
Movies in Java 3D (Part 1) 1

Playing Movies in a Java 3D World (Part 1)
Andrew Davison

Dept. of Computer Engineering
Prince of Songkla University

Hat Yai, Songkhla 90112
Thailand

ad@fivedots.coe.psu.ac.th

May 2005

The ability to play a movie clip inside a Java 3D scene opens up opportunities for
richer, more interesting 3D content. A movie can display more believable
backgrounds, such as moving clouds, a busy city street, or the view out of a window.
Movies can be employed in help screens, or as transitions between game levels.

This article, which is split into two parts, describes how I implemented a Java 3D
movie screen. In this part, I'll explain how I utilized the Java Media Framework
(JMF), more specifically the JMF Performance Pack for Windows v.2.1.1e
(http://java.sun.com/products/java-media/jmf/). The other tools in my
arsenal were J2SE 5.0 and Java 3D 1.3.2. In part two, I'll discuss another version of
the movie screen, using Quicktime for Java.

Figure 1 shows two screenshots of the JMF Movie3D application, taken at different
times: the one on the right is a view of the screen from the back.

Figure 1. Two Views of the Movie3D Application

The important elements of this application are:

• An integration of JMF and Java 3D. There can be multiple screens in an
application, of any size. Since a screen is a subclass of Java 3D's Shape3D class, it
can be easily integrated into different Java 3D scenes.

• The implementation uses the Model-View-Controller design pattern. The screen is
the view element, represented by the JMFMovieScreen class. The movie is the
model part, and is managed by the JMFSnapper class. A Java 3D Behavior class,
TimeBehavior, is the controller, triggering periodic updates of the movie. All the
JMF code is localized in the JMFSnapper class, making it easier to test and

Movies in Java 3D (Part 1) 2

changes. Part two of this article essentially replaces JMFSnapper by a Quicktime
for Java version called QTSnapper.

• The use of Java 3D performance tricks to speed up rendering. The result is a
movie which runs at 25 frames/second without any difficulty.

• A discussion of the problems I had with JMF, problems which meant that my
preferred solution wouldn't work. JMF has the potential to be a great API, but
beneath its gleaming surface there are some poorly implemented features lying in
wait

1. I'm Sitting on a Mountain
Actually, no, I'm sitting on a chair in a very cold office with a thermostat that's out of
reach. What I really mean is that this article rests on top of a lot of background
knowledge about Java 3D and JMF.

I'm not going to explain the Java 3D elements in much detail since they're covered in
my O'Reilly book, Killer Game Programming in Java (henceforward known as
KGPJ). For example, the checkerboard scene shown in Figure 1 is a slightly modified
version of the Checkers3D example in Chapter 15. I've reused the code for creating
the checkerboard floor, the blue sky, the lighting, and for allowing the user to move
the viewpoint around the scene.

If you don't want to buy the book, then early drafts of all the chapters, and all the
code, can be found at the book's website:

http://fivedots.coe.psu.ac.th/~ad/jg/

In this article, I'll explain the JMF techniques I've used for extracting frames from the
movie. I won't be talking about streaming media, capture, or transcoding.

2. Two Overviews of the Application
The movie is loaded and played by the JMFSnapper class, and plays in a continuous
loop until told to stop.

The movie screen is created by JMFMovieScreen, which manages a Java 3D
quadrilateral (a quad) resting on the checkerboard floor.

Movies in Java 3D (Part 1) 3

One way of visualizing these classes is to look at the application’s scene graph in
Figure 2. (A scene graph shows how the Java 3D nodes in a scene are linked
together.)

Figure 2. Scene Graph for Movie3D

A lot of the detail in Figure 2 can be ignored, but the graph bears a striking
resemblance to the one for the Checkers3D example in Chapter 15 of KGPJ. Only the
movie-specific nodes are new.

The JMFMovieScreen and TimeBehavior objects are shown as triangles since they're
nodes in the scene graph. The JMFSnapper object isn’t part of the graph, but is called
by JMFMovieScreen.

Every 40 ms, the TimeBehavior object calls the nextFrame() method in
JMFMovieScreen. That in turn calls getFrame() in JMFSnapper to get the current
frame in the playing movie, which is then laid over the quad managed by
JMFMovieScreen.

TimeBehavior is a subclass of Java 3D’s Behavior class, and is the Java 3D way of
implementing a timer. It’s very similar to the TimeBehavior class used in the 3D
sprites example of Chapter 18 of KGPJ.

