
Java Prog. Techniques for Games. Wallpapering Draft #1 (28th May 2010)

1 Andrew Davison © 2010

Java Art Chapter 0.5. Automatic Wallpapering

This chapter isn’t about home decoration – the measuring and cutting of strips of
wallpaper, the slapping on of paste, the haphazard application to walls. No, I’ll be
talking about changing the image used as a background (desktop) on your computer
screen.

Changing the desktop wallpaper highlights one of Java’s strengths – it’s platform
independence, which paradoxically becomes a weakness when writing applications
that interact with the OS. However, as with many criticisms of Java, Java/OS
integration was a problem in the early days of the language, but a large number of
solutions have appeared in recent years. I’ll be utilizing JNA, which lets Java
dynamically access native OS libraries (https://jna.dev.java.net/). Don’t confuse JNA
with JNI, the Java Native Interface
(http://java.sun.com/javase/6/docs/technotes/guides/jni/), a much older technology.
JNI has the same aims as JNA, but is more difficult to master because of its use of
C/C++ stub functions. JNA allows a programmer to code entirely in Java, employing
interfaces to describe functions and structures in the native library.

I’ll be focusing on Windows XP (and Windows 7), but JNA works on a range of
platforms, including Linux, OSX, and Solaris.

I want my wallpaper application to change the desktop image without the user’s direct
intervention; it should occur whenever the machine is first switched on. This brings
up another tricky aspect of Java/OS integration – how to get the OS to periodically
invoke Java. My answer is to use OS scripting (i.e. a batch file), combined with OS
task scheduling (i.e. a cron job). The scripting language acts as a simple interface
between the OS and Java.

Application Overview

The application, called GoogleWallpaper, is illustrated in Figure 1.

Java Prog. Techniques for Games. Wallpapering Draft #1 (28th May 2010)

2 Andrew Davison © 2010

Figure 1. The Main Stages of the GoogleWallpaper Application.

When the machine is switched on, a batch file starts the GoogleWallpaper Java
application. It reads in a text file of words, such as:

nature
forest
mountain
river
ocean
wilderness
landscape
fields
pasture

GoogleWallpaper randomly selects one of the words, and queries Google’s image
search to obtain URLs of images that match the word. Another Web access (the third
oval in Figure 1) downloads one of the images, scaling and cropping it to match the
computer’s screen dimensions. Updating the desktop image is the last step, and the
only one requiring OS-specific functionality. On Windows, this involves changing its
registry in three places, and requesting a desktop refresh.

Invoking Java
GoogleWallpaper is started by the ChangeWall.bat batch file:

@echo off
echo Executing GoogleWallpaper...
cd /d %~dp0
java -cp "json.jar;jna.jar;platform.jar;." GoogleWallpaper words.txt

Java Prog. Techniques for Games. Wallpapering Draft #1 (28th May 2010)

3 Andrew Davison © 2010

The java.exe call includes classpaths to JSON and JNA jars, which are located in the
same directory as GoogleWallpaper.java, and the name of the image words text file.
The call to cd is also important:
cd /d %~dp0

The “/d” option lets the current drive be changed in addition to the current directory.
The “%~dp0” argument applies the ‘d’ and ‘p’ batch parameter modifiers to the batch
variable %0. %0 returns the batch file’s name, ‘d’ gets its drive, and ‘p’ its path.
These are used by cd to specify a switch to the batch file’s own directory. This may
seem a bit pointless, since a batch file is normally called from its own directory, like
so:
> ChangeWall.bat

However, I'm going to utilize ChangeWall.bat as an OS scheduling task, which will
start in Window’s system directory. The “cd /d %~dp0” changes the current
directory to be the batch’s so that java.exe can find the JAR files, the
GoogleWallpaper class, and words.txt.

Batch parameters, such as ‘d’ and ‘p’, are explained in the XP documentation at
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-
us/percent.mspx?mfr=true.

Scheduling the Batch Script
The easiest way of scheduling a program on Linux is with crontab. Windows offers
similar tools: schtasks, at, and the GUI Task Scheduler. Tasks can be scheduled to run
one time only, on a minute-by-minute basis, at a specific interval (such as hourly,
daily, weekly, or monthly), at system startup, at logon, or whenever the system is idle.

