is short, use it as the word to say
 if (mWords.isUnique(mName))
 return mName;

 // shorten method name
 String shortName;
 for (int i= MIN_LEN; i <= mName.length(); i++) {
 shortName = mName.substring(0, i);
 if (mWords.isUnique(shortName))
 return shortName;
 }

 // if we get to here then no substring of mName is unique
 // so add class name to it's front, and try again

 String longName = className + " " + mName;
 for (int i= (className.length()+1)+MIN_LEN;
 i <= longName.length(); i++) {
 shortName = longName.substring(0, i);
 if (mWords.isUnique(shortName))
 return shortName;
 }

 // if we get here then no substring of "className mName" is unique
 // so keep adding a number to mName, until it's unique
 int count = 1;
 String numName = mName + " " + count;
 while (!mWords.isUnique(numName)) {
 count++;
 numName = mName + " " + count;
 }
 return numName;
} // end of buildWord()

buildWords() tries four ways of making a unique word from a method name:

• if the name is short enough then use that unchanged;

• if the name isn’t short enough then try increasingly longer substrings of the
method name;

• if no subsequence of the name is unique then try again with the class name
appended to the front;

• if a class+method name isn't unique then add a digit to the end of the method
name.

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

27 Andrew Davison © 2009

4.4. Converting Files into Musical Notes
The AppNotes and FileNotes classes parse the files involved in the application,
converting the lines containing specified keywords into musical note strings. At run
time, when the tracer executes a line of code, its corresponding note is played (if one
exists).

AppNotes is mostly just a wrapper around a TreeMap of FileNotes objects, and
several methods for adding to and searching through the map:

// global in AppNotes class
private TreeMap<String,FileNotes> filesNotesMap;

public AppNotes()
{ filesNotesMap = new TreeMap<String,FileNotes>(); }

The String used as the map's key is the filename.

add() adds a FileNotes object to the map, if that object isn’t already there.

public void add(String fnm)
{
 if (filesNotesMap.containsKey(fnm)) {
 System.out.println(fnm + "already stored");
 return;
 }
 filesNotesMap.put(fnm, new FileNotes(fnm));
 System.out.println(fnm + " added to files Notes");
} // end of add()

FileNotes does all the real work. It loads a file line-by-line, analyzing each line of
code. Those lines containing a keyword are converted into musical note strings, while
"" is stored for the lines without keywords.

// global in FileNotes class
private ArrayList<String> codeNotes;
 /* each line of the input file is represented by
 a musical note string, or "" */

public FileNotes(String fileName)
{
 codeNotes = new ArrayList<String>();

 int lineNum = 0;
 String line = null;
 BufferedReader in = null;
 String[] words;

 System.out.println("Analyzing " + fileName);
 try {
 in = new BufferedReader(new FileReader(fileName));
 while ((line = in.readLine()) != null) {
 lineNum++;
 words = line.split("\\W+"); // split on word boundaries
 storeNote(words, lineNum);
 }

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

28 Andrew Davison © 2009

 }
 catch (IOException ex) {
 System.out.println("Problem reading " + fileName);
 }
 finally {
 try {
 if (in != null)
 in.close();
 }
 catch (IOException e) {}
 }
} // end of showLines()

A line of input is split into tokens based on word boundaries, and the resulting array is
examined for keywords by storeNote().

If storeNote() finds a keyword in the words array, then a corresponding note is added
to the codeNotes list. If no keyword is found, then "" is stored instead, which ensures
that every program line has an entry in the list.

// globals
private final String[] keywords =
 { "else", "break", "switch", "case", "finally", "catch", "for",
 "if", "try", "continue", "return", "default", "do", "while"
 };

// C D E F G A B in the 4th and 5th octave on a piano
private final String[] notes =
 { "C4", "D4", "E4", "F4", "G4", "A4", "B4",
 "C5", "D5", "E5", "F5", "G5", "A5", "B5"
 };

private void storeNote(String[] words, int lineNum)
{
 for(String word : words)
 for (int i=0; i < keywords.length; i++)
 if (word.equalsIgnoreCase(keywords[i])) {
 codeNotes.add(notes[i]);
 System.out.println(" " + lineNum +
 ": found " + keywords[i]);
 return;
 }
 codeNotes.add(""); // no keyword found
} // end of storeNote()

The correspondence between keywords and notes is encoded by the ordering of the
keywords[] and notes[] arrays. For example, if the "break" keyword is found on a line,
which is the second string in keywords[], then the second note in notes[] ("D4") will
be added to the codeNotes list.

I've restricted myself to control structure keywords, so that the played notes will give
an indication of the control flow in the application. A complete list of Java keywords
can be found at
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html.

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

29 Andrew Davison © 2009

To simplify matters a little, storeNote() stops searching a line as soon as a single
keyword is found. Even when a line has multiple keywords, it will only be
represented by one note in the list.

