
Java Prog. Techniques for Games. Chapter 36. Networked Cameras Draft #2 (20th August 2013)

 1 © Andrew Davison 2013

Chapter 36. Networked Cameras

In this chapter I'll develop a TCP/IP client/server cameras application: the clients send

images obtained from their webcams to the server to be centrally displayed. The idea

is illustrated in Figure 1.

Figure 1. Networked Cameras.

A novel feature of the application is that a client divides its current camera image into

subimages before passing them to the server. The client compares the subimages with

ones obtained from the previously snapped image, and only those parts which have

changed are sent. This approach is shown in Figure 2, with the camera's image

divided into 16 parts.

Java Prog. Techniques for Games. Chapter 36. Networked Cameras Draft #2 (20th August 2013)

 2 © Andrew Davison 2013

Figure 2. Dividing and Sending Subimages.

On the left of Figure 2, all the subimages are sent to the server by the client, and the it

stitches them together before displaying the complete picture. However, the next

client image (on the right of Figure 2) only contains two changed areas, so only those

need to be sent this time. The advantage is a reduction in the amount of network

communication, related to how much the client's view of a scene changes from frame

to frame. The downside is that the server will need to retain previous subimages, so

they can be combined with the new ones.

Figures 1 and 2 are somewhat misleading since the clients don't really send subimages

to the server. The client transforms each image into a sequence of bytes, and sends

those, together with an ID number identifying the subimage.

Figure 3 is a screenshot of the server, called CamsViewer, displaying two views of the

author. The third panel is white since there's no third client connected to the server at

the moment.

Java Prog. Techniques for Games. Chapter 36. Networked Cameras Draft #2 (20th August 2013)

 3 © Andrew Davison 2013

Figure 3. The CamsViewer Server Displaying Two Clients.

Along with the clients' images, the server displays the number of changed subimages

used to build each image. The user hasn't moved in Figure 3 since the previous

camera snaps (around 100 milliseconds before), so both client images show zero

changes.

One problem with the subimage approach is that a reconstituted image may contain

slightly out-of-date parts, as in Figure 4.

Figure 4. The CamsViewer Showing Some old Subimages.

The two images have been updated with 7 and 6 subimages respectively, but one

subimage in each client is still out-of-date. In practice, these old parts are usually

replaced within a second or so after the movement has occurred. Part of the reason for

this problem is that I'm using a simple brightness measure to compare old and new

subimages, as explained below.

Java Prog. Techniques for Games. Chapter 36. Networked Cameras Draft #2 (20th August 2013)

 4 © Andrew Davison 2013

1. Client/Server Structure

The class diagrams for the client-side of the application are shown in Figure 5.

Figure 5. CamReader: the Client-Side of the Application.

Each client machine runs its own copy of CamReader, which creates a display panel

in a window to show the current camera input. This input is read in a frame at a time

by the JavaCV FrameFrabber class. A CamReader window is shown in Figure 6.

Figure 6. A CamReader Instance.

The CamReaderPanel acts both as a rendering area for the grabbed images and as a

TCP/IP client with a socket link to the server. Various image processing functions,

including ones for splitting images into parts, converting subimages to bytes and back

Java Prog. Techniques for Games. Chapter 36. Networked Cameras Draft #2 (20th August 2013)

 5 © Andrew Davison 2013

again, and gluing subimages together, are stored as static methods in the ImageUtils

class.

The class diagrams for the server side of the application are shown in Figure 7.

Figure 7. CamsViewer: the Server-Side of the Application.

The top-level class, CamsViewer, creates a window with a ServerSocket to receive

connections from clients. A new client socket triggers the creation of a CamReceiver

instance which is threaded so it can wait on data arriving from the client without

freezing the CamsViewer server. Each CamReceiver is assigned a CamViewerPanel

instance, where the reconstructed images coming from the client are displayed.

CamsViewer limits itself to creating three CamViewerPanels, which means that it can

only handle three clients concurrently. Image processing features are again supported

by static methods in ImageUtils, the same class as used by the clients.

Figure 8 is a redrawing of the networked camera diagram of Figure 1 to show where

various classes are utilized.

