
Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

1  Andrew Davison. 2003

Chapter 18. Networking Basics

The next four chapters are about networked games.

This chapter runs through networking fundamentals (e.g. what are the client/server
and peer-to-peer models?) and explains basic network programming with sockets,
URLs, and servlets

Chapter 19 is about online chat, the “hello world” of network programming. We look
at three chat variants: one using a client/server model, one employing multicasting,
and chatting with servlets.

Chapter 20 describes a networked version of the FourByFour application, a turn-based
game which is a demo in the Java 3D distribution.

Chapter 21 revisits the Tour3D application of chapter ?? (the robot walking about a
checkboard landscape), and adds networking to allow multiple users to share the
world. We also discuss some of the advanced issues concerning networked virtual
environments (NVEs), of which NetTour3D is a simple example.

The structure of this chapter in more detail:

• descriptions of the core attributes of network communication;
• explanations of IP, UDP, TCP, network addresses, and sockets;
• overviews of the client/server and peer-to-peer models;
• four small client/server applications (sequential, threaded, nonblocking

multiplexing, and UDP multiplexing);
• a small peer-to-peer application (UDP multicasting);
• the problem of firewalls, leading to URLs and servlets for HTTP tunneling;
• a brief word about some other kinds of Java networking (RMI, Jini,

JavaSpaces, the Java Shared Data Toolkit).

1. The Elements of Network Communication
Network communication is often characterized by five attributes:

1) Topology
2) Bandwidth
3) Latency
4) Reliability
5) Protocol.

1.1. Topology
Topology is the interconnection ‘shape’ of machines linked over a network.

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

2  Andrew Davison. 2003

Popular shapes are the ring, star, and all-to-all, illustrated in Figure 1.

Figure 1. Some Network Topologies.

Choosing the best topology for an application is a complicated matter, depending on
many network characteristics, such as bandwidth and latency, and the particular
communication patterns inherent in the system.

The star topology, present in client/server applications, is the most popular, while the
all-to-all topology appears (in modified forms) in peer-to-peer systems.

1.2. Bandwidth
Bandwidth is the rate at which the network can deliver data from a sender to the
destination host. Modems can typically deliver 14,400-56,000 bits/second (14.4 – 56
Kbps), Ethernet can attain 10-100 Mbps (million bits/second), with newer
technologies offering 1 Gbps (gigabits/second). Fiber optic cable exhibits speeds of
up to 10 Gbps.

Dial-up usage is declining in the US, but 66.2% of users still connect with modems.
According to March 2003 figures from Nielsen/NetRatings (http://www.nielsen-
netratings.com/), 53.26% use 56 Kbps modems, 9.79% have 28/33.3 Kbps, and 3.17%
are stuck with 14.4 Kbps modems.

A study by MetaFacts (http://www.metafacts.com/) showed that the vast majority of
the 25,000 people they surveyed still utilize low-speed internet access; only 9% have
DSL and 16% use cable modems. However, almost half of the narrowband users were
considering an upgrade and, if current rates of uptake continue, broadband will be
more widespread than dial-up by 2005.

More details can be found in the article:

“Your Speed May Vary”
Robyn Greenspan, April 25th, 2003

host1

host2

host3host4

host5

host1

host2

host3host4

host5 server

host1

host2

host3host4

host5

Ring Topology Star Topology

All-to-All Topology

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

3  Andrew Davison. 2003

http://cyberatlas.internet.com/markets/
 broadband/article/0,,10099_2196961,00.html

These statistics indicate that 56 Kbps is a realistic bandwidth estimate for users, at
least for the next year or two.

Bandwidth restricts the number of players in a game: too many participants will
swamp the network with data traffic. However, the nature of the extra load depends
on topology. For example, a message sent around a ring will have to travel through
many links, occupying bandwidth for longer. A message travelling through a star
topology only requires two links to go from any sender to any receiver, while a
message in an all-to-all topology goes directly to its destination.

