
Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

1 © Andrew Davison 2010 

 

Chapter 35. Geolocation without GPS 
 

I made things easy for myself in the last chapter by relying on a GPS receiver to 
generate latitude and longitude information. In this chapter, I throw away the GPS 
device (figuratively, of course), and determine my position and geographical address 
(my geolocation) without its help. 

Although this seems a daunting task, I'm encouraged by the availability of geolocation 
in HTML5. Even when there's no GPS receiver attached to the computer, a tiny piece 
of JavaScript executed by the browser can return your latitude and longitude. A 
mapping example using HTML5's geolocation API can be found at 
http://html5demos.com/geo. The Google map it displays for my position is shown in 
Figure 1. 

 
Figure 1. An HTML5-generated Map. 

 

This map isn't such an impressive display of HTML5's magic, since it places me in 
the wrong city – Songkhla, about 25 km east of my true location, at Prince of Songkla 
University (PSU) in Hat Yai. To be fair, US and European users have reported more 
impressive results, and the API makes no guarantees about returning an accurate 
location. 

How does HTML5 work? At the programming level, the Web page author employs 
the navigator.geolocation JavaScript property, and a callback function that's executed 
after the user agrees to share information over the Web. A good introduction to the 
coding details can be found in Chapter 6 of the online book "Dive into HTML5" by 
Mark Pilgrim (http://diveintohtml5.org/geolocation.html). 

The W3C Geolocation API Specification (http://www.w3.org/TR/geolocation-API), 
states that an implementation can use several alternative location sources, depending 
on the capabilities of the device. Possibilities include GPS, triangulation via cellular 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

2 © Andrew Davison 2010 

tower IDs, RFID and Bluetooth IDs, nearby WiFi access points, and the computer’s 
IP address. Firefox utilizes this information by sending it to Google's Location 
Services which returns a location estimate (http://www.mozilla.com/en-
US/firefox/geolocation/).  

I want to emulate HTML5's geolocation API in Java without having to fire-up a 
browser. Also, I'm going to restrict my hardware to a netbook without a GPS receiver, 
RFID or Bluetooth; the machine's only connection to the wider world will be through 
WiFi. This leaves two starting points for finding my location: IP and MAC addresses. 

 

What are IP and MAC Addresses? 
As you probably know, an IP address is a unique ID assigned to any device connected 
to a TCP/IP network (such as the Internet). By assuming that computers are fairly 
immobile, databases have been compiled that map IP addresses to locations. 
Unfortunately, an increasing number of machines aren't fixed in one place, and/or 
utilize non-unique, dynamic IP addresses. 

A Media Access Control (MAC) address is meant to be a permanent, unique ID 
assigned to a network interface card (NIC) or LAN card on your machine. But MAC 
addresses aren't as permanent as we might hope; often the address is stored in a card's 
firmware, which makes it possible to modify (called MAC spoofing). The address 
doesn't contain a latitude or longitude, but details on the card's manufacturer and 
model. The IEEE maintains a database of vendors, called the Organizationally Unique 
Identifiers (OUI), which can be searched using the first three bytes of a MAC address 
at http://standards.ieee.org/develop/regauth/oui/public.html. 

How can a MAC address be converted into a latitude and longitude? For that we must 
thank Google and Skyhook Wireless (http://www.skyhookwireless.com/). They've 
been busy driving around cities and towns in North America, Europe, Asia, and 
Australia, plotting the location of WiFi access points (APs) and cell towers. Skyhook 
has a map online showing its coverage 
(http://www.skyhookwireless.com/howitworks/coverage.php), and claims their 
database has over 250 million entries.  

This occupation is often called wardriving, and has been getting Google into trouble 
for 'snooping'. It's probably okay to record a wireless' name (SSID) and MAC address, 
along with an associated latitude and longitude. The problems begin if data being sent 
over those networks is recorded. 

Although IP and MAC addresses are quite different, TCP/IP includes protocols for 
converting from IP to MAC addresses  -- the Address Resolution Protocol (ARP) for 
IPv4 and the Neighbor Discovery Protocol (NDP) for IPv6.  

 

Using IP and MAC addresses 
Figure 2 shows an overview of the various ways I'll be using IP and MAC addresses 
in this chapter. 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

3 © Andrew Davison 2010 

 
Figure 2. From IP/MAC addresses to Locations. 

 

The IP and MAC addresses of my netbook aren't much use, because they're for a 
mobile device. Instead I have to reach out across the wireless network for the 
addresses of WiFi Access Points (APs). These APs are probably in fixed positions, 
and so likely to be listed in location databases.  

The dotted lines and arrows in Figure 2 have Java program names next to them. For 
example, I'll describe two programs, GoogleMAC.java and SkyhookMAC.java, for 
converting a MAC address into a latitude and longitude. As their names suggest, one 
uses Google, the other Skyhook Wireless.  

I'll explore several approaches since they tend to give slightly different answers, with 
the quality depending on the AP's location and the coverage of the databases 
involved. For example, SkyhookMAC.java fails to return any information for my 
netbook, probably because of Skyhook's sketchy coverage of the south of Thailand. 

Most of the programs are similar – they utilize Web services, and parse the JSON, 
XML, or HTML responses. For that reason, it's a good idea if you read Chapter 33 on 
Web Service APIs first (http://fivedots.coe.psu.ac.th/~ad/jg/ch33/), because I won't be 
explaining those details again. I also won't be describing latitude and longitude 
mapping, because I just talked about that in Chapter 34 
(http://fivedots.coe.psu.ac.th/~ad/jg/ch34/). 

  

 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

4 © Andrew Davison 2010 

1.  Examining my Netbook 
Two JavaSE network classes, InetAddress and NetworkInterface, provide all I need to 
list my netbook's IP and MAC addresses, although NetworkInterface. 
getHardwareAddress() for reading the MAC address was only added in JavaSE 6. 
More detailed information can be displayed for each NIC via the InterfaceAddress 
class (also new to JavaSE 6). A good example of its capabilities can be found at 
http://stackoverflow.com/questions/494465/how-to-enumerate-ip-addresses-of-all-
enabled-nic-cards-from-java 

The following code comes from my AddrViewer.java. showIP() prints the machine's 
IP address: 
 
private static void showIP() 
{ 
  try { 
    InetAddress localHost = InetAddress.getLocalHost(); 
    System.out.println("LocalHost IP address: " +  
                      localHost.getCanonicalHostName() + "\n"); 
  } 
  catch (UnknownHostException e) 
  {  System.out.println(" No LocalHost Info found\n"); } 
     
}  // end of showIP() 
 

showMacNICs() iterates through the NICs on a device, printing their MAC addresses: 
 
private static void showMacNICs() 
// list the NICs that have MAC addresses 
{ 
  try { 
    Enumeration<NetworkInterface> intfs = 
                     NetworkInterface.getNetworkInterfaces(); 
    while(intfs.hasMoreElements()) { 
      NetworkInterface intf = intfs.nextElement(); 
      byte[] macAddr = intf.getHardwareAddress(); 
      if (macAddr != null) { 
        System.out.println(intf.getDisplayName()); 
        System.out.println("  MAC:  " + macToString(macAddr)); 
        System.out.println("  Operational? " + intf.isUp()); 
        System.out.println(); 
      } 
    } 
  } 
  catch (SocketException e) 
  {  e.printStackTrace(); } 
}  // end of showMacNICs() 
 

NetworkInterface.getDisplayName() supplies the NIC's SSID (its name). 
NetworkInterface.getHardwareAddress() unhelpfully returns a MAC address as a byte 
array, so macToString() converts it to a string containing two-digit hexadecimals 
separated by ":"s. 