Java Prog. Techniques for Games. Chapter 36. Networked Cameras Draft #2 (20th August 2013)

 6 © Andrew Davison 2013

Figure 8. The Networked Cameras and their Classes.

2. The Camera Client

The heart of the CamReaderPanel class is a run() method which starts by creating a

FrameGrabber instance and a socket link to the server. Then it enters a loop which

snaps a picture, divides it into subimages, decides which parts have changed, and

sends those to the server.

// globals

private static final int DELAY = 100; // ms, time between snaps

private static final int CAMERA_ID = 0;

private static final int PORT = 4444; // server port

private static final int NUM_SEPS = 4;

 // subimage separations per row and column

private static final int END_TRANS = -99;

private String ipAddr; // IP address of CamsViewer

private BufferedImage image = null; // scaled image

private volatile boolean isRunning;

private volatile boolean isFinished;

public void run()

{

Java Prog. Techniques for Games. Chapter 36. Networked Cameras Draft #2 (20th August 2013)

 7 © Andrew Davison 2013

 FrameGrabber grabber = initGrabber(CAMERA_ID);

 if (grabber == null)

 return;

 IplImage snapIm = picGrab(grabber, CAMERA_ID);

 if (snapIm == null)

 return;

 double scaleFactor = calcScale(snapIm.width(), snapIm.height());

 long duration;

 isRunning = true;

 isFinished = false;

 BufferedImage[] imParts; // holds parts of the total image

 try {

 // connect to CamsViewer via a socket

 System.out.println("Connecting to " + ipAddr +

 ", port: " + PORT + "...");

 Socket sock = new Socket(ipAddr, PORT);

 DataOutputStream dos =

 new DataOutputStream(sock.getOutputStream());

 while (isRunning) {

 long startTime = System.currentTimeMillis();

 snapIm = picGrab(grabber, CAMERA_ID);

 image = ImageUtils.scale(snapIm.getBufferedImage(),

 scaleFactor); // scale input

 imParts = ImageUtils.split(image, NUM_SEPS); // split

 updateParts(dos, imParts);

 // send the parts that have changed

 repaint();

 duration = System.currentTimeMillis() - startTime;

 if (duration < DELAY) {

 try {

 Thread.sleep(DELAY-duration);

 // wait until DELAY time has passed

 }

 catch (Exception ex) {}

 }

 }

 camera.close(); // close down the camera

 sendMessage(dos, END_TRANS, null);

 // tell CamsViewer that this client is finishing

 sock.close();

 System.out.println("Reader shut down");

 isFinished = true;

 }

 catch(IOException e)

 { System.out.println("Could not connect to server");

 System.exit(1);

 }

} // end of run()

The CamReader client is supplied with the IP address of the server as a command line

argument, but the server's port (4444) is a hardwired constant.

Aside from the use of subimages to reduce communication overheads, run() illustrates

two other load-reduction techniques. The while-loop is set to iterate every DELAY

Java Prog. Techniques for Games. Chapter 36. Networked Cameras Draft #2 (20th August 2013)

 8 © Andrew Davison 2013

(100) milliseconds, which means that around 10 pictures are snapped each second,

processed, and sent to the server. The quantity of data sent out can easily be reduced if

the DELAY value is increased. The other data reduction technique is image scaling,

which is hardwired to reduce each picture to 320 by 240 pixels.

The ImageUtils.split() method returns an array of subimages by dividing the original

image into NUM_SEPS rows and columns using BufferedImage.getSubimage(). The

resulting array contains NUM_SEPS*NUM_SEPS images which are analyzed and

posted out by updateParts().

// globals

private static final int BRIGHT_THRESHOLD = 150;

 // used to judge if two brightnesses are different

private static final int END_UPDATE = -98;

private int[] brightness; // brightness data for each subimage part

private void updateParts(DataOutputStream dos,

 BufferedImage[] imParts)

{ byte[] imPartBytes;

 for(int i=0; i < imParts.length; i++) {

 int currBright = ImageUtils.getAvgBrightness(imParts[i]);

 if (Math.abs(currBright - brightness[i]) >= BRIGHT_THRESHOLD) {

 // brightnesses are different

 imPartBytes = ImageUtils.imToBytes(i, imParts[i]);

 sendMessage(dos, i, imPartBytes);

 // send message containing the image bytes

 brightness[i] = currBright; // store brightness level

 }

 }

 sendMessage(dos, END_UPDATE, null);

 // all updates for this image have been sent

} // end of updateParts()

The code calculates the average brightness for a subimage, and compares it with the

brightness of the corresponding subimage from the previous iteration. If the two

brightnesses differ by BRIGHT_THRESHOLD or more then the new subimage is

sent to the server as a sequence of bytes.