Movies in Java 3D (Part 1) 4

Another way of gaining some insight about the application is to look at its UML class
diagrams, given in Figure 3. Only the public methods of the classes are shown.

Figure 3. Class Diagrams for Movie3D

Movie3D subclasses JFrame, while WrapMovie3D is a subclass of JPanel.
WrapMovie3D constructs the scene graph shown in Figure 2, and renders it into the
application’s JPanel. It uses the CheckerFloor and ColouredTiles classes to build the
checkerboard floor.

JMFMovieScreen creates the movie screen, adds it to the scene, and starts the movie
by creating a JMFSnapper object. TimeBehavior calls JMFMovieScreen's nextFrame
() method every 40ms. nextFrame() calls getFrame() in JMFSnapper to retrieve the
current frame.

All the code for this example, as well as an early version of this article, can be found
at the KGPJ website, http://fivedots.coe.psu.ac.th/~ad/jg/.

3. Going to the Movies

The movie, it's screen, and the TimeBehavior object for updating the screen, are set
up by the addMovieScreen () method in WrapMovie3D:

// globals
private BranchGroup sceneBG;
private JMFMovieScreen ms; // the movie screen
private TimeBehavior timer; // for updating the screen

Movies in Java 3D (Part 1) 5

private void addMovieScreen(String fnm)
{
 // put the movie in fnm onto a movie screen
 ms = new JMFMovieScreen(new Point3f(1.5f, 0, -1), 2.0f, fnm);
 sceneBG.addChild(ms);

 // set up the timer for animating the movie
 timer = new TimeBehavior(40, ms);
 // update the movie every 40ms (== 25 frames/sec)
 timer.setSchedulingBounds(bounds);
 sceneBG.addChild(timer);
}

The two Java 3D addChild() calls link the JMFMovieScreen and TimeBehavior nodes
into the scene graph. The setSchedulingBounds() call activates the TimeBehavior
node (i.e. starts it ticking).

4. Creating the Movie Screen
JMFMovieScreen is a subclass of Java 3D’s Shape3D class, so must specify a
geometry and appearance for its shape.

The geometry is a quadrilateral (quad) with sides proportional to the movie's image
size, but with a maximum dimension (width or height) specified as an argument to the
constructor. The quad is upright, facing along the +z axis, and can be positioned
anywhere on the floor.

The quad’s appearance is two-sided, allowing the movie to be seen on the screen's
front and back. The texture is smoothed using bilinear interpolation, which greatly
reduces the pixellation of the movie image when viewed up close.

Most of this functionality is copied from the ImageCsSeries class used in the First
Person Shooter (FPS) example in Chapter 24 of KGPJ. ImageCsSeries displays a
series of GIF images on a quad. For the sake of brevity, I’ll only describe the features
of JMFMovieScreen that differ from ImageCsSeries.

Rendering the Image Efficiently
A frame from the movie is laid over the quad by being converted to a texture; this is
done in two steps: first the supplied BufferedImage is passed to a Java 3D
ImageComponent2D object, and then to a Java 3D Texture2D.

The updating of the quad’s texture occurs quite rapidly: there are 25 frame updates
per second, requiring 25 changes to the texture. It's therefore quite important that the
texturing be carried out efficiently. This is possible by ensuring that certain formats
are utilized for the BufferedImage and ImageComponent2D objects.

The ImageComponent2D object used by JMFMovieScreen is declared like so:

ImageComponent2D ic = new ImageComponent2D(
 ImageComponent2D.FORMAT_RGB,

Movies in Java 3D (Part 1) 6

 FORMAT_SIZE, FORMAT_SIZE, true, true);

 The last two arguments of the constructor specify that it uses the "by reference" and
"Y-up" modes. These modes reduce the memory needed to store the texture image,
since Java 3D will avoid copying the image from application space into graphics
memory.

In a Windows OS environment, using OpenGL as the underlying rendering engine in
Java 3D, the ImageComponent2D format should be ImageComponent2D.FORMAT_RGB
(as shown above), and the BufferedImage format should be
BufferedImage.TYPE_3BYTE_BGR. The BufferedImage format is fixed in
JMFSnapper.

More details on this technique, and other performance tips, can be found at j3d.org,
http://www.j3d.org/tutorials/quick_fix/perf_guide_1_3.html.

Linking a Texture to the Quad
The usual way of tying a texture (image) to a quad is to link the lower left corner of
the texture to the lower left corner of the quad, and specify the other connections in a
counter-clockwise direction. This approach is illustrated by Figure 4.