A knowledge of the available bandwidth allows us to estimate upper limits for the
amount of data that can be transferred per each frame rendered in a game, and to
suggest a likely maximum for the number of users.

A 56 Kbps modem, means that 7000 bytes can be transferred per second. We assume
that the game updates at 30 frames/sec, and each player sends and receives data from
all the other players during each frame update. The total amount of data that can be
transferred each frame is 7000/30 ≈ 233 bytes/frame. This is about 117 bytes for
output, 117 bytes for input

If there are n players, then each player will send n-1 output messages and receive n-1
input messages at each frame update. As n increases, the 117 bytes limit will quickly
be reached.

We can estimate the maximum number of users by starting with a lower bound for the
amount of data that must be transferred during each frame update. For instance, if the
lower bound is 20 bytes, and there is 117 bytes available for output, then only a
maximum of about 6 messages can be sent out (117/20), which means seven players
altogether in the game!

These kinds of ballpark figures explain why games programmers try very hard to
avoid broadcast models linked to frame rate, and why transmitted data is kept as small
as possible. Some techniques for reducing data transmission in multiplayer games are
discussed in chapter 21, when a networked version of the Tour3D application is
developed.

A network protocol solution is to move from a broadcast model to multicasting.
Multicasting is a form of subscription-based message distribution: a player sends a
single message to a multicast group, where it is automatically distributed to all the
other players who are currently subscribed to that group. The saving is in the number
of messages sent out: one instead of n-1.

A similar saving can be made in a star topology: a player sends a single message to
the server, which then sends copies to the other players. This is a software solution,
dependent on the server’s implementation, which allows for further server-side
optimizations of the communication protocols.

Multicasting and client/server systems are described more fully below.

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

4  Andrew Davison. 2003

1.3. Latency
Latency is the amount of time required to transfer a bit of data from one place to
another (typically from one player’s machine to another). In a MMORPG (Massively
Multiplayer Online Role-Playing Game), latency exhibits itself as the delays when
two players are interacting (e.g. shooting at each other); the goal is to reduce latency
by as much as possible.

Most latency can be accounted for by the modems involved in the network: typically
each one adds 30-40 ms to the latency. A client/server system may involve four
modems between the sending of a message and its reception by another user: the
sender’s modem, the modem inbound to the server, the modem outbound from the
server, and the receiver’s modem, resulting in a total latency of perhaps 160 ms.

Another major contributor, especially over the internet, are routers, which may easily
add hundreds of milliseconds. This is due to their caching of data before forwarding
it, and delays while a router decides where to send a message. Routers may drop data
when overloaded, which can introduce penalties in the 400-500 ms range for
protocols like TCP which detect lost data and resend it.

Another issue is the speed of light – games would certainly benefit if it was faster! A
message sent from the east to west coast of the US must take about 20 ms to get there.
In general, about 8 ms of travel time are added for each time zone that a message
passes through.

Designers often incorporate tolerances of 250 ms into the communication models
used in games. A key observation is that most games do not require complete
synchronization between all the players all the time. Synchronization is usually
important only for small groups of players (e.g. those in close proximity inside the
game world), and even then only at certain moments.

This relaxing of the synchronization requirement opens the door to various
approaches based on temporarily ‘guessing’ information about other players. For
instance, the game running on the user’s machine estimates other players’ current
positions and velocities, and corrects them when the correct data arrives over the
network.

Another implementation strategy is to decouple general game play from the
networking side of the application. A separate thread (or process) waits for incoming
data, so the rest of the application can continue unaffected.

Latency is essentially a WAN or internet issue; applications running over a LAN
rarely need to consider latency, which may total less than 10 ms.

1.4. Reliability
Increased network reliability may increase latency time. For example, the possibility
that a message may be lost while travelling over the network, led to the development
of the TCP protocol which deals with data loss by resending. The disadvantage is that
the actual arrival time of a message can be increased significantly, so impacting
latency.

A desire to measure reliability has led to more complex checking of data based on
cyclic redundancy checks (CRCs), which add further overheads.