Information for my netbook is shown in Figure 3. 

 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

5 © Andrew Davison 2010 

 
Figure 3. IP and MAC addresses for my Netbook. 

 

The netbook has an Ethernet port (currently not in use) and a WiFi card whose MAC 
address is 00:15:AF:C9:B1:99. If the first three hexadecimal digits are used to query 
the IEEE OUI database (http://standards.ieee.org/develop/regauth/oui/public.html),  
the vendor is revealed to be AzureWave Technologies from Taiwan. 

Supplying the MAC address to GoogleMAC.java (which I'll explain later) produces a 
latitude and longitude of (6.867817, 101.249477) which is in Pattani in the south of 
Thailand, about 90 km from my true location. The netbook's IP address, 
172.30.81.158, was dynamically assigned when I connected to the ISP, so is of no 
use. 

If you don't want to write Java code such as AddrViewer.java for examining your 
device, then a handy existing tool on most platforms is ipconfig (ipconfig /all on 
Windows, ipconfig –a on Linux). 

 

 

2.  MAC Hack Attack on Wireless Access Points 
It's time for me to don my Hacker gear – black wraparound sunglasses and hoodie – 
and to dowse my office lights, apart from a cool red spot shining on my keyboard. Yo, 
it's time for wardriving! 

To be truthful, wardriving isn't that difficult. The easiest GUI tool for the job is 
NetStumbler (http://www.netstumbler.com/), which produces details shown in Figure 
4 on my netbook. 

 
Figure 4. NetStumbler on my Netbook. 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

6 © Andrew Davison 2010 

 

NetStumbler is an “active” wireless network detector, which sends out Probe Request 
messages (frames), and receives Probe Responses from APs. Another approach is 
“passive” detection, which doesn't broadcast signals. Instead, the programs (e.g. 
Kismet, AirSnort) listen for 802.11 traffic within range of the wireless card. 

WirelessNetView (http://www.nirsoft.net/utils/wireless_network_view.html) is a 
simpler "active" tool than NetStumbler, and has a command line interface that will be 
useful later. Each detected WiFi network is listed with its SSID, MAC Address, RSSI 
(received signal strength), and other useful details. Figure 5 shows it running on my 
netbook. 

 
Figure 5. WirelessNetView on my Netbook. 

 

In Figure 5, it detected the university's "OpenWifi" AP which NetStumbler didn't list, 
but missed some of the department's private WiFis. Both tools saw "CoEWiFi", the 
WiFi I'm using. 

 

 

3.  Collecting WiFi Details with Java 
At this point, I could content myself with NetStumbler or WirelessNetView, and use 
pen and paper to make notes of the MAC addresses they find. Instead, I'll explain two 
Java solutions which collect these addresses. 

 

3.1.  The Place Lab API   

Place Lab (http://www.placelab.org/) is a location API that works in a similar way to 
HTML5's geolocation API. It utilizes a range of techniques, such as WiFi APs, GSM 
cell phone towers, and fixed Bluetooth devices to obtain MAC addresses. The derived 
positions can be rendered on a locally cached map. 

The Windows download (placelab-win32-2.1.zip) is 14.42 MB large, but much of this 
isn't needed for obtaining an Access Point's MAC address. A Place Lab NDIS 
network protocol driver must be installed, and then only placelab.jar is required in 
order to implement a "WiFi spotter". Placelab.jar is nearly 5 MB in size, but it's 
possible to delete many of the classes and packages inside that JAR which deal with 
mapping, databases, IDE integration, JavaME, and others. The resulting JAR is 196 
KB, and could easily be trimmed further. 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

7 © Andrew Davison 2010 

The Place Lab download comes with a nice collection of examples, including 
WiFiSpotterExample.java (http://www.placelab.org/toolkit/doc/#wifispotterexample), 
which became the basis of my ListWiFis.java application: 
 
public static void main(String[] args)  
{ 
  Spotter spotter = new WiFiSpotter(); 
  try { 
    spotter.open(); 
    BeaconMeasurement bm =  
       (BeaconMeasurement) spotter.getMeasurement(); 
    int numAPs = bm.numberOfReadings(); 
    System.out.println("No. of WiFi Access Points detected: " +  
                                          numAPs + "\n"); 
    if (numAPs > 0) { 
      WiFiReading wr;  // iterate through the readings 
      for (int i=0; i < numAPs; i++) { 
        wr = (WiFiReading) bm.getReading(i); 
        String macAddr = wr.getId().toUpperCase();   
                  // use uppercase hex 
        System.out.println(wr.getSsid() + ". MAC: " +  macAddr +  
                            " ; RSS: " + wr.getRssi() + "\n"); 
      } 
    } 
  }  
  catch (SpotterException e)  
  {  e.printStackTrace();  } 
}  // end of main() 
 

ListWiFis.java utilizes the Place Lab WiFiSpotter class, which can access all the 
802.11 wireless cards on the machine and collect details about the connected 
networks. A reading is obtained with BeaconMeasurement.getReading(), and cast to a 
WiFiReading so each AP’s SSID, MAC address, and RSS can be printed. Figure 6 
shows typical output. 

 

 
Figure 6. Listing WiFi Details with Place Lab. 

 

The simplest way of understanding negative RSS values is to remember that a smaller 
negative number is better (i.e. is a stronger signal), and a typical strength range is -70 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

8 © Andrew Davison 2010 

to -90  (-70 is better). The negatives are due to the use of a logarithmic scale, where 
negative numbers denote small, positive strengths. For example, with a log10 scale, a 
value of -2 represents 10-2, which equals 0.01; by the same reasoning -4 denotes 
0.0001. 

 

3.2.  Utilizing WirelessNetView from Java 
A somewhat hacky alternative way of obtaining MAC addresses is to have Java 
execute the WirelessNetView tool 
(http://www.nirsoft.net/utils/wireless_network_view.html), and read its results. 
WirelessNetView has a simple command line interface which Java can easily utilize. 

I began by writing a DOS batch file, called applyWNV.bat, to execute 
WirelessNetView with a file argument for storing its sorted output. 
 
@echo off 
 
If [%1]==[] goto Error 
 
echo Storing WiFi AP info in %1 by using WirelsssNetView... 
WirelessNetView /scomma %1 /sort "~Average Signal" 
 
echo Finished. 
exit /b 
 
:Error 
echo Usage: applyWNV ^<out_file^> 
exit /b 
 

This batch file approach allowed me to test the script separately from Java. In 
addition, I can employ variables and control flow operations (e.g. if) which are 
trickier from the command line. 

A typical call to the batch file would be: 
> applyWNV.bat wifiInfo.txt 

The wifiInfo.txt output file will contain multiple lines, one for each AP detected. For 
example: 
 
CoEWiFi,62%,62%,1,Yes,Yes,RSNA,CCMP,ERP, 
11/22/2010 11:58:46 AM,11/22/2010 11:58:46 AM, 
00-25-84-03-19-50,-71,2.437,6,,54 Mbps 
 

The arguments are separated by commas due to "/scomma" argument in the call to 
WirelessNetView. I'm interested in each AP's SSID, MAC address, and RSS, which 
are the first, 12th, and 13th values on a line (shown in bold above). 

