
Java Prog. Techniques for Games. J2ME Chapter 1. Scrollable Messages Draft #1 (22nd Aug. 05)

1  Andrew Davison 2005

J2ME Chapter 1. Scrollable Messages

The ScrollMBDemo MIDlet is a test rig for a CustomItem subclass called
ScrollableMessagesBox. ScrollableMessagesBox displays a list of messages, and
allows the user to scroll up and down through them. Since the messages box is a
CustomItem, it can be easily integrated into forms alongside other items.

Figure 1 shows ScrollMBDemo in action.

Figure 1. ScrollMBDemo with Some Messages.

The user types a message into the "Enter:" textfield at the top of the form, presses the
"Send" command, and the message is added to the messages box. The messages are
automatically numbered, starting from 1.

Once the box has filled up, the messages start scrolling upwards, so the latest
messages remain visible (see Figure 2).

Figure 2. ScrollMBDemo with Many Messages.

Java Prog. Techniques for Games. J2ME Chapter 1. Scrollable Messages Draft #1 (22nd Aug. 05)

2  Andrew Davison 2005

Two commands, "Up" and "Down", appear in the commands menu when the user tabs
into the messages box. The commands permit the user to scroll up and down through
the messages list. Scrolling is also possible by pressing the up and down keys (which
are mapped to the '2' and '8' keys in Sun's WTK). Fast scrolling is available by
holding down the up and down keys.

Figure 3 shows the messages list from Figure 2 after the user has scrolled up to the
beginning of the list.

Figure 3. Scrolling upwards in ScrollMBDemo.

The box only stores a limited number of messages (roughly 1.5 times the number of
lines that can be drawn in the box). When this limit is reached, older messages are
discarded to make room for new ones. This is why message number 4 is labeled with
"(first)" in Figure 3: the older messages (1-3) have been deleted.

When scrolling is available in the up direction, an arrow is drawn at the top of the
scrollbar on the right of the box (see Figure 2). Scrolling upwards is disabled when
the first message is displayed at the top of the box. The arrow changes to a circle (as
in Figure 3), and the "Up" command is removed from the commands menu.

When downwards scrolling is enabled, an arrow appears at the bottom of the scrollbar
(as in Figure 3). Scrolling downwards is switched off when the current message is
positioned at the very top of the box. The downwards arrow is replaced by a circle,
and the "Down" command is removed from the commands menu.

A drawback of ScrollableMessagesBox is that scrolling is controlled by commands
and keys only; it’s not possible to click on an arrow, or drag in the bar, to trigger text
movement.

The ScrollableMessagesBox class is used in several of our J2ME network examples,
as a convenient way of displaying the lengthy communication between a user and
other participants in the system. [Note: these examples are not yet available online
(August 2005). Sorry.]

ScrollableMessagesBox is also a reasonably-sized example of how to utilize
CustomItem. It illustrates how to specify an item's size, draw to its canvas, catch key
presses, and respond to item-specific commands. Two aspects of CustomItem which

Java Prog. Techniques for Games. J2ME Chapter 1. Scrollable Messages Draft #1 (22nd Aug. 05)

3  Andrew Davison 2005

aren't present are off-screen editing and traversal, but I'll talk about those briefly at the
end of the chapter.

1. Class Diagrams for ScrollMBDemo
Figure 4 shows the class diagrams for the ScrollMBDemo application. The class
names and public/protected methods are shown.

Figure 4. Class Diagrams for ScrollMBDemo.

The ScrollMBDemo MIDlet sets up a form containing a textfield for entering
messages and a ScrollableMessagesBox for displaying them. KeyRepeatTask
provides key repetition to speed up scrolling. KeyRepeatTask is unnecessary if the
platform natively supports key repetition, an issue I'll discuss in section 3.5.