4.5. Static and Dynamic Analysis
AppNotes and FileNotes carry out a form of static analysis – the text of the
application code is converted into lists of musical notes. This can be carried out at any
time, for example in a separate pre-processing stage before the tracer begins, so it
needn't have any speed impact.

Although static analysis is a great tool, it must often be combined with dynamic
analysis (i.e. analysis performed at run-time), since it's only at run-time that certain
information comes available, such as the user's input, the results of random-number
generation, or the processing order between threads.

The dual use of static and dynamic analysis can be seen in SoundTrace – static
analysis is performed in AppNotes and FileNotes (as we’ve just seen), and dynamic
analysis of audio messages is carried out by SoundGen.

4.6. Generating Sounds
The SoundGen thread monitors a blocking queue which stores audio messages sent to
it from SoundEventMonitor.

Three types of messages arrive on the BlockingQueue, with the formats
$w <word to be said>
$n <note to be played>
$c <wav filename (a clip) to be played> <duration(ms)>

Every 0.5 seconds, SoundGen empties the queue of all the messages currently there,
storing them in a separate list. Optimizations are applied to the list at run-time (i.e.
dynamic analysis), before the messages are converted into either:

• a word spoken using the Speaker class (described in section 3.2)

• a musical note performed by the NotesPlayer class (see section 2)

• a WAV audio clip played with the ClipPlayer class (see section 1).

The SoundGen constructor initializes audio objects:

// globals
// sound processing objects
private Speaker speaker;
private NotesPlayer notesPlayer;
private ClipsPlayer clipsPlayer;

private BlockingQueue<String> queue; // for incoming messages

public SoundGen(BlockingQueue<String> q)
{
 queue = q;

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

30 Andrew Davison © 2009

 // initialize sound playing tools
 speaker = new Speaker();
 notesPlayer = new NotesPlayer();
 clipsPlayer = new ClipsPlayer();
} // end of SoundGen()

The queue emptying, analysis of the resulting list, and message processing is carried
out in the thread’s run() method:

// globals
private static final int DELAY = 500;
 // time delay (in ms) between queue examinations
private BlockingQueue<String> queue; // for incoming messages
private boolean progFinished = false;

public void run()
// periodically drain and process messages
{
 ArrayList<String> msgs = new ArrayList<String>();
 // to store messages removed from the queue
 try {
 while (!progFinished) {
 msgs.clear();
 queue.drainTo(msgs); // the draining may not return anything
 combineMsgs(msgs);
 for(String msg : msgs)
 processMsg(msg);
 wait(DELAY);
 }

 // finish off
 System.out.println("thread exiting");
 speaker.closeDown();
 notesPlayer.closeDown();
 }
 catch (Exception e)
 { System.out.println(e); }
 } // end of run()

private void wait(int duration)
{ try {
 Thread.sleep(duration); // in ms
 }
 catch (InterruptedException e)
 { e.printStackTrace(); }
}

Queue draining occurs every DELAY milliseconds, and the messages are moved over
to a temporary list.

4.7. Analyzing the Messages
There are many ways of analyzing the messages, but SoundGen only looks for
repeats, replacing them with a single message.

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

31 Andrew Davison © 2009

For example, assume there are five C4 note messages in the middle of the list:
..."$s push" "$n C4" "$n C4" "$n C4" "$n C4" "$n C4" "$c zap 500"...

The five messages are reduced to one, with the number of repeats appended to it:
..."$s push" "$n C4 5" "$c zap 500"...

This optimization is carried out frequently because of the way that note messages
denote keywords, including iterative keywords such as "while" and "for". If a loop is
repeatedly executing, then the queue will quickly become lengthy.

There's no reliable way to simplify the repetition information by static analysis since
the number of loop iterations will often depend on run-time values, such as user input;
message reduction must be carried out dynamically.

combineMsgs() looks at each message in the list, and removes any duplicates that
follow it.

private void combineMsgs(ArrayList<String> msgs)
{
 int totalRemoved = 0;
 for(int i=0; i < msgs.size(); i++)
 totalRemoved += removeDups(i, msgs); //msgs list may get smaller
 System.out.println("Total removed: " + totalRemoved);
}

private int removeDups(int i, ArrayList<String> msgs)
/* Remove any duplicates of the message at position i, starting
 from position i+1 in the list. Add the number of repetitions
 to the message. */
{
 String currMsg = msgs.get(i);
 int pos = i+1;

 int numDups = 0;
 while ((pos+numDups) < msgs.size()) {
 if (!currMsg.equals(msgs.get(pos+numDups)))
 break;
 numDups++;
 }

 if (numDups > 0) {
 System.out.println("Removing " + numDups + " duplicates");
 int count = 0;
 while (count != numDups) {
 msgs.remove(pos);
 count++;
 }