Calling applyWNV.bat from Java is possible with the java.lang.ProcessBuilder class, 
but the coding can be tricky depending on the type of OS command that you're trying 
to invoke. Instead, I used my SaferExec class, which hides many ProcessBuilder 
problems behind a simpler interface. A description of SaferExec can be found at 
http://fivedots.coe.psu.ac.th/~ad/SaferExec/. 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

9 © Andrew Davison 2010 

FindWiFiMACs.java uses SaferExec to call the applyWNV.bat script with a file 
name. The file's resulting contents are read in, and each AP's SSIDs, MAC address 
and RSS are printed. The code for FindWiFiMACs.java is: 
 
// global 
private static final String INFO_FNM = "wifiInfo.txt"; 
 
 
public static void main (String[] args)  
{ 
  SaferExec se = new SaferExec(); 
  se.exec("cmd /c applyWNV " + INFO_FNM);    
              // cmd /c necessary for calling a batch file 
 
  try { 
    System.out.println("Reading " + INFO_FNM + " ..."); 
    System.out.println(); 
    BufferedReader in = new BufferedReader(new FileReader(INFO_FNM)); 
    String wifiLine; 
    while ((wifiLine = in.readLine()) != null) 
      extractMACDetails(wifiLine); 
    in.close(); 
  }  
  catch (IOException e)  
  { System.out.println("Problem reading " + INFO_FNM);  } 
 }  // end of main 
 
 
private static void extractMACDetails(String wifiLine) 
{ 
  String[] args = wifiLine.split(","); 
  if (args.length != 17) 
    System.out.println("Incorrect number of arguments"); 
  else { 
    String macAddr = args[11].toUpperCase().replaceAll("-", ":");   
                // use uppercase hex and a ":" as separator 
    System.out.println(args[0] + ". MAC: " +  macAddr +  
                              " ; RSS: " + args[12] + "\n"); 
  } 
}  // end of extractMACDetails() 
 

extractMACDetails() pulls apart each input line by calling String.split() with ",". The 
MAC address is slightly reformatted before being printed out, as shown in Figure 7. 

 
Figure 7. Listing WiFi Details with WirelessNetView and Java.. 

 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

10 © Andrew Davison 2010 

 

4.  From MAC Addresses to Locations 
Armed with MAC addresses, I can start searching Google's and Skyhook Wireless' 
MAC-to-location databases.  

 

4.1.  Googling for MAC Addresses 
GoogleMac.java posts a query to Google's Location Services REST API 
(http://www.google.com/loc/json), supplying a MAC address and an optional signal 
strength. It returns JSON data containing latitude, longitude, and a geographical 
address. Figure 8 shows the program's output when supplied with the last "CoEWiFi" 
MAC address from Figure 6. 

 
Figure 8. Using Google to Lookup a MAC Address. 

 

The generated address details are non too impressive since city information is 
missing, although the district (Kho Hong) is correct. However, the latitude and 
longitude are within 100 m from where I was sitting when I obtained the MAC 
address. Figure 9 shows a Google map view of  (7.007364, 100.501234). 

 
Figure 9. Google Map of (7.007364, 100.501234). 

 

The large square building in Figure 9 is the Faculty of Engineering at PSU. 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

11 © Andrew Davison 2010 

GoogleMAC.java posts the user's supplied MAC address and signal strength to 
http://www.google.com/loc/json formatted as follows: 
 
{"version":"1.1.0", 
 "request_address":true, 
 "wifi_towers":[{"mac_address":"00:25:84:03:19:50", 
                 "ssid":"", "signal_strength":-71} ]} 
 

The "request_address" parameter signals that address details should be returned along 
with the latitude and longitude. Multiple tuples can be included in the "wifi_towers" 
list, which may let Google triangulate a position based on the signal strengths of the 
APs. The "ssid" field can be left out if it isn't assigned a value. 

This format is described in more detail in the blog posts by E-rant at http://www.e-
rant.net/2010/06/google-wi-fi-hullabalooo/ and Tin Isles at 
http://tinisles.blogspot.com/2009/12/wifi-geolocation.html. 

GoogleMAC's getMACDetails() delivers the post, and returns the JSON reply as a 
string: 
 
// global 
private static final String SITE_ADDR =  
                       "http://www.google.com/loc/json"; 
 
 
private static String getMACDetails(String macAddress,  
                                        int signalStrength) 
{  
  String data = "{\"version\":\"1.1.0\"," +  
                   "\"request_address\":true," + 
                   "\"wifi_towers\":  
                       [{\"mac_address\":\"" + macAddress +  
               "\",\"signal_strength\":" + signalStrength + "}]}"; 
  try { 
    URL url = new URL(SITE_ADDR);  
    URLConnection conn = url.openConnection(); 
    conn.setDoInput(true);  
    conn.setDoOutput(true);  
 
    // write out JSON query parameters 
    OutputStreamWriter writer =  
          new OutputStreamWriter(conn.getOutputStream()); 
    writer.write(data); 
    writer.flush(); 
    writer.close(); 
 
    // read the response 
    BufferedReader in = new BufferedReader( 
          new InputStreamReader(conn.getInputStream())); 
    StringBuilder respStr = new StringBuilder(); 
    String line; 
    while ((line = in.readLine()) != null) 
      respStr.append(line); 
    in.close(); 
 
    return respStr.toString();  
  }  
  catch (MalformedURLException e)  



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

12 © Andrew Davison 2010 

  {  System.out.println("URL not understood"); }  
  catch (IOException e)  
  { System.out.println("I/O Error");  } 
 
  return null; 
}   // end of getMACDetails() 
 

The format of the returned data is: 
 
{ 
  "access_token": "XXXX", 
  "location": { 
    "accuracy": 150, 
    "address": { 
      "city": "Kho Hong", 
      "country": "Thailand", 
      "country_code": "TH", 
      "county": "Hat Yai", 
      "region": "Songkhla" 
    }, 
    "latitude": 7.0073644, 
    "longitude": 100.5012336 
  } 
} 
 

showResponse() saves the JSON response in "temp.json" for future reference, and 
calls showLatLong() and showAddress() to extract the latitude, longitude, and 
geographical address from the "location" tuple: 
 
private static void showResponse(String respStr) 
{   
  if (respStr == null) 
    System.out.println("No response received"); 
  else { 
    try { 
      JSONObject json = new JSONObject(respStr); 
      WebUtils.saveString("temp.json", json.toString(2) );  
                               // indent the string 
      JSONObject jLoc = json.getJSONObject("location"); 
      showLatLong(jLoc); 
      showAddress(jLoc); 
    } 
    catch(JSONException e) 
    {  System.out.println(e);  } 
  } 
}  // end of showResponse() 
 

showLatLong() prints the contents of the "latitude", "longitude", and "accuracy" 
fields. 
 
private static void showLatLong(JSONObject jLoc) 
{ 
  try { 
    double lat = Double.parseDouble( getString(jLoc, "latitude")); 
    double lon = Double.parseDouble( getString(jLoc, "longitude")); 
    System.out.printf("(lat, long): (%.6f, %.6f)\n", lat, lon); 
 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