2. Testing ScrollableMessagesBox
ScrollMBDemo is a test harness for ScrollableMessagesBox's functionality. It starts
by creating a textfield and a ScrollableMessagesBox instance, scroller:

// globals
private Display display;

Java Prog. Techniques for Games. J2ME Chapter 1. Scrollable Messages Draft #1 (22nd Aug. 05)

4  Andrew Davison 2005

private Form form;
private TextField msgTF;
private ScrollableMessagesBox scroller;
private Command exitCmd, sendCmd;

public ScrollMBDemo()
{
 form = new Form("Scrollable Messages Box Example");

 // get the form's dimensions
 int width = form.getWidth();
 int height = form.getHeight();

 msgTF = new TextField("Enter:", null, 15, 0);
 int msgTFHeight = msgTF.getPreferredHeight();
 // height of textfield

 scroller = new ScrollableMessagesBox("Messages:",
 width, height-msgTFHeight-20);
 // 20 is for the "Messages:" title and a bit of space

 form.append(msgTF);
 form.append(scroller);

 exitCmd = new Command("Exit", Command.EXIT, 1);
 sendCmd = new Command("Send", Command.SCREEN, 1);
 form.addCommand(exitCmd);
 form.addCommand(sendCmd);

 form.setCommandListener(this);
} // end of ScrollMBDemo()

The only unusual aspect of ScollMBDemo() is the calculation of the
ScrollableMessagesBox's width and height, which are passed to its constructor:

scroller = new ScrollableMessagesBox("Messages:",
 width, height-msgTFHeight-20);

The width and height values are from the form, and msgTFHeight is the height of the
textfield. The '20' is a guess, representing the probable height of CustomItem's label
(the "Messages:" string).

The dimensions are used to size ScrollableMessagesBox's drawable area, which
excludes its label. The box will be as wide as the form, and have a height that spans
all the form below the input text field and the box's label.

2.1. Adding a Message to the Messages Box

commandAction() connects the "Send" command to ScrollableMessagesBox's
addMessage() method:

public void commandAction(Command c, Displayable d)
{
 if (c == exitCmd)
 destroyApp(true);

Java Prog. Techniques for Games. J2ME Chapter 1. Scrollable Messages Draft #1 (22nd Aug. 05)

5  Andrew Davison 2005

 else if (c == sendCmd) {
 String msg = msgTF.getString();
 if ((msg != null) && (!msg.equals("")))
 scroller.addMessage(msg);
 // pass the message to ScrollableMessagesBox
 }
} // end of commandAction()

The message is added to the end of the list, and automatically prefixed with a number.

3. The ScrollableMessagesBox Class
An important aspect of ScrollableMessagesBox is the link between the data structure
it uses to store messages (the lines[] array) and the display of those messages. This is
shown in Figure 5.

Figure 5. Message Storage and On-screen Appearance.

firstVisLine stores the index of the line that's currently visible at the top of the box.
As the messages list is scrolled up or down, this variable's value is changed
accordingly.

lines[] is initialized in ScrollableMessagesBox(), with its size determined by the on-
screen height of the box.

// globals
// offsets for writing text
private static final int XOFFSET = 5;
private static final int YOFFSET = 3;

private static final float LINES_FACTOR = 1.5f;
 /* the factor multiplied to the number of box lines
 to get the number of lines stored in lines[] */

private int width, height; // of the scrolling box
private int fontHeight;

Java Prog. Techniques for Games. J2ME Chapter 1. Scrollable Messages Draft #1 (22nd Aug. 05)

6  Andrew Davison 2005

private int maxVisLines; // max no. of visible lines

private String[] lines; // stores the message lines
private int maxLines; // max no. of stored lines
private int numLines = 0; // current number of stored lines

private int firstVisLine = 0;
 /* index of the line that's currently visible at the
 top of the box */

public ScrollableMessagesBox(String title, int w, int h)
{
 super(title);
 width = w;
 height = h;

 Font f = Font.getDefaultFont();
 fontHeight = f.getHeight();

 maxVisLines = (height-(YOFFSET+1))/fontHeight;

 // initialize the lines[] array
 maxLines = (int)(LINES_FACTOR * maxVisLines);
 lines = new String[maxLines];

 // other initialization code, explained later...
}

The maximum number of lines that can be drawn inside the box is:
 maxVisLines = (height-(YOFFSET+1))/fontHeight;

YOFFSET is the offset from the top of the box to where the first line is drawn (see
Figure 6). The '1' ensures that the drawing range is inside the 1 pixel border at the
bottom of the box.