Schtasks has several subcommands, including:

 schtasks /create Used to create scheduled tasks.

 schtasks /change Used to change the properties of existing tasks.

 schtasks /run Used to start a scheduled task immediately.

For example, ChangeWall.bat can be invoked at system start-up with:

schtasks /create /tn "Change Wallpaper"
 /tr c:\scripts\ChangeWall.bat /sc onstart

The task name is “Change Wallpaper”, and the call assumes that ChangeWall.bat is in
c:\scripts\.

Surprisingly, the trickiest aspect of scheduling a script is to make it’s invocation
invisible to the user. By default, the calling of a batch file causes an ugly looking
command window to appear, often flickering into life for only for a second or so.
However, it’s easy to run the file inside a minimized window by creating a shortcut to
it. The shortcut’s properties must be changed so that it’s "run" field specifies ‘run
minimized’. The result is that

Java Prog. Techniques for Games. Wallpapering Draft #1 (28th May 2010)

4 Andrew Davison © 2010

the batch file’s execution will be much less visible, appearing only as a minimized
icon. To make the execution totally invisibly is more work, involving VBS scripting
with wscript.exe.

I avoided all of these hassles by installing a freeware Windows crontab utility called
Z-Cron (http://www.z-cron.com/). This offers a simpler GUI interface than Window’s
“Scheduled Tasks”, and allows a batch file to be run minimized or invisibly. Z-Cron’s
setup screen for ChangeWall.bat is shown in Figure 2.

Figure 2. The Z-Cron Setup for ChangeWall.bat

Starting GoogleWallPaper
Figure 1 shows the five main parts of the GoogleWallPaper application (the ovals
inside the dashed box), which are also evident in its main() method:

// globals
private static final String WALL_FNM = "wallpaper.bmp";
 // the name of the wallpaper file

private static Random rand;
 // for selecting a wallpaper at random

private static double screenWidth, screenHeight;
 // for resizing the wallpaper

public static void main(String args[])
{
 if (args.length == 0) {
 System.err.println("Supply a search words filename");
 System.exit(1);

Java Prog. Techniques for Games. Wallpapering Draft #1 (28th May 2010)

5 Andrew Davison © 2010

 }

 Dimension dim = Toolkit.getDefaultToolkit().getScreenSize();
 screenWidth = dim.getWidth();
 screenHeight = dim.getHeight();

 rand = new Random();

 String searchWord = selectSearchWord(args[0]);
 JSONObject json = imageSearch(searchWord);
 // get search results for the word
 BufferedImage im = selectImage(json);
 // select a result and download its image
 if (im != null) {
 BufferedImage scaleIm = scaleImage(im); // scale
 BufferedImage cropIm = cropImage(scaleIm); // crop

 saveBMP(WALL_FNM, cropIm); // save image in WALL_FNM
 installWallpaper(WALL_FNM);
 // make WALL_FNM the new desktop wallpaper
 }
} // end of main()

The image retrieved by GoogleWallpaper is saved as a BMP file since XP’s desktop
expects that format (Windows 7 also accepts JPEGs).

Using Google Image Search
A image word or phrase is selected at random from a list read in from a text file. This
phrase is used to query Google's image search, getting back a list of image URLs in
JSON format.

The query uses Google's AJAX Search API and its REST-based interface, which is
documented at:
http://code.google.com/apis/ajaxsearch/documentation/reference.html#_intro_fonje.