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

5  Andrew Davison. 2003

An alternative view is to live with a certain degree of unreliability, reducing
overheads as a consequence. Many forms of internet-based multimedia, such as
streaming audio and video, take this line because losing small amounts of data only
means a momentarily loss in sound or picture quality. The rapid transmission of the
data is a more valued attribute.

1.5. Protocol
A protocol is a notation for specifying the communication patterns between the
components of a networked application.

Different protocols support different capabilities, with the choice of protocol
depending on many factors, such as the type of data being transmitted, the number of
destinations, and the required reliability.

Most gaming application uses multiple protocols: one for data, another for control,
and perhaps others specialised for particular types of data such as audio or video.

Different protocols exist for different levels of communication, which are defined in
the ISO OSI model (see Figure 2).

Figure 2. The ISO OSI Model

A protocol suite is a collection of related protocols for different layers of the OSI
model. The most popular is TCP/IP, originally developed by DARPA in the early
1980’s. Its wide popularity stems from it being implemented on everything from PCs
to supercomputers, not being vendor specific, and its suitability for all kinds of
network, from LANs up to the internet.

7

6

5

4

3

2

1

high-level
protocol

low-level
protocol

Application

Presentation

Session

Transport

Network

Data Link

Physical

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

6  Andrew Davison. 2003

This isn’t a book about data communications, so we’ll only consider TCP/IP within a
simplified version of the OSI model, limited to just four layers. Communication
between two networked systems can then be viewed as in Figure 3.

Figure 3. Communication between two Systems.

Figure 3 shows that application-level protocols, which include FTP, HTTP (the Web
protocol), and SNMP (the e-mail protocol), are implemented on top of lower-level
protocols (TCP or UDP).

At a particular layer, the data appears to cross directly to the equivalent layer on the
other system. In fact, data is passed down through the layers, across the physical
network, and back up through the layers of the other system. As each layer is
descended, the user’s data is wrapped inside more header (and footer) information.
The headers (and footers) are removed as the data rises through the layers on the other
system.

The data link layer corresponds to the OSI physical and data layers. Frames are
delivered between two directly connected machines.

The network layer delivers datagrams between any two machines on the internet,
which may be separated by intervening gateways/routers. Each datagram is routed
independently, which means that two datagrams sent from the same source may travel
along different paths, and may arrive in a different order from the way they were sent.
Also, since a gateway/router has limited memory, it may discard datagrams if too
many arrive at once. A node or link in the network may fail, losing packets. For these
reasons, the IP protocol makes no guarantees that a datagram will arrive at its
destination.

A datagram has size constraints, which often forces a single piece of user data to be
divided into multiple datagrams. The data arriving at the receiver may therefore have
missing pieces, and parts in the wrong order.

A datagram is sent to an IP address, which represents a machine’s address as a 32-bit
integer. Programs usually employ IP addresses in dotted-decimal form (e.g.
172.30.0.5) or as a dotted-name (e.g. fivedots.coe.psu.ac.th). Dotted-name to IP
address translation is carried out using a combination of local machine configuration
information and network naming services such as the Domain Name System (DNS).

Application
e.g. FTP client

Transport
e.g. TCP

Network
e.g. IP

Data Link
e.g. ethernet
controller

The physical network

Application
e.g. FTP server

Transport
e.g. TCP

Network
e.g. IP

Data Link
e.g. ethernet
controller

FTP protocol

TCP protocol

IP protocol

ethernet frames

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

7  Andrew Davison. 2003

The IP protocol is currently in transition from version 4 to version 6 (IPv6), which
supports 128-bit addresses, a simpler header, multicasting, authentication, and
security elements. Java supports both IPv4 and IPv6 through its InetAddress class.

The transport layer delivers datagrams between transport end-points (machine ports)
for any two machines on the Internet. An application’s location is specified by the IP
address of its host, and the number of the port where it is ‘listening’. A port number is
a 16-bit integer.