Figure 4. The Standard Linkage between Texture and Quad

The texture coordinates range between 0 and 1 along the x- and y- axes, with the y-
axis pointing upwards. For example, the lower left corner of the texture uses the
coordinate (0,0), and the top-right corner is at (1,1).

When the “Y-up” mode is employed, the y-axis of the texture coordinates is reversed,
to point downwards. This means that the texture coordinate (0,0) refers to the top left
of the texture, while (1,1) refers to the bottom right.

Movies in Java 3D (Part 1) 7

With the “Y-up” mode set, the texture coordinates must be assigned to different points
on the quad in order to obtain the same orientation for the image. This new
configuration is shown in Figure 5.

Figure 5. The Linkage between Texture and Quad when “Y-up” Mode is Used

The JMFMovieScreen code which connects the quad points and the texture
coordinates is:

TexCoord2f q = new TexCoord2f();
q.set(0.0f, 0.0f);
plane.setTextureCoordinate(0, 3, q);
 // (0,0) tex coord --> top left quad point (03)
q.set(1.0f, 0.0f);
plane.setTextureCoordinate(0, 2, q); // (1,0) --> top right (p2)
q.set(1.0f, 1.0f);
plane.setTextureCoordinate(0, 1, q); // (1,1) --> bottom right (p1)
q.set(0.0f, 1.0f);
plane.setTextureCoordinate(0, 0, q); // (0,1) --> bottom left (p0)

The plane object represents the quad.

Updating the Image
As explained earlier, a TimeBehavior object is set to call JMFMovieScreen’s
nextFrame() method every 40 ms. nextFrame() calls getFrame() in the JMFSnapper
object to retrieve the current movie frame as a BufferedImage object. This is assigned
to an ImageComponent2D object, and then to the quad’s texture. nextFrame() is:

// globals
private Texture2D texture; // used by the quad
private ImageComponent2D ic;

private JMFSnapper snapper; // to take snaps of the movie
private boolean isStopped = false; // is the movie stopped?

public void nextFrame()
{ if (isStopped) // the movie has been stopped
 return;

 BufferedImage im = snapper.getFrame(); // get current frame
 if (im != null) {
 ic.set(im); // assign frame to ImageComponent2D

Movies in Java 3D (Part 1) 8

 texture.setImage(0,ic); // make it the shape's texture
 }
 else
 System.out.println("Null BufferedImage");
}

snapper, the JMFSnapper object, is created in JMFMovieScreen’s constructor:

// load and play the movie
snapper = new JMFSnapper(movieFnm);

JMFSnapper's simple interface hides the complexity of the JMF code required to play
the movie and extract frames from it. In part two of this article, JMFSnapper is
replaced by a version using Quicktime for Java, with minimal changes required to
JMFMovieScreen.

5. Managing the Movie
JMF offers a high-level way of accessing specific movie frames. The code fragment
below illustrates the main elements. I've left out error checking and exception
handling.

// create a movie player, in a 'realized' state
URL url = new URL("file:" + movieFnm);
Player p = Manager.createRealizedPlayer(url);

// create a frame positioner
FramePositioningControl fpc = (FramePositioningControl)
 p.getControl("javax.media.control.FramePositioningControl");

// create a frame grabber
FrameGrabbingControl fg = (FrameGrabbingControl)
 p.getControl("javax.media.control.FrameGrabbingControl");

// request that the player changes to a 'prefetched' state
p.prefetch();

// wait until the player is in that state...

// move to a particular frame, e.g. frame 100
fpc.seek(100);

 // take a snap of the current frame
Buffer buf = fg.grabFrame();

// get its video format details
VideoFormat vf = (VideoFormat) buf.getFormat();

// initialize BufferToImage with the video format
BufferToImage bufferToImage = new BufferToImage(vf);

// convert the buffer to an image
Image im = bufferToImage.createImage(buf);

Movies in Java 3D (Part 1) 9

// specify the format of the desired BufferedImage object
BufferedImage formatImg =
 new BufferedImage(FORMAT_SIZE, FORMAT_SIZE,
 BufferedImage.TYPE_3BYTE_BGR);

// convert the image to a BufferedImage
Graphics g = formatImg.getGraphics();
g.drawImage(im, 0, 0, FORMAT_SIZE, FORMAT_SIZE, null);
g.dispose();

A media player passes through six states between being created and started. A player
in the realized state knows how to render its data, so can provide visual components
and controls when asked. I require two controls: FramePositioningControl and
FrameGrabbingControl. FramePositioningControl offers methods like seek() and skip
() for moving about inside a movie to examine a particular frame.
FrameGrabbingControl supplies grabFrame(), which pulls the current frame from the
video track of the movie.