Figure 6. The Drawing Coordinates for the Message Lines.

Each line occupies fontHeight pixels in the vertical direction, so dividing the drawing
range by fontHeight produces the number of visible lines.

The actual size of lines[] is a constant multiple of maxVisLines, so the array can store
more lines than can be shown on the screen:
 maxLines = (int)(LINES_FACTOR * maxVisLines);
 lines = new String[maxLines];

Java Prog. Techniques for Games. J2ME Chapter 1. Scrollable Messages Draft #1 (22nd Aug. 05)

7  Andrew Davison 2005

3.1. Are the Arrows Showing?
The arrows at the top and bottom of the scrollbar switch to circles when scrolling up
or down is disabled. The status of the arrows is stored in two global booleans,
upArrowShowing and downArrowShowing, which are initialized in the constructor:

// globals
private boolean upArrowShowing, downArrowShowing;

// in the constructor
upArrowShowing = false;
downArrowShowing = false;

At start-up, both arrows are disabled because there are no messages in the box. The
scrollbar will be drawn with circles at both ends.

3.2. Item Commands
A CustomItem may have its own commands, which appear in the commands menu
when the user traverses into the item (typically by tabbing, or by pressing the down
arrow key). Item-specific commands are a useful way of supplying additional
functionality when it's relevant.

ScrollableMessagesBox has two commands, "Up" and "Down", which are added to
the menu when scrolling is enabled. For example, the "Up" command is offered only
when the user can scroll upwards in the box; it disappears from the menu when the
user has scrolled upwards so the first message is visible at the top of the box.

The commands are initialized in the constructor, and ScrollableMessagesBox is
specified as the item command listener. This means that the processing of the
commands is self-contained inside the CustomItem.

// globals
private Command upCmd, downCmd;

// in the constructor
// create commands, but don't show them yet
upCmd = new Command("Up", Command.ITEM, 1);
downCmd = new Command("Down", Command.ITEM, 1);

setItemCommandListener(this);
 // ScrollableMessagesBox implements ItemCommandListener

commandAction() links the commands to two text movement methods, textMovesUp
() and textMovesDown(), which I'll describe in sections 3.6 and 3.7.

public void commandAction(Command c, Item i)
// use commands to move the text
{ if (c == upCmd)
 textMovesDown();
 else if (c == downCmd)
 textMovesUp();

Java Prog. Techniques for Games. J2ME Chapter 1. Scrollable Messages Draft #1 (22nd Aug. 05)

8  Andrew Davison 2005

}

It's worth noting that the "Up" command moves the text down, while "Down" moves
it up.

3.3. User Input Modes
The CustomItem class supports both keyboard and pointer input. The possible input
types include key pressing, releasing, and repetition, and pointer pressing, releasing,
and dragging. Key repetition occurs when a key is pressed down for a long period.

The actual range of supported input mechanisms depends on the device, which can be
queried by calling CustomItem.getInteractionModes(). The result is an integer whose
bits contain the relevant information. For example, the following methods check if
key release and pointer release are supported:

private boolean hasKeyRelease()
{ return ((getInteractionModes() & KEY_RELEASE) != 0); }

private boolean hasPointerRelease()
{ return ((getInteractionModes() & POINTER_RELEASE) != 0); }

A complete list of interaction modes can be found in the CustomItem documentation.