The TCP/IP transport layer protocols are:

• UDP: the User Datagram Protocol

• TCP: the Transmission Control Protocol
UDP is a connectionless transport service: a user message is split into datagrams and
each datagram is sent along an available path to its destination. There is no
(expensive) long-term, dedicated link created between the two systems. UDP inherits
the drawbacks of the IP protocol: datagrams may arrive in any order, and there is no
guarantee that a datagram will arrive. UDP is often compared to the postal service.

TCP is a connection-oriented transport service. From the user’s point of view, a long-
term, dedicated link is set up between the sender and receiver, and two-way stream-
based communication then becomes possible. For this reason, TCP is often compared
to the telephone service.

However, the ‘dedicated’ link is implemented on top of IP, and so packets of
information are still being sent, with the chance of reordering and loss. Consequently,
TCP employs sophisticated error-checking internally to ensure that its component
TCP datagrams arrive in the order they were sent, and that none are lost. This
overhead may be too severe for gaming applications which value low latency.

Both UDP and TCP use a socket data structure to represent an end-point in the
communication. For UDP, the socket is something like a mailbox, while a TCP socket
is more like a telephone.

Java supports both TCP and UDP. A programmer uses the Socket class for creating a
sender’s TCP socket, and the ServerSocket class for the recipient. Java offers the
DatagramSocket for both sides of UDP communication, and a DatagramPacket class
for creating UDP packets.

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

8  Andrew Davison. 2003

2. The Client/Server Model
The client/server model is the most common networking architecture employed in
distributed applications. A server is a program (or collection of cooperating programs)
which provides services and/or manages resources on the behalf of other programs,
known as its clients. Figure 4 shows a typical client/server environment.

Figure 3. A Simple Client/Server

A key advantage of the client/server approach is the ability for the server to control its
clients, by localising important processing and data within itself. For example, in
online games, decisions about the outcome of a player’s actions (e.g. the shooting of a
monster) will be made by the server. The alternative is to delegate this to the client’s
application which may lead to abuse by hackers.

A central location for client data and processing makes it easier to monitor users,
administer them, and charge them for game playing. These are significant benefits for
commercial multiplayer gaming.

The server is an arbiter for conflicting client requests. For instance, it is impossible for
two clients to update the same data state at the same time.

Placing state information in one place makes changing it straightforward, and avoids
inconsistencies arising when updating multiple copies stored on clients.

Concentrating processing on the server-side permits the client side to run on a less
powerful machine, an important consideration for network applications on PDAs or
phones.

Concentrating most of the application in the server makes it is easier to maintain and
update, compared to trying to upgrade code spread over a large, possibly non-
technical, user base.

The main disadvantage of a ‘fat’ server is the potential for it to become a bottleneck,
overloaded by too many clients, increasing latency to unacceptable levels. Excessive
numbers of clients may also overload the server’s data storage capabilities.

Another significant issue is reliability – if the server fails then everyone will be
affected. Almost as bad as failure is the (temporary) non-availability of the server,

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

9  Andrew Davison. 2003

either because it is currently dealing with too many users, or because of attack by
hackers, or because it has been taken offline for servicing or upgrades.

These concerns have led to the widespread use of multiple servers, sometimes
specialised for different elements of client processing, or acting as duplicates, ready to
stand-in for a server which fails. Different servers may be in different geographical
locations, catering only to clients in those areas, so improving latency times.

Many MMORPGs map areas of their virtual world to different physical servers (e.g.
Ultima Online does so). When a client moves across a boundary in the world, he/she
is switched to a different server. This also acts as a form of load balancing, although
its success depends on the different zones having roughly the same levels of
popularity.

High-powered servers are not cheap, especially ones with complex database
management, transaction processing, security, and reliability capabilities.

A successful application (game) will require an expensive, high-speed internet
connection. A predicted trend is that gaming companies will start to offer their own
backbone networks, giving them greater control over bandwidth, latency, and the
specification of firewall access. This latter point will make it easier for applications to
use multiple protocols (e.g UDP for data, TCP for commands) without worrying about
clients being unable to create the necessary communication links due to firewall
restrictions.