 // add no of duplicates to end of current message at i
 msgs.set(i, currMsg + (" " + (numDups+1)));
 }

 return numDups;
} // end of removeDups()

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

32 Andrew Davison © 2009

A basic drawback of this approach is that the optimizations are time-dependent. The
list contents depends on how often the message queue is drained, and this affects the
number of duplicated messages detected and removed..

removeDups() checks if a single message appears multiple times, one after another. A
more complicated optimization would be to search for repeating sequences of
messages. For instance, assume there's a repeating sequence containing a "push", note
playing, and a 'zap' clip:
.."$s push" "$n C4 5" "$c zap 500" "$s push" "$n C4 5" "$c zap 500"..

The repeating three-message sequence could be reduced to something like:
.. "[" "$s push" "$n C4 5" "$c zap 500" "]2" ..

The "[" and "]2" denotes that the sequence inside the brackets appeared twice in the
original list. This requires more complicated pattern matching and parsing, which I
haven't implemented.

4.8. Processing a Message
Processing a message is a three-way branch which converts a message to a spoken
word, a musical note, or a sound clip.

// global
private Speaker speaker;

private void processMsg(String msg)
{
 System.out.println("--> " + msg);
 if (msg.startsWith("$w ")) // speak a word
 speaker.say(msg.substring(3));
 else if (msg.startsWith("$n ")) // play a note
 processNote(msg.substring(3));
 else if (msg.startsWith("$c ")) // play a clip
 processClip(msg.substring(3));
 else
 System.out.println("Could not understand " + msg);
} // end of processMsg()

The string in the "$w" message is passed to the Speaker object to be spoken.

Processing a note involves the pulling apart of the "$n" data, which takes the form
"<note to be played> [< number of repeats >]" (e.g. "C4 2"), where the number of
repeats is optional.

// globals
private static final int NOTE_DURATION = 800;
 // fixed duration for playing a note
private static final int MAX_REPEATS = 3;
 // max multiple for playing repeated notes

private NotesPlayer notesPlayer;

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

33 Andrew Davison © 2009

private void processNote(String msg)
{
 String[] toks = msg.split("\\s+");
 int numTimes = 0;
 if (toks.length == 2) { // there is a number
 try {
 numTimes = Integer.parseInt(toks[1]);
 }
 catch (Exception e)
 { System.out.println("Number is incorrect for " + toks[1]); }
 }

 if (numTimes != 0) { // play a note repeatedly, and more quickly
 if (numTimes > MAX_REPEATS)
 numTimes = MAX_REPEATS;
 for (int i=0; i < numTimes; i++)
 notesPlayer.play(toks[0], NOTE_DURATION/2);
 }
 else // play a single note
 notesPlayer.play(toks[0], NOTE_DURATION);
} // end of processNote()

It's irritating if a note is played too many times in succession. So, I've fixed it that a
note can only be played at most MAX_REPEATS times, and at increased speed (by
halving its duration).

Processing a clip involves a similar sort of parsing as for a note. "$c" data has the
form "<wav filename (a clip) to be played> <duration(ms)> [< number of repeats >
]" (e.g. "zap 500 2"), where the number of repetitions is optional.

// globals
private static final int CLIP_DURATION = 2000;
 // fixed duration for playing a clip

private boolean progFinished = false;
private ClipsPlayer clipsPlayer;

private void processClip(String msg)
{
 String[] toks = msg.split("\\s+");

 if (toks[0].equals("keyDrop"))
 /* denotes end of main() in the tracing program, which means the
 end of tracing, and of sound generation */
 progFinished = true;

 // get duration
 int duration = 0;
 if (toks.length >= 2) { // there is a duration
 try {
 duration = Integer.parseInt(toks[1]);
 }
 catch (Exception e)
 { System.out.println("Duration is incorrect for " + toks[1]); }

Java Prog. Techniques for Games. Java Art Chapter 5. Sonification Draft #1 (4th May 09)

34 Andrew Davison © 2009

 }
 if (duration == 0) // problem with duration, so use a guess
 duration = CLIP_DURATION;

 // get number of times
 int numTimes = 1;
 if (toks.length == 3) { // there is a number
 try {
 numTimes = Integer.parseInt(toks[2]);
 }
 catch (Exception e)
 { System.out.println("Repeats is incorrect for " + toks[2]); }
 }

 // play a clip repeatedly
 for (int i=0; i < numTimes; i++)
 clipsPlayer.play(toks[0], duration);
} // end of processClip()

If a clip's duration is incorrectly parsed, then it's assumed to be 2 seconds long.

When the "keyDrop" clip turns up, it means that the application's main() method is
exiting, and so the global boolean progFinished is set to true. This will cause the
processing loop in run() to terminate, allowing the thread to finish.