ScrollableMessagesBox doesn't use pointer interaction, and assumes that key presses
and releases are available. However, it does check for key repetition support:

private boolean hasKeyRepeats()
// are key repeats supported?
{ return ((getInteractionModes() & KEY_REPEAT) != 0); }

3.4. Dealing with Key Presses
A key press automatically generates a call to CustomItem.keyPressed(), which is
overridden in ScrollableMessagesBox:

// globals
private boolean upKeyPressed = false;
private boolean downKeyPressed = false;

protected void keyPressed(int keyCode)
{
 int gameAct = getGameAction(keyCode);
 if ((gameAct == Canvas.UP) && upArrowShowing) {
 textMovesDown();
 upKeyPressed = true;
 }
 else if ((gameAct == Canvas.DOWN) && downArrowShowing) {
 textMovesUp();
 downKeyPressed = true;
 }

Java Prog. Techniques for Games. J2ME Chapter 1. Scrollable Messages Draft #1 (22nd Aug. 05)

9  Andrew Davison 2005

}

Only the 'up' and 'down' keys have any effect, and only if scrolling is currently
enabled in that particular direction. As part of my home-grown implementation of key
repetition (explained in the next section), the upKeyPressed and downKeyPressed
booleans record which direction key was pressed.

Releasing a key triggers a call to CustomItem.keyReleased(), which is overridden as:

protected void keyReleased(int keyCode)
{
 int gameAct = getGameAction(keyCode);
 if ((gameAct == Canvas.UP) && upKeyPressed)
 upKeyPressed = false;
 else if ((gameAct == Canvas.DOWN) && downKeyPressed)
 downKeyPressed = false;
}

keyReleased()'s only job is to reset the upKeyPressed and downKeyPressed booleans.

3.5. Dealing with Key Repetition
If the system supports key repetition, then CustomItem.keyRepeated() is called
repeatedly while a key is held down. Its version in ScrollableMessagesBox is very
similar to keyPressed():

protected void keyRepeated(int keyCode)
{
 int gameAct = getGameAction(keyCode);
 if ((gameAct == Canvas.UP) && upArrowShowing)
 textMovesDown();
 else if ((gameAct == Canvas.DOWN) && downArrowShowing)
 textMovesUp();
}

Since key repetition isn't offered by every device, ScrollableMessagesBox() checks
for its support by calling setKeyRepetition():

// globals
// key repeating timer and task
private Timer timer;
private KeyRepeatTask keyRepeatTask;

private void setKeyRepetition()
{ if(!hasKeyRepeats()) // key repeat not supported
 // start a timer to carry out key repeats
 keyRepeatTask = new KeyRepeatTask(this);
 timer = new Timer();
 timer.schedule(keyRepeatTask, 0, KEY_DELAY);
 }
}

Java Prog. Techniques for Games. J2ME Chapter 1. Scrollable Messages Draft #1 (22nd Aug. 05)

10  Andrew Davison 2005

If key repetition isn't available then a timer is employed to periodically run a
KeyRepeatTask object.

Unfortunately, there's a problem (at least with Sun's WTK 2.2 on Windows 98). On
that platform, hasKeyRepeats() returns true, indicating that key repetition is supported
by the emulator. However, no matter how long I press a key,
CustomItem.keyRepeated() is never called.

My solution was to comment out the hasKeyRepeats() test in setKeyRepetition(), and
always use the timer task to generate repetitions.

The KeyRepeatTask class is very short.

public class KeyRepeatTask extends TimerTask
{
 private ScrollableMessagesBox scroller;

 public KeyRepeatTask(ScrollableMessagesBox smb)
 { scroller = smb; }

 public void run()
 { scroller.repeatTextMove(); }

} // end of KeyRepeatTask class

Its only task is to call repeatTextMove() back in ScrollableMessagesBox:

public void repeatTextMove()
{ if (upKeyPressed && upArrowShowing)
 textMovesDown();
 else if (downKeyPressed && downArrowShowing)
 textMovesUp();
}

repeatTextMove() repeats a text move depending on the currently pressed key and on
scrolling availability.

Java Prog. Techniques for Games. J2ME Chapter 1. Scrollable Messages Draft #1 (22nd Aug. 05)

11  Andrew Davison 2005

3.6. Moving the Messages Up
The messages are moved up either by the "Down" command being selected
(processed by commandAction()) or the 'down' key being pressed (dealt with by
keyPressed() and repeatTextMove()). This idea is illustrated in Figure 7.