3. The Peer-to-Peer Model
Peer-to-Peer (P2P) encourages ordinary people to share their resources with others;
resources include hard disk storage, CPU time, and files (audio, video). This is
different from today's Web/internet where business/government/university servers
present information, and the rest of us read it. The difference is illustrated by Figure 4.

Figure 4. Client/Server Versus P2P.

P2P isn’t a new idea: the early internet (at that time, the Arpanet) was designed to be
P2P so that US universities and government installations could share computing
resources.

server

clients

P2P

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

10  Andrew Davison. 2003

Many of the killer apps of the 1980’s, such as telnet and e-mail, were client/server
based but their usage patterns were symmetric – most machines ran both clients and
servers. Usenet is a P2P application: it employs a decentralized file sharing model for
distributing news, but an unofficial backbone has developed over time, based around
server inequalities in storage capacity, processing speeds, and network connectivity.

Things started to change with the growth of the Web. It is a client/server model like
most of the earlier applications, but differences lie in its political and social
components.

Most users only browse the Web, they don’t run their own Web servers. This is due to
their lack of technical knowledge, the difficulty of setting up a server, and because
commercial ISPs do not allow them. Many ISPs only allocate dynamic addresses to
clients making the running of servers impossible, and impose firewall restrictions
which only permit Web page access. Broadband connections, such as cable modems,
offer asymmetric bandwidth which makes the serving of material slow.

The restrictions on users (e.g. firewalls) are quite recent, triggered by the lack of
accountability mechanisms in the internet protocol: there are no technological barriers
to users sending spam, and attacking machines. The original designers made the fatal
assumption that users are responsible! The problem is sometimes called “the Tragedy
of the Commons”: a commonly owned resource will be overused until it degrades,
due to the users putting self-interest first.

The issue of accountability has led to better support for cryptography in IPv6, and
experimental technologies such as micropayments and reputation schemes.

With micropayments, a person wishing to use someone else’s resource (e.g. one of
their files) must compensate that person in some way. This might be in the form of
digital money or another valuable resource. Micropayments have the benefit of
solving many forms of hacker attack, such as spam and distributed denial of service,
since the hacker must pay an excessive amount in order to ‘flood’ the network with
their datagrams.

A reputation scheme typically requires a respected user to verify the reliability of a
new user. This idea is well-known in Java which utilizes encrypted signatures and
third party verifiers to make trusted applets.

Many P2P systems are concerned with anonymity, so that external agencies cannot
know who is involved in a P2P group, where files are stored, and who has published
what. These aims make accountability and trust harder to support.

Part of the drive behind these systems is the case of Napster, which was effectively
closed down because of its publication of music files that it hadn’t authored. Napster
could be targeted because it was a hybrid of P2P and client/server: a Napster server
stored details about who was logged on, and the published files. Unfortunately, this is
a common situation – most current P2P systems require some server capabilities. For
instance, games must validate new players, maintain account information, supply
current status information for the game, and notify other users when a player joins or
leaves.

Pure P2P has the advantage that there is no central point (no server) whose demise
would cause the entire system to stop. This makes P2P resistant to some forms of
attack, such as distributed denial of service and legal rulings!

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

11  Andrew Davison. 2003

The main drawback of P2P is paradoxically its lack of a server, which makes it
difficult to control and manage the overall application.With no server, how does a
new user discover what is available?

The P2P diagram in Figure 4 suggests that participants use broadcasting to
communicate, but this approach soon consumes all the available bandwidth, for
reasons outlined earlier. Large scale P2P applications use IP multicasting with UDP
packets, which currently relies on the MBone, a virtual overlay installed on the
internet to facilitate multicasting. A special pseudo-IP address, called a multicast IP
address or class D address, is employed, which can be in the range 224.0.0.0 to
239.255.255.255 (though some addresses are reserved).

Multicasting avoids the potential for loops and packet duplication inherent in
broadcasting, since it creates a tree-based communication pattern between the
multicast group members. Java supports IP multicasting with UDP.