The image search URL is http://ajax.googleapis.com/ajax/services/search/images,
followed by a mix of URL arguments to direct the search. The construction of the
URL, and the retrieval of the JSON response is handled by the imageSearch() method
inside GoogleWallpaper (the second oval in Figure 1):

private static JSONObject imageSearch(String phrase)
{
 System.out.println("Searching Google Image for \"" +
 phrase + "\"");
 try {
 // Convert spaces to +, etc. to make a valid URL
 String uePhrase = URLEncoder.encode("\"" + phrase + "\"",
 "UTF-8");
 String urlStr =
"http://ajax.googleapis.com/ajax/services/search/images?v=1.0" +
 "&q=" + uePhrase +
 "&rsz=large" + // at most 8 results
 "&imgtype=photo" + // want photos
 "&imgc=color" + // in colour
 "&safe=images" + // Use moderate filtering

Java Prog. Techniques for Games. Wallpapering Draft #1 (28th May 2010)

6 Andrew Davison © 2010

 "&imgsz=l" ; // request large images

 String jsonStr = WebUtils.webGetString(urlStr);
 // get response as a JSON string
 return new JSONObject(jsonStr);
 }
 catch (Exception e)
 { System.out.println(e);
 System.exit(1);
 }
 return null;
} // end of imageSearch()

The URL arguments (the name/value pairs following the '?') are "v" for the search
engine version, and "q" for the URL-encoded query. The image phrase is converted
to URL-encoded form using URLEncoder.encode(), which replaces spaces and
special characters by UTF-8 characters.

WebUtils.webGetString() transmits the query to the service and returns the reply as a
string. WebUtils is my own class, holding a range of useful methods for Web
querying, DOM parsing, and image downloading. I describe it at length in Chapter 33,
“Using Web Service APIs” (http://fivedots.coe.psu.ac.th/~ad/jg/ch33/).

The string returned by Google will usually be lengthy, consisting of multiple JSON
structures (name/value pairs and lists). To be more easily readable, the string is parsed
into a JSON data structure before being returned to main().

Selecting an Image
Google's JSON result format is explained at
http://code.google.com/apis/ajaxsearch/documentation/reference.html#_restUrlBase.
The structure is essentially the following:
{
 "responseData" : {
 "cursor" : {. . .} // the useful stuff is in here
 "results" : [. . .], // and here
 },
 "responseDetails" : null,
 "responseStatus" : 200
}

The "results" list will contain at most eight matches (a limitation imposed by
Google), but the actual total number of matches is stored in "estimatedResultCount"
inside "cursor":
 "cursor": {
 "currentPageIndex": 0,
 "estimatedResultCount": "826000",
 : // more key/value pairs
 }

The tuples and lists can be examined using the org.json get methods
getJSONObject(), getJSONArray(), and getString(), which come from the json.jar
package added to GoogleWallpaper's classpath.

Java Prog. Techniques for Games. Wallpapering Draft #1 (28th May 2010)

7 Andrew Davison © 2010

selectImage() reports the total number of matches (by accessing the
"estimatedResultCount" field), prints the contents headers and URLs of the matches
by calling showResults(), and returns a randomly selected image downloaded from
one of the URLs via tryDownloadingImage():

private static BufferedImage selectImage(JSONObject json)
{
 try {
 System.out.println("\nTotal no. of possible results: " +
 json.getJSONObject("responseData")
 .getJSONObject("cursor")
 .getString("estimatedResultCount") + "\n");

 // list search results and download one of their images
 JSONArray jaResults =
 json.getJSONObject("responseData").getJSONArray("results");
 showResults(jaResults);
 if (jaResults.length() > 0)
 return tryDownloadingImage(jaResults);
 }
 catch (JSONException e)
 { System.out.println(e);
 System.exit(1);
 }

 return null;
} // end of selectImage()

Each matching result consists of many key/value pairs, including the image's title,
dimensions, and its URL. For example:
 "results": [
 {
 "contentNoFormatting": "Anapsos] Rain Forest ferns",
 "height": "768",
 "title": "Polypodium Leucotomos << Resource Site",
 "url": "http://gentlehugs.files.wordpress.com/2009/05/
 rain_forest_tropic.jpg",
 "width": "1024"
 : // more key/value pairs
 },
 : // more results tuples {. . .}
]

showResults() cycles through each result, printing its contents title and URL:

private static void showResults(JSONArray jaResults)
 throws JSONException
{ for (int i = 0; i < jaResults.length(); i++) {
 System.out.print((i+1) + ". ");
 JSONObject j = jaResults.getJSONObject(i);
 String content = j.getString("contentNoFormatting");
 String cleanContent = content.replaceAll("[^a-zA-Z0-9]", " ").
 replaceAll("\\s+", " ").
 trim();
 // replace non-alphanumerics with spaces; remove multiple spaces
 System.out.println("Content: " + cleanContent);
 System.out.println(" URL: "+ j.getString("url") + "\n");