Figure 7. Press "Down" to Move the Messages Up.

Moving the text up by one line is handled by incrementing the firstVisLine integer.
For the Figure 7 example, it would start with the value 8, and be changed to 9.

There are a few other aspects to consider: the move request should be ignored when
the last line is already at the top of the screen, and the up and down arrows may need
to be changed. These tasks are carried out by textMovesUp():

private void textMovesUp()
{
 if (firstVisLine < numLines-1) { // if not already at end of msgs
 firstVisLine++;
 if (firstVisLine == numLines-1) { // showing last message at top
 removeCommand(downCmd); // disable downward scrolling
 downArrowShowing = false;
 }
 if (!upArrowShowing) {
 addCommand(upCmd); // enable upward scrolling
 upArrowShowing = true;
 }
 repaint();
 }
} // end of textMovesUp()

The call to repaint() at the end of textMovesUp() causes paint() to use the new
firstVisLine value, and the current values of downArrowShowing and
upArrowShowing, to redraw the messages box.

Java Prog. Techniques for Games. J2ME Chapter 1. Scrollable Messages Draft #1 (22nd Aug. 05)

12  Andrew Davison 2005

3.7. Moving the Messages Down
The messages are moved down either by the "Up" command being selected or the 'up'
key being pressed. This is illustrated in Figure 8.

Figure 8. Press "Up" to Move the Messages Down.

The textMovesDown() method is similar in concept to textMovesUp(): it decrements
firstVisLine, but only if the first message isn't at the top of the screen. It also adjusts
the downArrowShowing and upArrowShowing booleans.

private void textMovesDown()
{
 if (firstVisLine > 0) { // if not already at messages start
 firstVisLine--;
 if (firstVisLine == 0) { // showing first message at top
 removeCommand(upCmd); // disable upward scrolling
 upArrowShowing = false;
 }
 if (!downArrowShowing) {
 addCommand(downCmd); // enable downward scrolling
 downArrowShowing = true;
 }
 repaint();
 }
} // end of textMovesDown()

3.8. Painting the Messages Box
The messages box consists of three elements: the background (including the border),
the visible messages, and the scrollbar. paint() renders the first two itself, and calls
drawScrollBar() for the third task:

protected void paint(Graphics g, int w, int h)
{
 // a white background with a black border
 g.setColor(255, 255, 255); // white background
 g.fillRect(0, 0, w, h);
 g.setColor(0,0,0); // black border
 g.drawRect(1, 1, w-2, h-2);

 drawScrollBar(g, w, h);

Java Prog. Techniques for Games. J2ME Chapter 1. Scrollable Messages Draft #1 (22nd Aug. 05)

13  Andrew Davison 2005

 int yPos = YOFFSET;

 // calculate the index of the first invisible line
 int invisLine = firstVisLine + maxVisLines;
 int firstInvisLine = (numLines < invisLine) ? numLines : invisLine;

 // write the visible lines onto the canvas
 for (int i = firstVisLine; i < firstInvisLine; i++) {
 if (i == 0) // this line is the first saved line
 g.drawString("(first) " + lines[i], XOFFSET, yPos,
 Graphics.TOP|Graphics.LEFT);
 else
 g.drawString(lines[i], XOFFSET, yPos,
 Graphics.TOP|Graphics.LEFT);
 yPos += fontHeight;
 }
} // end of paint()

The two integer arguments to paint() (w and h) are the width and height of the
drawing area. All the drawing operations should utilize these rather than assume some
fixed size. For example, the black border one pixel in from the edges of the drawing
area is created using:
 g.drawRect(1, 1, w-2, h-2);

The drawing of the messages uses the XOFFSET and YOFFSET constants, and
positions each line fontHeight pixels below the one above it, as shown in Figure 6.

It's easy to know which line to start with (the one indexed by firstVisLine), but
somewhat more tricky to know when to stop. There are two cases to consider:

• stop when the bottom of the drawing area is reached, or

• stop after the drawing loop writes out the last line in lines[].