For these controls to work, the player must be moved from its realized state into a
prefetched state. This prepares the player for playing the media, and the media data is
loaded.

The call to prefetch() is asynchronous, which means that my code must include a
waiting period until the state transition is finished. The standard JMF coding solution
is to implement a waitForState() method which causes execution to pause until a state
change event wakes it up.

The desired frame can be located in the track with seek(), then grabbed with
grabFrame(). The code must go through several translation steps to convert the
grabbed Buffer object into the BufferedImage object required by JMFMovieScreen.
Note that the BufferedImage object uses the TYPE_3BYTE_BGR format, which is
necessary for the Java 3D parts of the program to employ texturing by reference.

Sun's JMF website contains a useful collection of small examples
(http://java.sun.com/products/java-media/jmf/2.1.1/solutions/), one of
which, Seek.java, shows how to use FramePositioningControl to step through a
movie.

Hacking in Three Steps
Unfortunately, the code outlined above fails, at least in the JMF Performance Pack for
Windows v.2.1.1e. I went through several rewrites to get to a working version of
JMFSnapper.

Hack 1. The two controls, FramePositioningControl and FrameGrabbingControl, are
unavailable in the default player module used in JMF. (The Solaris and Win32
performance packs each support two different MPEG players.) The 'native modular'
player is required, which is selected by calling:

Manager.setHint(Manager.PLUGIN_PLAYER, new Boolean(true));

This player is a heavy-weight component, which interacts poorly with light-weight
Swing GUIs such as JFrame and JPanel. However, I don't need to display the player.
A more serious consequence of using the native modular player is a much longer

Movies in Java 3D (Part 1) 10

loading time for the media, and erratic playing (e.g. varying play rates and dropped
frames).

Hack 2. After pondering for a while, I decided the best way to speed up the player
was to give it less work to do. I stripped the audio tracks out of the MPEG files, and
made sure the files were saved in the (relatively) simple MPEG-1 format. Any
number of video editing tools are available to do these tasks. I used two freeware
utilities: MPEG Properties (http://www.medialab.se/mpgprop.html) and
FlasKMPEG (http://www.flaskmpeg.net/). The former is a simple utility that
supplies movie format information, while the latter is a decent editor.

The stripped down movies play promptly, their frame rates are constant, and no
frames are lost.

Nevertheless, the FramePositioningControl class is unreliable. On my WinXP
machine, seek() almost always failed, and skip() worked correctly perhaps 4 times out
of 5.

Hack 3. I bid a tearful farewell to FramePositioningControl. My frame grabbing
algorithm relies on calling FrameGrabbingControl's grabFrame() method at regular
intervals while the player is running the movie.

I now have code which reliably catches frames from video-only MPEG-1 files. It also
works fairly well with files that have video and audio tracks, but the player is slow to
start. Also, the erratic playing causes frames to be grabbed erratically.

I added some 'waiting' code at the start of JMFSnapper to deal with video+audio
movies. The JMFSnapper object waits for a player to start (i.e. to enter its started
state), and also waits for the first movie frame to become available.

Waiting for the First Frame
The JMFSnapper constructor calls a waitForBufferToImage() method which
repeatedly calls hasBufferToImage() until it detects the first video frame.

hasBufferToImage() calls FrameGrabbingControl's grabFrame(), and checks if the
returned Buffer object contains video format data. It uses this data to initialize a
BufferToImage object, which is employed subsequently to translate each grabbed
frame into an image.

// globals
private FrameGrabbingControl fg; // the frame grabber
private BufferToImage bufferToImage = null;
private int width, height; // frame dimensions

private boolean hasBufferToImage()
{
 Buffer buf = fg.grabFrame(); // take a snap
 if (buf == null) {
 System.out.println("No grabbed frame");
 return false;
 }

 // there is a buffer, but check if it's empty or not

Movies in Java 3D (Part 1) 11

 VideoFormat vf = (VideoFormat) buf.getFormat();
 if (vf == null) {
 System.out.println("No video format");
 return false;
 }

 System.out.println("Video format: " + vf);
 width = vf.getSize().width; // extract the image's dimensions
 height = vf.getSize().height;

 // initialize bufferToImage with the video format info.
 bufferToImage = new BufferToImage(vf);
 return true;
}

A minor drawback of this coding approach is that the first video frame (which causes
hasBufferToImage() to return true) is discarded after the BufferToImage object is
initialized. The frame isn't made available as a BufferedImage to JMFMovieScreen.