Java Prog. Techniques for Games. Wallpapering Draft #1 (28th May 2010)

8 Andrew Davison © 2010

 }
} // end of showResults()

Some typical output is:

Total no. of possible results: 8290

1. Content: Gerhard Richter Seascape
 URL: http://palad1n.com/images/seascape.jpg

2. Content: Hawaiian Seascape on Golden
 URL: http://wallpapers-
diq.com/wallpapers/42/Hawaiian_Seascape_on_Golden_
Sunset,_Hawaii.jpg

3. Content: Fermin Seascape San
 URL:
http://www.zastavki.com/pictures/1024x768/2008/World_USA_Point_Fermi
n_Seascape___San_Pedro___California___USA_008938_.jpg
 :

tryDownloadingImage() download an image from a URL chosen at random from the
results list. This is complicated by the possibility that the URL is unavailable.

// global
private static final int MAX_TRIES = 5;
 // max number of times to try download an image

private static BufferedImage tryDownloadingImage(JSONArray jaResults)
 throws JSONException
{ BufferedImage im = null;
 for(int i=0; i < MAX_TRIES; i++) {
 int idx = rand.nextInt(jaResults.length());
 // select an image index at random
 System.out.println("Randomly selected no. " + (idx+1));
 String imUrlStr = jaResults.getJSONObject(idx).getString("url");
 // get its URL
 im = getURLImage(imUrlStr); // download the URL (maybe)
 if (im != null)
 return im;
 }

 // should not get here unless there's a problem
 System.out.println("No suitable image found");
 return im;
} // end of tryDownloadingImage

If a URL is unavailable, tryDownloadingImage() makes another random choice, and
there’s a slim chance that it will try to download the same URL again. However, the
code has up to MAX_TRIES attempts to find a good link, so I haven’t complicated
the algorithm by forcing each choice to be unique.

getURLImage() uses Java’s URL and ImageIO classes to return the URL’s data as a
BufferedImage:

Java Prog. Techniques for Games. Wallpapering Draft #1 (28th May 2010)

9 Andrew Davison © 2010

private static BufferedImage getURLImage(String urlStr)
{
 System.out.println("Downloading image at:\n\t" + urlStr);
 BufferedImage image = null;
 try {
 image = ImageIO.read(new URL(urlStr));
 }
 catch (IOException e)
 { System.out.println("Problem downloading"); }

 return image;
} // end of getURLImage()

Knocking the Image into Shape
The image returned by selectImage() will almost certainly not be the correct size and
shape for the computer’s screen, so GoogleWallpaper carries out a two-stage shape
adjustment – scaling followed by cropping (see Figure 3).

Figure 3. Scaling and Cropping the Image for the Screen.

The same scaling is applied to the image's width and height, to preserve its
proportions. The scaling value is arrived at by calculating two scaling ratios for the
screen/image widths and heights. In Figure 3, the screen/image width ratio is about 3,
while the screen/image height ratio is around 2. The larger of the two ratios is chosen
as the scaling factor. This is implemented by the scaleImage() method:

// globals
private static double screenWidth, screenHeight;

Java Prog. Techniques for Games. Wallpapering Draft #1 (28th May 2010)

10 Andrew Davison © 2010

private static BufferedImage scaleImage(BufferedImage im)
{
 int imWidth = im.getWidth();
 int imHeight = im.getHeight();

 // calculate screen-dimension/image-dimension for width and height
 double widthRatio = screenWidth/(double)imWidth;
 double heightRatio = screenHeight/(double)imHeight;

 double scale = (widthRatio > heightRatio) ?
 widthRatio : heightRatio;
 // scale is the largest screen-dimension/image-dimension
 // calculate new image dimensions
 int scWidth = (int)(imWidth*scale);
 int scHeight = (int)(imHeight*scale);