The Java Media Framework (JMF) is an API extension to Java for handling time-
based media, specifically streaming audio and video (see
http://java.sun.com/products/java-media/jmf/). The underlying protocol is RTP (the
Real-Time Transport Protocol), implemented on top of UDP. Many networked
multimedia systems use RTP and multicasting.

JXTA provides core functionality so that developers can build P2P services and
applications (see http://www.jxta.org/). The core JXTA layer includes protocols and
building blocks to enable key mechanisms for P2P networking. These include
discovery, transport (e.g. firewall handling and limited security), and the creation of
peers and peer groups.

The JXTA specification is not tied to any particular programming language or
platform/device. Its communication model is general enough so that it can be
implemented on top of TCP/IP, HTTP, Bluetooth, and many other protocols.
Currently JXTA utilizes Java; it was initiated at Sun Microsystems by Bill Joy and
Mike Clary. A good site for finding out about P2P is O’Reilly’s
http://www.openp2p.com/.

4. Client/Server Programming in Java

The four examples in this section have a similar structure: the server maintains a high
scores list (similar to the list in the arcade game of chapter ??), and the clients read
and add scores to the list. The four variants of this idea are:

1. A client and sequential server. The server can only process a single client at a
time. The TCP/IP protocol is utilized.

2. The same client, same protocol as (1), but the server is threaded enabling it to
process multiple clients at the same time. Synchronization issues arise because the
high score list may be accessed by multiple threads at the same time.

3. The same client, same protocol as (1) and (2), but Java’s NIO is used to
implement a multiplexing server without the need of threads.

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

12  Andrew Davison. 2003

4. A client and server using UDP. The server exhibits multiplexing due to the self-
contained nature of datagram communication.

4.1. TCP Client and Sequential Server
The communications network created by the client and server is shown in Figure 5.

Figure 5. Client and Sequential Server.

The server instantiates a ServerSocket object at port 1234 and waits for a connection
from a client by calling accept(). When a connection is established, a new socket is
created (some people call this a rendezvous socket), which is used for the subsequent
communication with the client. Input and output streams are layered on top of the
socket, which is possible because of the bi-directional nature of a TCP link. When the
client has finished, the rendezvous socket is closed (terminated), and the server waits
for another connection.

The client instantiates a Socket object to link to the server at its specified IP address
and port. When a connection is obtained, the client layers input and output streams on
top of its socket, and commences communication.

A great aid to understanding networked applications, is to understand the protocol
employed between clients and the server. In simple examples (like these), this means
the message interactions between them.

A client can send the following messages, which all terminate with a newline
character. The text after the ‘//’ states how the server responds:

• get // the server returns the high score list

• score name & score & // the server adds the name/score pair to its list

• bye // the server closes the client’s connection

A client only receives one kind of message from the server, the high scores list, which
is sent in response to a ‘get’ request. The list is sent as a string terminated with a
newline character. The string has the format:

HIGH$$ name1 & score1 & nameN & scoreN &

The server only stores at most ten names and scores, so the string is unlikely to be
excessively long.

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

13  Andrew Davison. 2003

The UML diagrams for the various classes are given in Figure 6. Only the public
methods are shown.

Figure 6. UML Classes for the Client and Sequential Server.

A HighScores object manages the high scores list, with each name/score pair held in a
ScoreInfo object.

The ScoreServer Class
The constructor for the ScoreServer creates the ServerSocket object, then enters a
loop which waits for a client connection by calling accept(). When accept() returns,
the server processes the client, then goes back to waiting for the next connection.

 public ScoreServer()
 {
 hs = new HighScores();
 try {
 ServerSocket serverSock = new ServerSocket(PORT);
 Socket clientSock;
 BufferedReader in; // i/o for the server
 PrintWriter out;

 while (true) {
 System.out.println("Waiting for a client...");
 clientSock = serverSock.accept();
 System.out.println("Client connection from " +

clientSock.getInetAddress().getHostAddress());