The bottom of the drawing area is calculated indirectly by adding the maximum
number of visible lines that can be drawn (maxVisLines) to the index of the first
visible line (firstVisLine):
 int invisLine = firstVisLine + maxVisLines;

invisLine is the index of the line that would be drawn off the bottom of the messages
box, and so be invisible.

The second case stops the drawing if there are less lines stored in lines[] than can fill
the drawing area.

The choice between the two stopping cases is decided by comparing numLines (the
number of lines in lines[]) with invisLine to see which is smaller. The result is stored
in firstInvisLine:
 int firstInvisLine = (numLines < invisLine) ? numLines : invisLine;

firstInvisLine is used as the stopping value for the loop that prints the lines.

Java Prog. Techniques for Games. J2ME Chapter 1. Scrollable Messages Draft #1 (22nd Aug. 05)

14  Andrew Davison 2005

3.9. Drawing the Scrollbar
The scrollbar is a double-headed vertical arrow drawn close to the right hand side of
the messages box. The upwards and downwards arrowheads (triangles) change to
circles when it's not possible to scroll the messages up or down.

private void drawScrollBar(Graphics g, int w, int h)
{
 // grey vertical bar
 g.setColor(128,128,128); // grey
 g.fillRect(w-14, 13, 6, h-26);
 g.setColor(0,0,0); // black

 // upwards head of the bar
 if (!upArrowShowing) {
 g.setColor(128,128,128); // grey
 g.fillArc(w-17, 7, 12, 12, 0, 360); // filled circle
 g.setColor(0,0,0); // black
 }
 else
 g.fillTriangle(w-11,6, w-6,18, w-16,18);

 // downwards head of the bar
 if (!downArrowShowing) {
 g.setColor(128,128,128); // grey
 g.fillArc(w-17, h-19, 12, 12, 0, 360); // filled circle
 g.setColor(0,0,0); // black
 }
 else
 g.fillTriangle(w-11,h-6, w-6,h-18, w-16,h-18);
} // end of drawScrollBar()

There's a lot of 'magic' numbers in drawScrollBar(), but all the coordinates are
specified relative to the width and height of the canvas (w and h).

Java Prog. Techniques for Games. J2ME Chapter 1. Scrollable Messages Draft #1 (22nd Aug. 05)

15  Andrew Davison 2005

The upwards arrow:
 g.fillTriangle(w-11,6, w-6,18, w-16,18);

and the vertical bar:
 g.fillRect(w-14, 13, 6, h-26);

are shown in Figure 9.

Figure 9. The Coordinates for the Upwards Arrow and Vertical Bar.

3.10. Fixing the Message Box's Size
Every CustomItem must define get methods for the item's minimum and preferred
width and height. In ScrollableMessagesBox, they are:

protected int getMinContentHeight()
{ return height; }

protected int getMinContentWidth()
{ return width; }

protected int getPrefContentHeight(int w)
{ return height; }

protected int getPrefContentWidth(int h)
{ return width; }

The minimum size is the smallest size that the item can handle, while the preferred
size specifies the optimal dimensions.

The arguments to getPrefContentHeight() and getPrefContentWidth() are the system's
width and height values for the item (or perhaps –1).

The system will usually employ the values returned by the 'preferred' methods to set
the size of the item, but may choose other numbers. The chosen sizes are reported to
the item by the system calling CustomItem.sizeChanged() (which is not used in
ScrollableMessagesBox). sizeChanged() is also called whenever the item is resized by
the system. A size recalculation can be triggered from within CustomItem by calling
invalidate().

Java Prog. Techniques for Games. J2ME Chapter 1. Scrollable Messages Draft #1 (22nd Aug. 05)

16  Andrew Davison 2005

4. Other CustomItem Features
There are two important CustomItem features which aren't illustrated by
ScrollableMessagesBox:

• traversal;
• off-screen editing.