 // resize the image
 BufferedImage scaledImage = new BufferedImage(scWidth, scHeight,
 BufferedImage.TYPE_INT_RGB);
 Graphics2D g2d = scaledImage.createGraphics();
 AffineTransform at =
 AffineTransform.getScaleInstance(scale, scale);
 g2d.setRenderingHint(RenderingHints.KEY_INTERPOLATION,
 RenderingHints.VALUE_INTERPOLATION_BICUBIC);
 g2d.drawImage(im, at, null);
 g2d.dispose();

 return scaledImage;
} // end of scaleImage()

scaleImage() calculates the screen/image width and height ratios, and stores the larger
value in the scale variable. This is used to calculate the dimensions of a new
BufferedImage, and the downloaded image is rendered into it; interpolation is used to
smooth the resizing.

The result is an image which is the same size as the screen in one dimension (e.g.
across its width in Figure 3), and bigger than the screen along the other (the height in
Figure 3).

Cropping is now a matter of finding out which one of the two dimensions (width or
height) is bigger than the screen, and removing the excess. The editing is done to both
ends of the dimension (e.g. to the top and bottom of the excess height in Figure 3) to
ensure that the image’s center stays in the center of the screen. cropImage()
implements this technique:

private static BufferedImage cropImage(BufferedImage scIm)
{
 int imWidth = scIm.getWidth();
 int imHeight = scIm.getHeight();

 BufferedImage croppedImage;
 if (imWidth > screenWidth) { // image width > screen width
 // System.out.println("Cropping the width");
 croppedImage = new BufferedImage((int)screenWidth, imHeight,
 BufferedImage.TYPE_INT_RGB);
 Graphics2D g2d = croppedImage.createGraphics();

Java Prog. Techniques for Games. Wallpapering Draft #1 (28th May 2010)

11 Andrew Davison © 2010

 g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 int x = ((int)screenWidth - imWidth)/2;
 // crop so image center remains in the center
 g2d.drawImage(scIm, x, 0, null);
 g2d.dispose();
 }
 else if (imHeight > screenHeight) { //image height > screen height
 // System.out.println("Cropping the height");
 croppedImage = new BufferedImage(imWidth, (int)screenHeight,
 BufferedImage.TYPE_INT_RGB);
 Graphics2D g2d = croppedImage.createGraphics();
 g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 int y = ((int)screenHeight - imHeight)/2;
 // crop so image center remains in the center
 g2d.drawImage(scIm, 0, y, null);
 g2d.dispose();
 }
 else // do nothing
 croppedImage = scIm;

 return croppedImage;
} // end of cropImage()

Another new BufferedImage object is created, and the current image drawn into it
using carefully chosen top-left (x, y) coordinates to make sure the image remains
centered.

The functionality in scaleImage() and cropImage() could be combined, thereby
reducing the amount of image copying, but the method separation makes the code
easier to understand.

Updating the Desktop Wallpaper
Wallpaper installation requires three changes to the Windows registry, and a desktop
refresh. The basic idea (using Visual C# and VB) is explained in "Setting Wallpaper"
by Sean Campbell at
http://blogs.msdn.com/coding4fun/archive/2006/10/31/912569.aspx. Another useful
example, written in C and Japanese, can be found at
http://www9.plala.or.jp/NAT/program/sw/c/changeWallPaper.c.

Modifying the Registry
The three relevant Windows registry keys are below the
HKEY_CURRENT_USER\Control Panel\Desktop branch:

 Wallpaper Its value should be set to the path to bitmap file.

 WallpaperStyle Its value should be set to 0 so the image will not be stretched.

 TileWallpaper Its value should be 0 to indicate no image tiling.

When WallpaperStyle and TileWallpaper are both 0, the wallpaper will be displayed
in the center of the screen.

Java Prog. Techniques for Games. Wallpapering Draft #1 (28th May 2010)

12 Andrew Davison © 2010

HKEY_CURRENT_USER\Control Panel\Desktop is home to a large number of
important desktop-related keys, which are detailed at
http://www.virtualplastic.net/html/desk_reg.html.