13 © Andrew Davison 2010 

    String accuracy = getString(jLoc, "accuracy"); 
    if (accuracy != null) 
      System.out.println("Accuracy: " + accuracy); 
  } 
  catch(NumberFormatException e) 
  {  System.out.println("No latitude and longitude found"); } 
}  // end of showLatLong() 
 

There's no real need to convert the latitude and longitude to numbers, but it allows 
them to be more easily formatted. Also, the "accuracy" field may not be present in the 
JSON reply. 

showAddress() tries to print the address nicely spread over three lines, by examining 
the fields inside the "address" tuple: 
 
private static void showAddress(JSONObject jLoc) 
{ 
  JSONObject jAddr = null; 
  try { 
    jAddr = jLoc.getJSONObject("address"); 
  } 
  catch(JSONException e){} 
 
  if (jAddr == null) 
    System.out.println("No address found"); 
  else { 
    System.out.println("Address:"); 
    // 1st line 
    System.out.print("  "); 
    String streetNum = getString(jAddr, "street_number"); 
    if (streetNum != null) 
      System.out.print(streetNum + " "); 
    System.out.println(getString(jAddr, "street")); 
 
    // 2nd line 
    System.out.print("  "); 
    String city = getString(jAddr, "city"); 
    if (city != null) 
      System.out.print(city + ", "); 
 
    String region = getString(jAddr, "region"); 
    if (region != null) 
      System.out.print(region + ", "); 
 
    System.out.println( getString(jAddr, "postal_code")); 
 
    // 3rd line 
    System.out.print("  "); 
    String country = getString(jAddr, "country"); 
    if (country != null) 
      System.out.print(country + ", "); 
 
    System.out.println( getString(jAddr, "country_code")); 
  } 
}  // end of showAddress() 
 

 

 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

14 © Andrew Davison 2010 

4.2.  Skyhooking MAC addresses 
The Skyhook location service (http://www.skyhookwireless.com/) is accessed via a 
HTTPS POST request containing an XML query with a MAC address and signal 
strength. As with Google, multiple addresses and strengths can be sent in order to 
improve the result. Latitude and longitude information are returned, and perhaps 
geographical information 

Before I begin a detailed explanation, I should own up to always having received 
"Unable to determine location" error responses from Skyhook. I believe this is due to 
my location in Thailand being outside Skyhook's coverage area 
(http://www.skyhookwireless.com/howitworks/coverage.php). Their map does have 
some "blue spots" in my home town, Hat Yai, but I can't zoom in on the map 
sufficiently to determine where! 

I started by downloading Skyhook's SDK for Windows XP SP3 from 
http://www.skyhookwireless.com/developers/sdk.php. It contains a test program, 
wpsapitest.exe, which successfully calculates a location based on my IP address, but 
returns "WPS_location failed (6)" when it tries a MAC address lookup. After 
examining the debug output from wpsapitext.exe stored in wpslog.txt, I confirmed 
that the SDK is successfully collecting details about nearby APs, and posting them to 
Skyhook's Web service in a XML query, but no location data is returned. 
wpsapitest.exe utilizes a Skyhook Wireless WiFi service (that's part of the SDK 
download), which needs to be installed on the machine. 

Details on how to communicate with the Skyhook Web service are explained in the 
blog posts by coderrr at http://coderrr.wordpress.com/2008/09/10/get-the-physical-
location-of-wireless-router-from-its-mac-address-bssid/ and Attack Vector at 
http://www.attackvector.org/geolocation-using-bssid/. Another good information 
source is the Skyhook developers network at 
http://groups.google.com/group/skyhook.  

My SkyhookMac.java program builds a XML query which contains a single MAC 
address and signal strength read from the command line, combined with username 
and realm IDs. I created these IDs when I registered for the SDK. I double-checked 
the query format by looking at the log data for wpsapitext.exe. 
 
// globals 
private static final int DUMMY_STRENGTH = -75;     
    // a strong signal, which means the AP is nearby 
 
// change the following according to your Skyhook registration 
private static final String USER_NAME = "????"; 
private static final String REALM = "????"; 
 
 
public static void main(String[] args)  
{   
  String macAddress = null; 
  int signalStrength = DUMMY_STRENGTH;  
  if (args.length == 1) 
    macAddress = args[0]; 
  else if (args.length == 2) { 
    macAddress = args[0]; 
    signalStrength = Integer.parseInt(args[1]); 
  } 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

15 © Andrew Davison 2010 

  else { 
    System.out.println("Usage: java SkyhookMAC <MAC address>  
                                                       [<signal>]"); 
    return; 
  } 
 
  String xmlQuery = "<?xml version='1.0'?>\n" + 
       "<LocationRQ xmlns='http://skyhookwireless.com/wps/2005'" + 
            " version='2.10' street-address-lookup='full'>\n" + 
            "<authentication version='2.0'>\n" + 
              "<simple>\n" + 
                "<username>" + USER_NAME + "</username>\n" + 
                "<realm>" + REALM + "</realm>  " + 
              "</simple>\n" + 
            "</authentication>  \n" + 
            "<access-point>  \n" + 
              "<mac>" +  macAddress + "</mac>  \n" + 
              "<signal-strength>" + signalStrength +  
                                     "</signal-strength>\n" + 
              "<age>7984</age>\n" + 
            "</access-point>  \n" + 
       "</LocationRQ>"; 
 
  String respStr = getResponse(xmlQuery); 
  if (respStr == null) 
    System.out.println("No response received"); 
  else 
    extractDetails(respStr); 
}  // end of main() 
 

It's possible to include multiple "access-point" tags in the XML query, and to switch 
off the retrieval of a geographical address. 

Posting the query is a matter of opening an output stream to the Web server, and 
printing the XML string to it. The Skyhook server utilizes a HTTPS address, and so 
an HttpsURLConnection must be established. Also, the content type of the message 
must be XML rather than text. getResponse() implements these features: 
 
// global 
private static final String SITE_ADDR =  
           "https://api.skyhookwireless.com/wps2/location"; 
 
 
private static String getResponse(String xmlQuery) 
{  
  try { 
    URL url = new URL(SITE_ADDR);  
    // open SSL https connection  
    HttpsURLConnection conn =  
            (HttpsURLConnection) url.openConnection();  
 
    conn.setDoInput(true);  
    conn.setDoOutput(true);  
    conn.setRequestProperty("Content-Type", "text/xml"); // XML info 
 
    // POST the XML query 
    PrintWriter output = new PrintWriter( 
       new OutputStreamWriter(conn.getOutputStream()));  
    output.println(xmlQuery);  



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

16 © Andrew Davison 2010 

    output.flush(); 
    output.close();  
    conn.connect();  
 
    // read the response 
    BufferedReader in = new BufferedReader( 
              new InputStreamReader(conn.getInputStream())); 
    StringBuilder respStr = new StringBuilder(); 
    String line; 
    while ((line = in.readLine()) != null) 
      respStr.append(line); 
    in.close(); 
    return respStr.toString();  
  }  
  catch (MalformedURLException e)  
  {  System.out.println("URL not understood"); }  
  catch (IOException e)  
  { System.out.println("I/O Error");  } 
 
  return null; 
}   // end of getResponse() 
 

There are two basic response formats. A successful lookup will look something like: 
 
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<LocationRS version="2.10"  
            xmlns="http://skyhookwireless.com/wps/2005"> 
  <location nap="1"> 
    <latitude>7.199997</latitude> 
    <longitude>100.600006</longitude> 
    <hpe>150</hpe> 
  </location> 
</LocationRS> 
 

The response may also include address information; see 
http://www.attackvector.org/geolocation-using-bssid/ for an example.  