I 'borrowed' the brightness calculation method from a blog post at

http://mindmeat.blogspot.com/2008/07/java-image-comparison.html – it converts the

subimage to a grayscale, sums the grayscale values in all the pixels, and averages the

total.

The ImageUtils.toGray() method used by ImageUtils.getAvgBrightness() could be

applied to the entire image as another way of reducing its size. However, I decided to

stay with transmitting colored images.

My sendMessage() method implements a simple communication protocol between the

client and server based on messages of the form:

<part index> <byte array length> <image data bytes ...>

and the sending of the special messages END_UPDATE and END_TRANS.

END_UPDATE means that all the updates for the current image have been sent, while

END_TRANS signals that the client is closing down.

Java Prog. Techniques for Games. Chapter 36. Networked Cameras Draft #2 (20th August 2013)

 9 © Andrew Davison 2013

In the image data message, the <part index> argument identifies which subimage is

being sent. The byte array length is employed on the server-side to convert the correct

number of bytes back to an image. ImageUtils contains imToBytes() and bytesToIm()

methods for converting a subimage to a bytes sequence, and back again.

The sendMessage() method:

// globals

// special message IDs

private static final int END_UPDATE = -98;

private static final int END_TRANS = -99;

private static final int MAX_WRITE_FAILS = 50;

private int numWriteFails = 0;

private void sendMessage(DataOutputStream dos, int idx, byte[] bytes)

{

 try {

 if (idx == END_UPDATE)

 dos.writeInt(idx);

 else if (idx == END_TRANS) {

 System.out.println("Sending client END message");

 dos.writeInt(idx);

 }

 else { // send image part

 dos.writeInt(idx);

 dos.writeInt(bytes.length);

 dos.write(bytes, 0, bytes.length);

 }

 }

 catch(IOException e)

 {

 numWriteFails++;

 if (numWriteFails > MAX_WRITE_FAILS) {

 System.out.println("Terminating due to multiple

 server write fails");

 System.exit(1);

 }

 }

} // end of sendMessage()

sendMessage() uses a global numWriteFails counter to record the number of failed

writes to the server socket. If the total exceeds MAX_WRITE_FAILS, then the client

issues an error message and terminates.

3. The Cameras Server

CamsViewer carries out two main tasks: it's a threaded server that spawns a

CamReceiver thread to deal with each new client, and it’s a JFrame that contains

multiple CamViewerPanel panels. Each new CamReceiver instance is paired with a

CamViewerPanel but, to keep things simple, there's a fixed number of

Java Prog. Techniques for Games. Chapter 36. Networked Cameras Draft #2 (20th August 2013)

 10 © Andrew Davison 2013

CamViewerPanel objects. If all of these panels are being used (by existing receivers)

then a new client connection is rejected by CamsViewer.

When a receiver terminates, it hands its panel back to the server so it can be used for

another client when one connects.

The CamsViewer constructor:

// globals

private static final int NUM_PANELS = 3;

private CamReceiver[] receivers;

 // receives image parts from a CamReader client

private CamViewerPanel[] camsPan;

 /* each one displays the reconstituted image

 for a matching CamReceiver */

private boolean[] usedCams;

 // which camera panels are currently in use?

public CamsViewer()

{

 super("Remote Cams Viewer");

 Container c = getContentPane();

 c.setLayout(new BoxLayout(c, BoxLayout.X_AXIS));

 // the panels are laid out across the screen

 camsPan = new CamViewerPanel[NUM_PANELS];

 usedCams = new boolean[NUM_PANELS];

 receivers = new CamReceiver[NUM_PANELS];

 for (int i=0; i < NUM_PANELS; i++) {

 camsPan[i] = new CamViewerPanel();