There’s numerous ways of manipulating the Windows registry via Java. For example,
by calling the Windows reg command via Runtime.getRuntime().exec() (e.g. see
http://www.rgagnon.com/javadetails/java-0480.html and
http://stackoverflow.com/questions/62289/read-write-to-windows-registry-using-
java), or by using libraries such as jRegistryKey
(http://sourceforge.net/projects/jregistrykey/) and JNIRegistry
(http://www.trustice.com/java/jnireg/). I decided to use JNA (Java Native Access;
https://jna.dev.java.net/) because it not only offers a simplified registry interface, but
can also access other native shared libraries (i.e. any DLL in Windows), which I need
for refreshing the desktop after modifying the registry.

Windows’ registry API is quite extensive, and a list of its functions can be found at
the MSDN library page http://msdn.microsoft.com/en-
us/library/ms724875(v=VS.85).aspx. Essentially a key must be opened, its value set,
with RegSetKeyValue(), and then the key closed. The DLL holding these functions,
Advapi32.dll, can be easily accessed through JNA, but JNA also offers an
Advapi32Util class which simplifies many operations.

JNA comes as a single jna.jar file, but the Windows-specific Advapi32Util class also
requires the platform.jar file (both available at https://jna.dev.java.net/). I placed these
in the same directory as GoogleWallpaper, and added them to its classpath:

java -cp "json.jar;jna.jar;platform.jar;." GoogleWallpaper words.txt

The Advapi32Util class is located in the Platform-specific package
com.sun.jna.platform.win32, which is documented at
https://jna.dev.java.net/javadoc/platform/com/sun/jna/platform/win32/package-
summary.html. Advapi32Util contains about 20 registry-related methods.

GoogleWallpaper’s installWallpaper() method uses the registry set methods:

private static void installWallpaper(String fnm)
{
 try {
 String fullFnm = new File(".").getCanonicalPath() + "\\" + fnm;

 Advapi32Util.registrySetStringValue(WinReg.HKEY_CURRENT_USER,
 "Control Panel\\Desktop",
 "Wallpaper", fullFnm);
 Advapi32Util.registrySetIntValue(WinReg.HKEY_CURRENT_USER,
 "Control Panel\\Desktop",
 "WallpaperStyle", 0); // no stretching
 Advapi32Util.registrySetIntValue(WinReg.HKEY_CURRENT_USER,
 "Control Panel\\Desktop",
 "TileWallpaper", 0); // no tiling

 // Refresh the desktop: explained below . . .
 // :
 }
 catch(IOException e)

Java Prog. Techniques for Games. Wallpapering Draft #1 (28th May 2010)

13 Andrew Davison © 2010

 { System.out.println("Could not find directory path"); }
} // end of installWallpaper()

The Advapi32Util methods hide registry key opening and closing, and support string
and integer value arguments.

Refreshing the Desktop
After the registry changes, it's still necessary to refresh the desktop by updating its
configuration information. This can be achieved by calling SystemParametersInfo()
from the User32 DLL. SystemParametersInfo() is a rather complex function since it
can be used to modify a wide range of different features, including the desktop, icons,
menus, power settings, the screen saver, time-outs, and GUI effects. It is documented
in the MSDN library at http://msdn.microsoft.com/en-
us/library/ms724947(VS.85).aspx.

The relevant parameter for refreshing the wallpaper is SPI_SETDESKWALLPAPER.
In that use-case, SystemParametersInfo() also requires the location of the bitmap file
and profile bit values SPIF_UPDATEINIFILE and SPIF_SENDWININICHANGE
(or SPIF_SENDCHANGE). SPIF_UPDATEINIFILE causes the user profile to be
updated, and SPIF_SENDWININICHANGE broadcasts a WM_SETTINGCHANGE
message to all the top-level windows to notify them of that change.