Taking a Snap
The most important public method of JMFSnapper is getFrame(), which is called
periodically to get the current frame in the running movie.
// global
private BufferedImage formatImg; // for the frame image

synchronized public BufferedImage getFrame()
{
 // grab the current frame as a buffer object
 Buffer buf = fg.grabFrame();
 if (buf == null) {
 System.out.println("No grabbed buffer");
 return null;
 }

 // convert buffer to image
 Image im = bufferToImage.createImage(buf);
 if (im == null) {
 System.out.println("No grabbed image");
 return null;
 }

 // convert the image to a BufferedImage
 Graphics g = formatImg.getGraphics();
 g.drawImage(im, 0, 0, FORMAT_SIZE, FORMAT_SIZE, null);

 // Overlay current time on top of the image
 g.setColor(Color.RED);
 g.setFont(new Font("Helvetica", Font.BOLD, 12));
 g.drawString(timeNow(), 5, 14);

 g.dispose();

 return formatImg;
} // end of getFrame()

Movies in Java 3D (Part 1) 12

The methods getFrame() and closeMovie() are both synchronized in JMFSnapper.
closeMovie() terminates the player, and may be called at any time. The synchronized
keywords ensure that the player can't be closed while a frame is being extracted from
it.

The formatImg BufferedImage object is initialized in JMFSnapper's constructor:

formatImg = new BufferedImage(FORMAT_SIZE, FORMAT_SIZE,
 BufferedImage.TYPE_3BYTE_BGR);

6. Other Approaches to Frame Grabbing

Sun's JMF examples website (http://java.sun.com/products/java-
media/jmf/2.1.1/solutions/) offers two other ways of grabbing frames from a
movie.

The VideoRenderer

The DemoJMFJ3D example (http://java.sun.com/products/java-
media/jmf/2.1.1/solutions/DemoJMFJ3D.html) is a combined Java 3D and JMF
application, which shows how to wrap a video around a cylinder.

The Java 3D part is virtually identical to what I’ve discussed – a BufferedImage using
the BufferedImage.TYPE_3BYTE_BGR format is passed to an ImageComponent2D
object, and then becomes the cylinder’s texture. The image can also use the
BufferedImage.TYPE_4BYTE_ABGR format, which is required by Solaris in order to
support texturing by reference.

The JMF side of the program is quite different from mine. An implementation of
JMF’s VideoRenderer interface is attached to the TrackControl object for the video
track of the movie. Once the TrackControl object is started, the process() method of
VideoRenderer is automatically called for each frame encountered in the video.
process()'s input argument is the Buffer object (i.e. the grabbed frame). Rather than
use the Buffer-to-BufferedImage translation steps I’ve outlined, DemoJMFJ3D builds
the BufferedImage by carrying out a low-level byte array copy between the Buffer’s
raw data and a pixel map for the BufferedImage.

A lot of the code in DemoJMFJ3D is used in a 3D chat room example in:

Java Media APIs: Cross-Platform Imaging, Media and Visualization
A. Terrazas, J. Ostuni, and M. Barlow
Sams, 2002
http://www.samspublishing.com/title/0672320940

I recommend this book as a good introduction to JMF, and it also has several very
interesting chapters on Java 3D.

A Processor Codec Plug-in

The FrameAccess example (http://java.sun.com/products/java-
media/jmf/2.1.1/solutions/FrameAccess.html) utilizes more advanced elements
of JMF, centered around a Processor codec plug-in.

Movies in Java 3D (Part 1) 13

The Processor class is an extended version of Player, which offers more capabilities
for processing media data. A codec plug-in (an implementation of the JMF interface
Codec) is capable of reading frames from a track, processing them in arbitrary ways,
then writing them back to the track. In particular, Codec's process() method is called
each time a frame in encountered in the track. It's supplied with a Buffer object
holding the input frame, and an empty Buffer object for the output

FrameAccess attaches a Codec plug-in to the movie's video track, and uses the input
frame Buffer object passed to process() to generate some basic statistics about the
video. This example could easily be modified to convert the Buffer object into a
BufferedImage, either using my approach or the byte array technique of
DemoJMFJ3D.

Unfortunately, the Processor class isn't required to support plug-ins; as a consequence,
plug-ins don't work in JMF 1.0, and in some 2.0-based versions.

It’s a good idea to search the jmf-interest mailing list
(http://archives.java.sun.com/archives/jmf-interest.html) before utilizing
Sun’s JMF examples, since many of the programs have problems in different versions
of JMF.