The failure format, which I always receive, is: 
 
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<LocationRS version="2.10"  
            xmlns="http://skyhookwireless.com/wps/2005"> 
   <error>Unable to determine location</error> 
</LocationRS> 
 

The easiest way to access a response's XML data is with XPath queries (e.g. 
"/LocationRS/location/latitude" to get the latitude value). There may be multiple 
"location" nodes (including none), so I use a separate XPath query to get a set of all 
the location nodes, and then access the latitude and longitude of the first node (if it 
exists).  
 
private static void extractDetails(String respStr) 
// extract the latitude and longitude, or report the error; 
// I've only been able to test the "/LocationRS/error" code branch 
{ 
  try { 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

17 © Andrew Davison 2010 

    InputSource is = new InputSource(new StringReader(respStr)); 
    Document respDoc = DocumentBuilderFactory.newInstance(). 
                                  newDocumentBuilder().parse(is); 
    XPath xPath = XPathFactory.newInstance().newXPath(); 
 
    // Get the Location nodes using XPath 
    NodeList nodes = (NodeList)xPath.evaluate("/LocationRS/Location",  
                                respDoc, XPathConstants.NODESET); 
    int nodeCount = nodes.getLength(); 
    if (nodeCount != 0) { 
      System.out.println("No. of location nodes: " + nodeCount); 
 
      // only report the first latitude and longitude 
      String lat = (String)xPath.evaluate("latitude",  
                         nodes.item(0), XPathConstants.STRING); 
      String lon = (String)xPath.evaluate("longitude",  
                         nodes.item(0), XPathConstants.STRING); 
      if (lat == null) 
        System.out.println("No latitude and longitude found"); 
      else 
        System.out.println("First (lat,lon): (" +  
                                       lat + ", " + lon + ")"); 
    } 
    else { 
      String errorMsg = (String)xPath.evaluate("/LocationRS/error",  
                           respDoc, XPathConstants.STRING); 
      if (errorMsg != null) 
        System.out.println("Skyhook error: " + errorMsg); 
      else 
        System.out.println("Could not parse the response string"); 
    } 
  } 
  catch(Exception e) 
  {  System.out.println(e); } 
}  // end of extractDetails() 
 

The error message can be retrieved with a "/LocationRS/error" XPath. 

Figure 10 shows the output when I run SkyhookMAC.java. 

 
Figure 10.  Using Skyhook Wireless to Lookup a MAC address. 

 

 

5.  Using the Latitude and Longitude 
The latitude and longitude information returned by GoogleMAC.java and 
SkyhookMAC.java can be used for mapping, but I talked about that in the last 
chapter, so won't revisit it here. Instead, I'll find a geographical address for a given 
latitude and longitude, a task called reverse geocoding.   

GoogleMAC.java gave an impressively accurate latitude and longitude but a 
disappointing address (no street, city, or zip code). Naturally, the quality of the results 
will vary, but how can poor results be improved? Figure 2 shows that I have three 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

18 © Andrew Davison 2010 

programs for digging out address details: GoogleLatLong.java, OSMLatLong.java, 
and YahooLatLong.java which (as the names imply) employ Web services from 
Google, OSM, and Yahoo respectively. 

All three programs have a similar structure: a HTTP GET request containing the 
latitude and longitude is sent to the service, and back comes a JSON-formatted 
response containing the address. The services mainly differ in their terms of use (for 
example, Google's geocoding API has a query limit of 2,500 requests per day; and can 
only be used in conjunction with a Google map). Also, the quality of the results varies 
quite a bit, but that may just be that the south of Thailand isn't as well covered as the 
US and Europe. 

I'll explain the GoogleLatLong.java code in detail, but only sketch out the query and 
response formats for the OSM and Yahoo services, due to their coding similarities. 

 

5.1.  Googling a Geographical Location 
Reverse geocoding with Google is explained at 
http://code.google.com/apis/maps/documentation/geocoding/#ReverseGeocoding.  

A GET request is sent to the service with the latitude and longitude assigned to a 
"latlng" parameter. For instance, the following delivers my latitude/longitude in Hat 
Yai: 
 
http://maps.googleapis.com/maps/api/geocode/json? 
            latlng=7.0073644,100.5012336&sensor=false 
 

The "sensor" parameter indicates whether the coordinates came from a GPS sensor 
(they didn't). 

The returned JSON result is normally quite lengthy, containing several alternative 
answers which specify the address in terms of region, city, neighborhood, street 
address, postal code, and mixes of those elements. For example, the first answer tuple 
for the above query is: 
 
{ 
  "status": "OK", 
  "results": [ { 
    "types": [ "locality", "political" ], 
    "formatted_address": "Kho Hong, Hat Yai, Songkhla, Thailand", 
    "address_components": [ { 
      "long_name": "Kho Hong", 
      "short_name": "Kho Hong", 
      "types": [ "locality", "political" ] 
    }, { 
      "long_name": "Hat Yai", 
      "short_name": "Hat Yai", 
      "types": [ "administrative_area_level_3", "political" ] 
    }, { 
      "long_name": "Songkhla", 
      "short_name": "Songkhla", 
      "types": [ "administrative_area_level_1", "political" ] 
    }, { 
      "long_name": "Thailand", 
      "short_name": "TH", 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

19 © Andrew Davison 2010 

      "types": [ "country", "political" ] 
    } ], 
    "geometry": { 
      "location": { 
        "lat": 7.0016937, 
        "lng": 100.4996926 
      }, 
      "location_type": "APPROXIMATE", 
      "viewport": { 
        "southwest": { 
          "lat": 6.9573925, 
          "lng": 100.4356629 
        }, 
        "northeast": { 
          "lat": 7.0459907, 
          "lng": 100.5637223 
        } 
      }, 
      "bounds": { 
        "southwest": { 
          "lat": 6.9688668, 
          "lng": 100.4608475 
        }, 
        "northeast": { 
          "lat": 7.0543579, 
          "lng": 100.5391657 
        } 
      } 
    } 
  }, 
  // four more result tuples  
]} 
 

A simple way of summarizing all the answers is to extract each tuple's 
"formatted_address" field.  All the values returned by the previous query are shown 
below: 
 
"formatted_address": "Kho Hong, Hat Yai, Songkhla, Thailand" 
"formatted_address": "Nam Noi, Hat Yai, Songkhla 90110, Thailand" 
"formatted_address": "Hat Yai, Songkhla, Thailand" 
"formatted_address": "Songkhla, Thailand" 
"formatted_address": "Thailand" 
 

Generally, the addresses are ordered from most to least specific, with the more exact 
being the first. But, as the above example shows, the other addresses may contain 
useful additional information. Collectively, these addresses are an improvement over 
GoogleMAC's output (see Figure 8), since they include the city name and zip code. 
However, there's no street address, or indication that the coordinate is inside Prince of 
Songkla University. 

 

Getting a Response 
GoogleLatLong.java's getResponse() method sends a GET request including a latitude 
and longitude, and returns the JSON response as a string. 
 