The Microsoft article “How to Use SystemParametersInfo API for Control Panel
Settings” (http://support.microsoft.com/kb/97142) kindly supplies an example of this
version of SystemParametersInfo(). In Visual Basic, the function definition is:

Const SPI_SETDESKWALLPAPER = 20
Const SPIF_UPDATEINIFILE = &H1
Const SPIF_SENDWININICHANGE = &H2

Declare Function SystemParametersInfo Lib "User" (
 ByVal uAction As Integer,
 ByVal uparam As Integer,
 ByVal lpvParam As String,
 ByVal fuWinIni As Integer) As Integer

This doesn’t quite match the SystemParametersInfo() documentation at
http://msdn.microsoft.com/en-us/library/ms724947(VS.85).aspx which specifies the
library as User32.dll and the return type as BOOL (i.e. a boolean).

The function is called like so in VB:

filenm$ = "C:\Windows\rivets.bmp"
result% = SystemParametersInfo(
 SPI_SETDESKWALLPAPER, 0&, filenm$,
 SPIF_UPDATEINIFILE Or SPIF_SENDWININICHANGE)

The second argument of SystemParametersInfo() isn't needed when adjusting the
wallpaper, so is set to zero.

JNA includes many pre-defined Java bindings for User32 functions in its Platform-
specific package com.sun.jna.platform.win32, as documented at

Java Prog. Techniques for Games. Wallpapering Draft #1 (28th May 2010)

14 Andrew Davison © 2010

https://jna.dev.java.net/javadoc/platform/com/sun/jna/platform/win32/package-
summary.html. The bad news is that SystemParametersInfo() isn’t one of them.

I need to create an interface based on JNA's StdCallLibrary class which defines the
User32 DLL and the function(s) that I want. There’s no need for any C/C++ stub
code, and the mapping from Win32 data structures to Java types is quite intuitive.

My MyUser32 interface defines User32.SystemParametersInfo():

private interface MyUser32 extends StdCallLibrary
{
 MyUser32 INSTANCE =
 (MyUser32) Native.loadLibrary("user32", MyUser32.class);

 boolean SystemParametersInfoA(int uiAction, int uiParam,
 String fnm, int fWinIni);
} // end of MyUser32 interface

MyUser32 loads the User32.dll, and utilizes the SystemParametersInfoA() function.
Note the “A” at the end of the function name, which isn't a typo.

When I first wrote MyUser32, I naturally tried to call SystemParametersInfo() (no
'A'). The result was an UnsatisfiedLinkError raised by JNA at runtime. I quickly
turned to “DLL Export Viewer” (http://www.nirsoft.net), a freeware utility that can
list all the exported functions from a DLL. The relevant output for User32.dll is
shown in Figure 4.

Figure 4. Exported Functions from User32.dll.

There’s no SystemParametersInfo() function in User32.dll; instead there’s
SystemParametersInfoA() and SystemParametersInfoW(), which are ANSI and
Unicode string versions of the function. I don’t need Unicode support, and so
MyUser32 now employs SystemParametersInfoA().

Java Prog. Techniques for Games. Wallpapering Draft #1 (28th May 2010)

15 Andrew Davison © 2010

In GoogleWallpaper's installWallpaper(), SystemParametersInfoA() is called in a very
similar way to the VB example from above:

private static void installWallpaper(String fnm)
{
 try {
 String fullFnm = new File(".").getCanonicalPath() + "\\" + fnm;

 // registry setting code; described above . . .

 // refresh the desktop
 int SPI_SETDESKWALLPAPER = 0x14; // 20 in decimal
 int SPIF_UPDATEINIFILE = 0x01;
 int SPIF_SENDWININICHANGE = 0x02;

 boolean result = MyUser32.INSTANCE.SystemParametersInfoA(
 SPI_SETDESKWALLPAPER, 0, fullFnm,
 SPIF_UPDATEINIFILE | SPIF_SENDWININICHANGE);
 System.out.println("Refresh desktop result: " + result);
 }
 catch(IOException e)
 { System.out.println("Could not find directory path"); }
} // end of installWallpaper()

If the desktop is updated successfully then the result boolean will be set to true. More
obviously, the desktop will start displaying a new picture.