 // the reconstructed images appear in these panels

 usedCams[i] = false;

 // all the panels are available (i.e. not in use) at the start

 c.add(camsPan[i]);

 }

 addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e)

 { for(CamReceiver cr : receivers)

 if (cr != null)

 cr.closeDown();

 // stop receiving images from CamReader clients

 System.exit(0);

 }

 });

 setResizable(false);

 pack();

 // position this window at the bottom middle of the screen

 Dimension scrSize = Toolkit.getDefaultToolkit().getScreenSize();

 int x = (scrSize.width - getSize().width)/2;

 int y = scrSize.height - getSize().height - 30;

 setLocation(x, y);

 setVisible(true);

Java Prog. Techniques for Games. Chapter 36. Networked Cameras Draft #2 (20th August 2013)

 11 © Andrew Davison 2013

 new Thread(this).start(); // start waiting for client connections

} // end of CamsViewer()

The receivers and their panels are paired up by being stored in corresponding

positions in the receivers[] and camsPan[] arrays. Since the camera panels can be

reused, it's also useful to have a usedCams[] array to maintain a list of which panels

are in use, and which are free.

One reason for keeping the number of panels small is that it simplifies the layout task

for the window, which uses a horizontal box layout (see Figure 3).

3.1. Creating a Receiver

CamsViewer's run() method consists of a loop which wait for a client to contact it.

The resulting socket is passed to a newly instantiated CamReceiver object only if

there's a camera panel available for displaying the received images.

// globals

private static final int PORT = 4444;

public void run()

{

 Socket sock;

 try {

 ServerSocket servsock = new ServerSocket(PORT);

 printHostInfo();

 while (true) {

 System.out.println("Waiting for a cam connection...");

 sock = servsock.accept();

 /* if there's a free camera panel then pass

 it to a new receiver for the client */

 int camIdx = grabCam();

 if (camIdx != -1) { // a camera panel is available

 receivers[camIdx] =

 new CamReceiver(sock, camIdx, camsPan[camIdx], this);

 System.out.println("--assigned new cam to panel " + camIdx);

 }

 else {

 System.out.println("Not enough panels to accept a new cam");

 sock.close();

 }

 }

 }

 catch (IOException e)

 { System.out.println("CamsViewer network problem");

 System.exit(0);

 }

} // of run()

The selection of an available camera panel is handled by getCam(), which is defined

as a synchronized method.

// globals

private boolean[] usedCams;

Java Prog. Techniques for Games. Chapter 36. Networked Cameras Draft #2 (20th August 2013)

 12 © Andrew Davison 2013

public synchronized int grabCam()

// return the index of a free camera panel, or -1

{

 for (int i=0; i < NUM_PANELS; i++)

 if (!usedCams[i]) {

 usedCams[i] = true;

 return i;

 }

 return -1;

} // end of grabCam()

The reason for the synchronization is that the usedCam[] array can also be

manipulated by a terminating CamReceiver instance, which is running in its own

thread. It calls releaseCam() to set a specified usedCams[] entry to false to indicate

that the panel with the same index is available again.

public synchronized void releaseCam(int idx)

{

 if ((idx >= 0) && (idx < NUM_PANELS)) {

 usedCams[idx] = false;

 receivers[idx] = null;

 }

} // end of releaseCam()

4. Processing a Client's Data

A CamReceiver waits for a CamReader client to send image parts to it via a TCP/IP

socket. The subimages are combined into a single image and displayed in an

CamViewerPanel panel. Hardwired into CamReceiver is the knowledge that

NUM_SEPS*NUM_SEPS subimages form a single image, and how those subimage

are arranged to form a whole.

CamReceiver utilizes a threaded loop to wait for subimage update messages. During

an image's update less than NUM_SEPS*NUM_SEPS subimages may arrive, in

which case the image's reconstruction must use subimages delivered during earlier

updates. An update is finished when CamReceiver receives an END_UPDATE

message. It then passes the constructed image to CamViewerPanel to be displayed,

and goes back to waiting for the next collection of updates.