// global 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

20 © Andrew Davison 2010 

private static final String SITE_ADDR =  
             "http://maps.google.com/maps/api/geocode/json"; 
 
 
private static String getResponse(double lat, double lon)  
{ 
  String coords = "" + lat + ", " + lon; 
  BufferedReader rd = null; 
  try { 
    URL url = new URL(SITE_ADDR + "?address=" +  
                URLEncoder.encode(coords, "UTF-8") +  
                   "&sensor=false"); 
    HttpURLConnection conn =  
            (HttpURLConnection) url.openConnection(); 
    conn.connect(); 
    rd = new BufferedReader(  
       new InputStreamReader(conn.getInputStream())); 
 
    StringBuilder respStr = new StringBuilder(); 
    String line; 
    while ((line = rd.readLine()) != null) 
      respStr.append(line); 
    rd.close(); 
 
    return respStr.toString();  
  } 
  catch (MalformedURLException e)  
  {  System.out.println("URL not understood"); }  
  catch (IOException e)  
  { System.out.println("I/O Error");  } 
 
  return null; 
}  // end of getResponse() 
 

Printing the Response 
The JSON data is saved into a file, and also passed to extractAddress() which returns 
the first "formatted_address" value. 
 
private static void showResponse(String respStr)  
{   
  if (respStr == null) 
    System.out.println("No response received"); 
  else { 
    System.out.println("Processing response..."); 
    try { 
      JSONObject json = new JSONObject(respStr); 
      WebUtils.saveString("temp.json", json.toString(2) );  
 
      String addr = extractAddress(json); 
      if (addr != null) 
        System.out.println("\nFormatted address: " + addr); 
      else 
        System.out.println("No address found"); 
    } 
    catch(JSONException e) 
    {  System.out.println(e);  } 
  } 
}  // end of showResponse() 
 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

21 © Andrew Davison 2010 

extractAddress() treats the "results" tuples as an array, iterating through them, printing 
every "formatted_address" value. The first one is returned. 
 
private static String extractAddress(JSONObject json) 
{ 
  try { 
    JSONArray jResults = json.getJSONArray("results"); 
    int numMatches = jResults.length(); 
    System.out.println("\nNo. of results: " + numMatches + "\n"); 
    if (numMatches == 0) 
      return null; 
 
    JSONObject jRes; 
    for (int i = 0; i < numMatches; i++) { 
      jRes = jResults.getJSONObject(i); 
      System.out.println((i+1) + ". " +  
                         jRes.getString("formatted_address")); 
    } 
    return jResults.getJSONObject(0). 
                  getString("formatted_address"); 
  } 
  catch(Exception e) 
  {  System.out.println(e);  } 
 
  return null; 
}  // end of extractAddress() 
 

The execution of GoogleLatLong.java with my latitude and longitude is shown in 
Figure 11. 

 
Figure 11.  Using Google Reverse Geocoding. 

 

 

5.2.  Using OSM to Find a Geographical Location 
Reverse geocoding in OSM is implemented by its Nominatim tool 
(http://nominatim.openstreetmap.org), which is described at 
http://wiki.openstreetmap.org/wiki/Nominatim. 

A typical GET query: 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

22 © Andrew Davison 2010 

 
http://nominatim.openstreetmap.org/reverse?format=json& 
                   lat=7.0073644&lon=100.5012336& 
                   zoom=18&addressdetails=1 
 

The zoom value determines the level of detail returned, where 0 is at the country level 
and 18 is at a house/building scale. 

The JSON result is: 
 
{ 
  "address": { 
    "city": "Hat Yai", 
    "country": "Thailand", 
    "country_code": "th", 
    "university": "Faculty of Engineering" 
  }, 
  "category": "amenity", 
  "display_name": "Faculty of Engineering, Hat Yai, Thailand", 
  "licence": "Data Copyright OpenStreetMap Contributors,  
              Some Rights Reserved. CC-BY-SA 2.0.", 
  "osm_id": "767329196", 
  "osm_type": "node", 
  "place_id": "70817374", 
  "type": "university" 
} 
 

As with Google, a large range of fields may contain data, but the "display_name" field 
holds a nicely formatted string (in a similar way to Google's "formatted_address"). 
Unlike Google, only a single address is returned. 

OSM has a less restrictive usage policy than Google, but encourages heavy users to 
include an "email" key/value pair in the query so that OSM can contact the sender if 
their load becomes too severe (see 
http://wiki.openstreetmap.org/wiki/Nominatim_usage_policy for details). 

The execution of OSMLatLong.java with my latitude and longitude is shown in 
Figure 12. 

 
Figure 12.  Using OSM Reverse Geocoding. 

 

Unlike Google, OSM identified my location as a university (in the "type" field), but 
this isn't included in the "display_name" string, which only mentions the faculty. The 
result is impressive because the engineering faculty is very close to my office, and is 
the large building shown in Figure 9. 

 

 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

23 © Andrew Davison 2010 

5.3.  Using Yahoo to Find a Geographical Location 
Reverse geocoding in Yahoo is available through its PlaceFinder service,  
http://developer.yahoo.com/geo/placefinder/, which replaced the older Yahoo Maps 
Web Services Geocoding API. There's a user guide at 
http://developer.yahoo.com/geo/placefinder/guide, and a developers forum at 
http://developer.yahoo.net/forum/?showforum=124. 

Yahoo requires users to sign up for an application ID, but it's free. There's also a 
query limit, but it's a generous 50,000 requests per day. 

A typical GET query: 
 
http://where.yahooapis.com/geocode?q=7.0073644,+100.5012336& 
                   gflags=R&appid=[your_application_ID] 
 

The "gflags=R" value specifies that reverse geocoding is required. 

The JSON result is: 
 
{"ResultSet": { 
  "Error": 0, 
  "ErrorMessage": "No error", 
  "Found": 1, 
  "Locale": "us_US", 
  "Quality": 99, 
  "Results": [{ 
    "city": "Kho Hong", 
    "country": "Thailand", 
    "countrycode": "TH", 
    "county": "Hat Yai", 
    "countycode": "", 
    "hash": "", 
    "house": "", 
    "latitude": "7.007364", 
    "line1": "7.0073644 100.5012336", 
    "line2": "Kho Hong", 
    "line3": "", 
    "line4": "Thailand", 
    "longitude": "100.501234", 
    "name": "7.0073644 100.5012336", 
    "neighborhood": "", 
    "offsetlat": "7.007364", 
    "offsetlon": "100.501234", 
    "postal": "", 
    "quality": 99, 
    "radius": 500, 
    "state": "Songkhla", 
    "statecode": "", 
    "street": "", 
    "unit": "", 
    "unittype": "", 
    "uzip": null, 
    "woeid": 1207033, 
    "woetype": 7, 
    "xstreet": "" 
  }], 
  "version": "1.0" 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

24 © Andrew Davison 2010 

}} 
 

There's no single field which contains all the address data, although the combined 
"line1", "line2", "line3", and "line4" fields come close.  

The Where On Earth ID (WOEID) returned by the service (e.g. 1207033 in the 
example above) can be passed to Yahoo's GeoPlanet API to potentially obtain more 
geographical information (see http://developer.yahoo.com/geo/geoplanet/guide/), but I 
didn't investigate that approach. 