 // Get I/O streams from the socket
 in = new BufferedReader(new InputStreamReader(
 clientSock.getInputStream()));
 out = new PrintWriter(clientSock.getOutputStream(), true);

 processClient(in, out); // interact with a client

 // Close client connection
 clientSock.close();
 System.out.println("Client connection closed\n");
 hs.saveScores(); // backup scores after client finish

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

14  Andrew Davison. 2003

 }
 }
 catch(Exception e)
 { System.out.println(e); }
 } // end of ScoreServer()

The server-side socket is created with the ServerSocket class:
ServerSocket serverSock = new ServerSocket(PORT);

The waiting for a connection is done via a call to accept():
Socket clientSock;
 :
clientSock = serverSock.accept();

When accept() returns it instantiates the rendezvous socket, clientSock.

clientSock can be used to retrieve client details, such as its IP address and host name.

The input stream is a BufferedReader to allow calls to readLine(). Since client
messages end with a newline, this is a convenient way to read messages. The output
stream is a PrintWriter, allowing println() to be employed. The stream’s creation
includes a boolean to switch on autoflushing so there is no delay between printing and
actual output to the client.

in = new BufferedReader(new InputStreamReader(
 clientSock.getInputStream()));
out = new PrintWriter(clientSock.getOutputStream(), true);

The client is processed by a call to processClient(), which contains the application-
specific coding. Almost all the rest of ScoreServer is reusable in different sequential
servers.

When processClient() returns, the communication has finished and the client link can
be closed:

clientSock.close();

The call to saveScores() in the HighScores object is a precautionary measure: it saves
the high scores list to a file, so data will not be lost if the server crashes.

Most of the code inside the constructor is inside a try-catch block, to handle IO and
network exceptions.

processClient() deals with message extraction from the input stream, which is
complicated by having to deal with link termination.

The connection may close because of a network fault, which is detected by a null
being returned by the read, or be signaled by the client sending a “bye” message. In
both cases, the loop in processClient() finishes, passing control back to the
ScoreServer constructor.

 private void processClient(BufferedReader in, PrintWriter out)
 {
 String line;
 boolean done = false;
 try {
 while (!done) {
 if((line = in.readLine()) == null)

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

15  Andrew Davison. 2003

 done = true;
 else {
 System.out.println("Client msg: " + line);
 if (line.trim().equals("bye"))
 done = true;
 else
 doRequest(line, out);
 }
 }
 }
 catch(IOException e)
 { System.out.println(e); }
 } // end of processClient()

The method uses a try-catch block to deal with possible IO problems.

processClient() does a very common task, and should be portable across various
applications. It requires that the termination message (“bye”) can be read using
readLine().

doRequest() deals with the remaining two kinds of client message: “get” and “score”.
Most of the work in doRequest() involves the checking of the input message
embedded in the request string. The score processing is carried out by the HighScores
object.

 private void doRequest(String line, PrintWriter out)
 {
 if (line.trim().toLowerCase().equals("get")) {
 System.out.println("Processing 'get'");
 out.println(hs.toString());
 }
 else if ((line.length() >= 6) && // "score "
 (line.substring(0,5).toLowerCase().equals("score"))) {
 System.out.println("Processing 'score'");
 hs.addScore(line.substring(5)); // cut the score keyword
 }
 else
 System.out.println("Ignoring input line");
 }

It is a good idea to include a default else case to deal with unknown messages. In
doRequest() the server only reports problems to standard output on the server-side. It
may also be advisable to send a message back to the client.

The HighScores Class
The HighScores object maintains an array of ScoreInfo objects, which it initially
populates by calling loadScores() to load the “scores.txt” text file from the current
directory. saveScores() writes the array’s contents back into “scores.txt”.

It is preferable to maintain simple data (like these name/score pairs) in text form
rather than as a serialized object. This makes the data easy to examine and edit with
ordinary text processing tools.

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

16  Andrew Davison. 2003

The ScoreClient Class
The ScoreClient class seems complicated because of its GUI interface. Figure 7
shows a ScoreClient object.

Figure 7. A ScoreClient Object.