If CamReceiver receives an END_TRANS message then its client is terminating, and

it should also terminate after making its CamPanel available to the top-level server,

for another receiver to use.

The looping behavior is located in CamReceiver's run() method:

// globals private static final int NUM_SEPS = 4;

 // image separations per row and column

private Socket sock;

private int recID; // ID for this receiver

private CamViewerPanel camPanel;

 // the display panel for this receiver

Java Prog. Techniques for Games. Chapter 36. Networked Cameras Draft #2 (20th August 2013)

 13 © Andrew Davison 2013

private CamsViewer camsViewer; // the top-level server

private int numPartsUpdated = 0;

private volatile boolean isRunning;

public void run()

{

 BufferedImage[] imParts = new BufferedImage[NUM_SEPS*NUM_SEPS];

 try {

 DataInputStream dis =

 new DataInputStream(sock.getInputStream());

 isRunning = true;

 while (isRunning) {

 if (!updateParts(dis, imParts)) // update subimages

 break;

 BufferedImage im = ImageUtils.join(imParts, NUM_SEPS);

 // join subimage parts together

 if (im == null)

 System.out.println("Image is null");

 else

 camPanel.setImage(im, numPartsUpdated);

 }

 // Close this connection (not the overall server socket)

 System.out.println("Cam receiver " + recID + " terminating");

 camPanel.setImage(null, 0);

 camsViewer.releaseCam(recID);

 /* release the CamViewerPanel so it can

 be used by another receiver */

 sock.close();

 }

 catch(IOException ioe)

 { System.out.println(ioe); }

} // end of run()

The while-loop inside run() can terminate in a number of ways. It may be stopped by

isRunning being set to false, which is done via a call to closeDown() from the top-

level CamsViewer server. Other possibilities are that updateParts() detects a socket

error of some kind, or receives an END_TRANS message, both of which cause it to

return false.

The main job of updateParts() is to read in new subimages and update the

corresponding entries in the imParts[] array:

// globals

// special message IDs

private static final int END_UPDATE = -98;

private static final int END_TRANS = -99;

private int numPartsUpdated = 0;

private boolean updateParts(DataInputStream dis,

 BufferedImage[] imParts)

{ numPartsUpdated = 0;

Java Prog. Techniques for Games. Chapter 36. Networked Cameras Draft #2 (20th August 2013)

 14 © Andrew Davison 2013

 while (numPartsUpdated < imParts.length) {

 int res = readMessage(dis, imParts);

 if (res == END_UPDATE)

 break;

 else if ((res == END_TRANS) || (res == -1))

 return false;

 numPartsUpdated++;

 }

 return true;

} // end of updateParts()

updateParts() repeatedly calls readMessage() to read in a message and convert its data

into an image. This continues until all of imParts[] has been updated or an

END_UPDATE message is received. It's also possible for the update to fail, which is

signaled by readMessage() returning END_TRANS or -1.

readMessage() has to deal with three types of message:

<part index> <byte array length> <image data bytes ...>,

END_UPDATE, and END_TRANS.

readMessage() either returns the index of the required subimage, END_UPDATE,

END_TRANS, or -1 for an error (such as a socket read error):

private int readMessage(DataInputStream dis,

 BufferedImage[] imParts)

{ try {

 int idx = dis.readInt();

 if (idx == END_UPDATE)

 return END_UPDATE; // no more parts to update on this round

 else if (idx == END_TRANS) {

 System.out.println("Remote client has disconnected");

 return END_TRANS; // time to finish reading

 }

 int len = dis.readInt();

 if (len == 0) { // no data in this part

 System.out.println("Part " + idx + " has no data");

 return -1; // no data read

 }

 else { // read in the image data

 byte[] imBytes = new byte[len];

 dis.readFully(imBytes);

 imParts[idx] = ImageUtils.bytesToIm(idx, imBytes);

 return idx; // data read for idx subimage

 }

 }

 catch (InterruptedIOException iioe)

 { System.out.println("Remote client connection timed out");

 return -1; // time to finish

 }

 catch(IOException e)

 { System.out.println("Client socket read error");

 return -1; // time to finish

 }

} // end of readMessage()