The execution of YahooLatLong.java with my PSU latitude and longitude is shown in 
Figure 13. 

 
Figure 13.  Using Yahoo Reverse Geocoding. 

 

Yahoo's result is disappointing because it doesn't include a street address, state, or zip 
code. State information is available in the JSON response, but isn't included in the 
"line" fields printed by YahooLatLong. 

 

 

6.  Using IP addresses 
Now it's the turn of IP addresses for finding latitudes, longitudes, and geographical 
addresses. They're just as useful as MACs, so long as they're static rather than 
dynamic or private. Static addresses are uniquely assigned to a particular computer or 
device, and so are more likely to have location information stored somewhere. 

Dynamic IP addressing is typically used by ISPs to let multiple users share a limited 
set of addresses. The address is dynamic in the sense that it's only assigned to the 
user's device for the duration of that Internet session or other limited time. Once the 
user disconnects, their address goes back into a pool so it can be re-assigned. 

Private IP addresses are only unique locally, such as in a company or university. 
When devices with private IP addresses need to communicate globally, they must 
undergo network address translation (NAT). There are three ranges of IPv4 addresses 
reserved for private networks: 10.0.0.0 to 10.255.255.255, 172.16.0.0 to 
172.31.255.255, and 192.168.0.0 to 192.168.255.255. 

When I ran AddrViewer at the start of this chapter, my netbook's IP address was 
given as 172.30.81.158, a private departmental address (see Figure 3). I need to find a 
static IP address, sometimes called an outward-facing or external address, because it 
can be used globally. 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

25 © Andrew Davison 2010 

There are several Web services that can lookup a user's external IP address, starting 
from information automatically included in the GET request sent to them. Some 
results for my netbook are shown in Table 1. 

Service External IP Address 

WhatIP (http://www.whatip.com/) 202.12.74.4 

DynDNS (http://checkip.dyndns.org/)

 

202.12.73.65 

WebIP (http://webipaddress.net/) 202.12.74.4 

Table 1. IP Lookup Service Results. 

 

Another way of obtaining an external IP is to use traceroute (tracert on Windows). It 
sends a sequence of ICMP packets to a destination host, tracing out the routers that it 
passes through. On my netbook, tracert produces the results shown in Figure 14. 

 
Figure 14. Tracert from My Netbook to Google. 

 

The first few hops are between machines within the department until hop 8 which 
passes through the external IP address 202.28.218.53. This isn't a great result because 
it resolves to UniNet, an inter-university network in Bangkok, 750 km away. I know 
that by querying WebIP with http://webipaddress.net/ip/202.28.218.53 (see section 
6.2. below). 

 

6.1.  Looking up an IP address with DynDNS 
The DynDNS server (http://checkip.dyndns.com/) returns a simple bit of HTML 
containing the detected external IP address. For example: 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

26 © Andrew Davison 2010 

 
<html> 
<head><title>Current IP Check</title></head> 
<body>Current IP Address: 202.12.73.65</body> 
</html> 
 

DetectIP.java duplicates this by sending a GET request to http://checkip.dyndns.com/, 
and processes the response as a string. It's extractData() method strips away the 
HTML tags, and returns the text after the ":": 
 
private static String extractData(String respStr) 
{ 
  String resStr = respStr.replaceAll("\\<.*?>","");  // remove tags 
 
  int startPosn = resStr.indexOf(':'); 
  if (startPosn == -1) 
    return resStr; 
  else 
    return resStr.substring(startPosn+2).trim(); 
}  // end of extractData() 
 

The IP address returned by DynDNS, 202.12.73.65, can be looked up using WebIP 
(by loading http://webipaddress.net/ip/202.12.73.65 into a browser). However, we can 
query WebIP directly without involving DynDNS, as explained in the next section. 
Another approach is to send the IP address to a Whois service, which is the topic of 
section 7. 

 

6.2.  Retrieving More than an IP Address 
Once contacted, the WebIP service returns my external IP address, a latitude and 
longitude, a geographical address, and even a map! The GET request is sent to 
http://webipaddress.net/what-is-my-ip-address, and a rather complex page of HTML 
is returned It's also possible to ask for details about a specific address by contacting 
http://webipaddress.net/what-is-my-ip-address/ip/<the IP address>. 

The retrieved details are presented to us in a HTML table separated from the rest of 
the page by a DIV tag, <div class="ipdetail">. For example: 
 
<div class="ipdetail"> 
<table width="380" cellpadding="0" cellspacing="6"> 
   <tr> 
     <td valign="top"><strong>IP Information:</strong></td> 
     <td width="223"><strong>202.12.74.4</strong></td> 
   </tr> 
   <tr> 
     <td valign="top"><strong>ISP:</strong></td> 
     <td>Prince of Songkla University</td> 
   </tr> 
   <tr> 
     <td valign="top"><strong>Organization:</strong></td> 
     <td>Prince of Songkla University</td> 
   </tr> 
   <tr> 
     <td valign="top"><strong>City:</strong></td> 
     <td>Songkhla</td> 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

27 © Andrew Davison 2010 

   </tr> 
   <tr> 
     <td valign="top"><strong>Region / State:</strong></td> 
     <td>68 Songkhla</td> 
   </tr> 
   <tr> 
     <td valign="top"><strong>Country:</strong></td> 
     <td>Thailand <img src='flag/th.gif' width='16'  
            height='11' title='Thailand' alt='TH'></img></td> 
   </tr> 
   <tr> 
     <td valign="top"><strong>Country Code:</strong></td> 
     <td>TH</td> 
    </tr> 
    <tr> 
      <td width="115" valign="top"><strong>Continent:</strong></td> 
      <td>AS</td> 
    </tr> 
    <tr> 
      <td><strong>Time Zone:</strong></td> 
      <td>Asia/Bangkok</td> 
    </tr> 
    <tr> 
      <td><strong>Latitude:</strong></td> 
      <td>7.1999998092651</td> 
    </tr> 
    <tr> 
      <td><strong>Longitude:</strong></td> 
      <td>100.59999847412</td> 
    </tr> 
    <tr> 
      <td><strong>Postal Code:</strong></td> 
      <td>n/a</td> 
    </tr> 
    <tr> 
      <td><strong>Metro Code:</strong></td> 
      <td>n/a</td> 
    </tr> 
    <tr> 
      <td><strong>Area Code:</strong></td> 
      <td>n/a</td> 
    </tr> 
  </table> 
</div>   
   

The getResponse() method in DetailsUsingIP.java sends a GET request, then returns 
the table as a single, long string: 
 
// global 
private static final String SITE_ADDR =  
           "http://webipaddress.net/what-is-my-ip-address"; 
 
 
private static String getResponse(String ipAddress)  
{ 
  try { 
    URL url = null; 
    if (ipAddress == null) 
      url = new URL(SITE_ADDR);   // lookup own IP address 
    else 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

28 © Andrew Davison 2010 

      url = new URL(SITE_ADDR + "/ip/" + ipAddress); 
                 // lookup address supplied on the command line 
 