More on JNA
The JNA website contains a very readable "Getting Started" guide
(https://jna.dev.java.net/), and there are a number of good online articles with plenty
of examples:

 "Open source Java projects: Java Native Access" by Jeff Friesen,
http://www.javaworld.com/javaworld/jw-02-2008/jw-02-opensourcejava-jna.html

 "More JNA Examples' by Jeff Friesen, http://javajeff.mb.ca/cgi-
bin/mp.cgi?/java/javase/articles/mjnae. A PDF version is available at
http://javajeff.mb.ca/java/javase/ebooks/mjnae/mjnae.pdf

 "Protect Your Legacy Code Investment with JNA" by Stephen B. Morris,
http://today.java.net/pub/a/today/2009/05/19/protect-your-legacy-code-jna.html

 "Simplify Native Code Access with JNA" by Sanjay Dasgupta,
http://today.java.net/article/2009/11/11/simplify-native-code-access-jna

Wallpapering Problems
I’ve tested GoogleWallpaper on several Windows XP and Windows 7 machines, but
there’s still a chance that it may not work for some users. A good way of determining
whether its my code or the OS that’s at fault is to try to manually change the desktop
wallpaper.

On Windows XP, the wallpaper can be altered by the user right-clicking on the
desktop and selecting the Properties menu item, which will bring up the “Display

Java Prog. Techniques for Games. Wallpapering Draft #1 (28th May 2010)

16 Andrew Davison © 2010

Properties” window. The Desktop tab should be chosen, and its Browse button used to
find a BMP file to act as wallpaper. Unfortunately, there’s several things that might
go wrong:

1. The Desktop Tab may be missing from the “Display Properties” window. A fix
can be found at
http://www.theeldergeek.com/desktop_tab_missing_from_display.htm

2. All the options may be disabled on the Desktop tab, making it impossible to
choose a wallpaper file. One solution is offered at
http://malektips.com/windows_xp_display_desktop_0002.html. This may cause
Window’s Active Desktop to be enabled, which needs to be turned off (see the
next point).

3. Active Desktop is enabled (as shown by a quick look at the desktop), preventing a
file being assigned as the wallpaper. Go to the Desktop tab, and click on the
“Customize Desktop” button. In the resulting “Desktop Items” window, select the
Web tab, and uncheck all its entries.

4. Active Desktop is active, but there's no Web tab to switch it off. To add the tab
back to the window, follow the steps at http://www.winxptutor.com/webtab.htm.

On Windows 7, the manual changing of the wallpaper is almost the same as on XP:
right-click on the desktop, selecting the Personalize menu item. In the resulting
window, click on the “Desktop Background” button. Press the Browse button, and
supply either a JPEG or BMP file; hit “Save changes”. Several things may go wrong:

1. The number one problem with manual wallpapering in Windows 7 is the Starter
edition of the OS, which disables wallpaper adjustment. There’s no Personalize
menu item, and the \\HKEY_CURRENT_USER\Control
Panel\Desktop\Wallpaper key is hard-coded to point to
%windir%\web\wallpaper\windows\img0.jpg. Even if that filename is reused to
hold a different picture, Windows checks its contents at startup time, and will
display a black background if it’s been changed.

The simplest solution is to upgrade to a more fully featured version of Windows.
If that isn’t possible then there are complicated registry fixes that can get around
the restrictions, as detailed at
http://www.withinwindows.com/2009/03/31/correction-starter-wallpaper-more-
secure-than-i-thought/comment-page-2/#comment-5295 (in particular, the posts
by srg84 and Gabe).

2. The manual changing of the wallpaper may seem to be progressing smoothly, but
no changes appear on-screen after “Save changes” is pressed. One fix is to use
regedit to examine the
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Policie
s\system branch, and delete its Wallpaper and WallpaperStyle keys.

3. It may only be possible to change the background image to a solid color. This can
be remedied by deleting the file
%USERPROFILE%\AppData\Roaming\Microsoft\Windows\Themes\Transcoded
Wallpaper.jpg (%USERPROFILE% is usually c:\users\YourUsername\).