4.1. Traversal
Different platforms offer varying support for traversal inside a CustomItem. For
instance, a system may not provide it at all, or only in the vertical direction, or
perhaps in both the vertical and horizontal directions.

A platform's capabilities are determined by calling getInteractionModes(), and
checking for the presence of the TRAVERSE_HORIZONTAL and
TRAVERSE_VERTICAL bits, or the NONE bit. For instance:

int interactionMode = getInteractionModes();
boolean supportsHoriz =
 ((interactionMode & CustomItem.TRAVERSE_HORIZONTAL) != 0);
boolean supportsVert =
 ((interactionMode & CustomItem.TRAVERSE_VERTICAL) != 0);

When traversal is supported, the system will signal its use by calling CustomItem's
traverse() method in two situations:

• when a traversal enters the item for the first time;

• when a traversal moves through the item.

The traverse() method must be overridden if the CustomItem is to support internal
traversal. Its prototype is:
protected boolean traverse(int direction,
 int viewportWidth,int viewportHeight,
 int[] visRect_inout);

When a traversal initially enters the CustomItem, traverse() should return true if the
item supports internal traversal, false otherwise. The default implementation of
traverse() returns false.

For a traversal within the item, traverse() should return true if the traversal will
remain inside the item after this call, or false if the traversal will leave.

As the traversal leaves the item, the system calls CustomItem.traverseOut().

When traverse() is called, the traversal direction is passed in as its first argument: the
value can be Canvas.DOWN, Canvas.UP, Canvas.LEFT, Canvas.RIGHT, or NONE
(if the system can't assign a direction).

The second and third arguments (viewportWidth and viewportHeight) specify the
largest area of the item that is likely to be visible at any given time. This 'viewport'

Java Prog. Techniques for Games. J2ME Chapter 1. Scrollable Messages Draft #1 (22nd Aug. 05)

17  Andrew Davison 2005

dimension is only relevant if the item is larger than the form, and scrolling is needed
to view different parts of the item.

The fourth argument is employed to pass rectangle information into, and out of, the
method. The input rectangle representing the region of the item that's currently
visible. The output rectangle should be the new visible region after the traversal
operation has been applied. This argument is only a concern if the CustomItem is
larger than the enclosing form.

traverse() Examples
Sun's WTK 2.2 includes a CustomItem example, as part of its UIDemo demo: a 5x3
table supporting vertical and horizontal traversal. The source code can be found in
<WTK_HOME>\apps\UIDemo\src\customitem\Table.java.

All the table is visible inside the form, so only traverse()'s direction argument is
utilized in the method's body. The parts of the table affected by a traversal are
redrawn by traverse() calling repaint(x,y,w,h). The method finishes by setting the
visRect_inout[] array, which is actually unnecessary since all the item can be seen
without scrolling.

Mikko Kontio's article, Custom GUI Development with MIDP 2.0, available at
http://www-128.ibm.com/developerworks/wireless/library/wi-developui/, describes a
simpler traversal example, based around a two-element CustomItem which emulates
MIDP's ChoiceGroup. The traverse() method is similar to the one in UIDemo, since
all the item is visible in the form, making the second, third, and fourth arguments of
traverse() irrelevant. The main simplification is that the method only provides vertical
traversal.

4.2. Off-screen Editing
Off-screen editing is a coding technique used in a CustomItem when the user needs to
input or edit complex information. The basic idea is to have the item create a
temporary TextBox or Canvas object which acts as an editing screen.

The CustomItem calls Display.setCurrent() to make the editing screen active. When
the edit is completed, the screen passes the data back to the CustomItem via a public
callback method, then calls Display.setCurrentItem() to return execution to the
CustomItem.

The callback method in CustomItem will typically call repaint() to freshen up the
display with the new data, or perhaps notifyStateChanged() to tell an
ItemStateListener that things have changed.

Sun's WTK 2.2 CustomItem example in UIDemo (mentioned in the previous section)
utilizes this off-screen editing approach. When a user wants to add text to one of the
table's cells, the "Edit" command creates a TextBox instance to read in the data.