    URLConnection conn = url.openConnection(); 
    BufferedReader rd = new BufferedReader( 
             new InputStreamReader(conn.getInputStream())); 
 
    boolean usefulInfo = false; 
    StringBuilder tableStr = new StringBuilder(); 
    String line; 
    while ((line = rd.readLine()) != null) { 
      if (line.startsWith("<div class=\"ipdetail\">")) 
        usefulInfo = true; 
      if ((line.startsWith("</div>")) && usefulInfo) 
        break;    // finish processing 
 
      if (usefulInfo) 
        tableStr.append(line.trim() + "\n"); 
    } 
    return tableStr.toString(); 
  }  
  catch (MalformedURLException e)  
  {  System.out.println(e); }  
  catch (IOException e)  
  {  System.out.println(e); }  
 
  return null; 
}  // end of getResponse() 
 

extractData() reformats the HTML table into key:value text lines via a series of 
regular expression transformations. For instance, the table from above will become: 
 
IP Information: 202.12.74.4 
ISP: Prince of Songkla University 
Organization: Prince of Songkla University 
City: Songkhla 
Region / State: 68 Songkhla 
Country: Thailand 
Country Code: TH 
Continent: AS 
Time Zone: Asia/Bangkok 
Latitude: 7.1999998092651 
Longitude: 100.59999847412 
Postal Code: n/a 
Metro Code: n/a 
Area Code: n/a 
 

The code for extractData() is: 
 
private static String extractData(String respStr) 
{ 
  String tableData = respStr.replaceAll("\\<.*?>",""); //remove tags 
 
  tableData = tableData.replaceAll("(\\s){2}","$1");     
      // replace two consecutive white spaces with a single space 
 
  tableData = tableData.replaceAll(":\\n", ": ");    
      // combine key and value lines 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

29 © Andrew Davison 2010 

 
  tableData = tableData.replaceAll("\\n\\n", "\n").trim();   
     // remove blank lines 
 
  return tableData; 
}  // end of extractData() 
 

The key:value pairs are stored in a HashMap by buildMap(): 
 
private static HashMap<String,String> buildMap(String tableData) 
{ 
  String[] lines = tableData.split("\\n"); 
  int numLines = lines.length; 
  if (numLines > 0) { 
    HashMap<String,String> map = new HashMap<String,String>(); 
    String[] pair; 
    for (int i=0; i < numLines; i++) { 
      pair = lines[i].split(":"); 
      if (pair.length != 2) 
        System.out.println("Problem parsing table line: \"" +  
                                        lines[i] + "\""); 
      else 
        map.put(pair[0].trim(), pair[1].trim());  // key:value pairs 
    } 
    return map; 
  } 
  return null; 
}  // end of buildMap() 
 

showResponse() illustrates how to build and use the HashMap: 
 
private static void showResponse(String respStr) 
/* print some of the response data after converting it to 
   a HashMap of key:value pairs 
*/ 
{ 
  if (respStr == null) 
    System.out.println("No address found"); 
  else { 
    String tableData = extractData(respStr); 
    HashMap<String,String> map = buildMap(tableData); 
    if (map != null) { 
      System.out.println("\nDetected IP address: " +  
                             map.get("IP Information") ); 
      System.out.println("(lat, long): (" + map.get("Latitude") + 
                    ", " + map.get("Longitude") + ")"); 
      System.out.println("Address:"); 
      System.out.println("  " + map.get("Organization")); 
      System.out.println("  " + map.get("City") + ", " + 
                                map.get("Region / State") ); 
      System.out.println("  " + map.get("Country") + ", " + 
                                map.get("Country Code") ); 
    } 
  } 
}  // end of showResponse() 
 

The output of DetailsUsingIP when applied to my netbook is shown in Figure 15. 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

30 © Andrew Davison 2010 

 
Figure 15. Details about my IP Address. 

 

Although the address details are fairly accurate, there's no mention of the town (Hat 
Yai), and the latitude and longitude is a location in Songkla, the provincial capital, 20 
km away. It's actually the same spot as shown in Figure 1, which I confirmed by 
entering the latitude and longitude values into Google Maps. 

The DynDNS service from the last section returned a different IP address 
(202.12.73.65), but WebIP resolves it to the same latitude, longitude and address as 
202.12.74.4 (see Figure 16). 

 
Figure 16. Details about the 202.12.73.65 Address. 

 

7.  Using Whois 
The Whois protocol employs online databases of registered users of IP addresses. 
Unfortunately, a Whois query must be sent to the correct regional database in order to 
find the details, but there's a number of Web services that deal with this routing issue. 

My Whois.java program posts a Whois query to http://uwhois.com/, which uses the 
included IP address to determine which Whois database to question. For example, 
asking about 202.12.74.4 (returned by WebIP in Figure 15) results in the following 
reply: 
 
[whois.apnic.net] 
% [whois.apnic.net node-5] 
% Whois data copyright terms    
http://www.apnic.net/db/dbcopyright.html 
 
inetnum:        202.12.74.0 - 202.12.74.255 
netname:        MOR-OR-NET2 
country:        TH 
descr:          Prince of Songkla University 
descr:          Computer Center Building 
descr:          Korhong, Hatyai, Songkhla 
descr:          90110 
admin-c:        WW100-AP 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

31 © Andrew Davison 2010 

tech-c:         SH72-AP 
status:         ASSIGNED PORTABLE 
mnt-by:         APNIC-HM 
changed:        hm-changed@apnic.net 20050322 
source:         APNIC 
 
person:         Wiboon Warasittichai 
nic-hdl:        WW100-AP 
e-mail:         wiboon.w@psu.ac.th 
address:        Prince of Songkla University 
address:        Computer Center 
address:        Korhong, Hatyai, Songkhla, 90110 
phone:          +66-74-282128 
fax-no:         +66-74-282111 
country:        TH 
mnt-by:         MAINT-AS9464 
changed:        hm-changed@apnic.net 20050322 
source:         APNIC 
 
person:         Sakorn Hangsapruek 
nic-hdl:        SH72-AP 
e-mail:         sakorn.h@psu.ac.th 
address:        Prince of Songkhla University 
address:        Computer Center Building 
address:        Korhong, Hatyai, Songkhla 
address:        90110 
phone:          +66-74-282097 
fax-no:         +66-74-282111 
country:        TH 
mnt-by:         MAINT-AS9464 
changed:        hm-changed@apnic.net 20050322 
source:         APNIC 
 

The information comes from APNIC, the Asia Pacific Network Information Center 
which holds IP registration details for my region (I'm based in Thailand). This output 
also shows that it's possible to receive multiple Whois records, especially if the IP 
address originates from a large organization, such as a university. 

My Whois.java application treats this data as a large string, extracting all the lines that 
start with descr", "address", and "country". The program's execution is shown in 
Figure 17. 

 
Figure 17. Whois.java Output. 

 



Java Prog. Techniques for Games. Chapter 35. No GPS Draft #1 (27th Nov. 10) 

32 © Andrew Davison 2010 

The PSU computer center mentioned twice in Figure 17 is the main computing 
facility at my university. 

An alternative to http://uwhois.com/ is to utilize a Windows whois tool, such as the 
one from Microsoft (http://technet.microsoft.com/en-us/sysinternals/bb897435.aspx) 
or NirSoft (http://www.nirsoft.net/utils/whosip.html). The execution of the NirSoft 
whosip.exe command is shown in Figure 18. 

 
Figure 18. NirSoft Whosip Output. 

 

The whosip.exe command can be interfaced to Java using my SaferExec class, in a 
similar way to how WirelessNetView.exe was utilized by FindWifiMACs.java in 
section 3.2. 

 

 

 

 