The large text area is represented by the jtaMesgs object. There are two text fields for
entering a name and score. Pressing enter in the score field will trigger a call to
actionPerformed() in the object, as will pressing the “Get Scores” button.

ScoreClient calls makeContact() to instantiate a Socket object for the server at its
specified IP address and port. When the connection is made, input and output streams
are layered on top of its socket.

 :
 private static final int PORT = 1234; // server details
 private static final String HOST = "localhost";

 private Socket sock;
 private BufferedReader in; // i/o for the client
 private PrintWriter out;
 :

 private void makeContact()
 {
 try {
 sock = new Socket(HOST, PORT);
 in = new BufferedReader(

new InputStreamReader(sock.getInputStream()));
 out = new PrintWriter(sock.getOutputStream(), true);
 }
 catch(Exception e)
 { System.out.println(e); }
 }

“localhost” is given as the server’s host name, since the server is running on the same
machine as the client. “localhost” is a loopback address and can be employed even
when the machine is disconnected from the internet, although the TCP/IP protocol

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

17  Andrew Davison. 2003

must be set up in the OS. On most systems (including Windows), it is possible to
enter the command “ping localhost” to check the functioning of the loopback.

actionPerformed() differentiates between the two kinds of user input:

 public void actionPerformed(ActionEvent e)
 // Either a name/score is to be sent or the "Get Scores"
 // button has been pressed
 {
 if (e.getSource() == jbGetScores)
 sendGet();
 else if (e.getSource() == jtfScore)
 sendScore();
 }

sendGet() shows how the client sends a message to the server (in this case a “get”
string), and waits for a response (a “HIGH$$...” string), which it displays in the text
area.

 private void sendGet()
 {
 // Send "get" command, read response and display it
 // Response should be "HIGH$$ n1 & s1 & nN & sN & "
 try {
 out.println("get");
 String line = in.readLine();
 System.out.println(line);
 if ((line.length() >= 7) && // "HIGH$$ "
 (line.substring(0,6).equals("HIGH$$")))
 showHigh(line.substring(6).trim());

 // remove HIGH$$ keyword and surrounding spaces
 else // should not happen
 jtaMesgs.append(line + "\n");
 }
 catch(Exception ex)
 { jtaMesgs.append("Problem obtaining high scores\n");
 System.out.println(ex);
 }
 }

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

18  Andrew Davison. 2003

Figure 8 shows how the high score list looks in the text area window.

Figure 8. High Scores Output in the Client.

sendGet() makes the client wait for the server to reply:
out.println("get");
String line = in.readLine();

This means that the client will be unable to process further user commands until the
server has sent back the high scores information. This is not a good design strategy for
more complex client applications. The chat client of chapter 19 shows how threads
can be employed to make network interaction separate from the rest of the
application.

The client should send a “bye” message before it breaks a connection, and this is
achieved by calling closeLink() when the client’s close box is clicked:

 public ScoreClient()
 {
 super("High Score Client");
 :
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e)
 { closeLink(); }
 });
 :
 } // end of ScoreClient();

 private void closeLink()
 {
 try {
 out.println("bye"); // tell server
 sock.close();
 }
 catch(Exception e)
 { System.out.println(e); }

 System.exit(0);
 }

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

19  Andrew Davison. 2003

An Simple Alternative Client
Since the client is communicating with the server using TCP/IP, it is possible to
replace the client with the telnet command:
 telnet localhost 1234

This will initiate a TCP/IP link at the specified host address and port, where the server
is listening. The advantage is the possibility of testing the server without writing a
client. The disadvantage is that the user must type the messages directly, without the
help of a GUI interface. Figure 9 shows a telnet window after the server has
responded to a “get” message.

Figure 9. A Telnet Client.

It may be necessary to switch on the ‘local echo’ feature in telnet’s preferences dialog
before user typing (e.g. the “get” message) is seen on screen.

4.2. TCP Client and Multithreaded Server
The ScoreServer class is inadequate for real server-side applications because it can
only deal with a single client at a time. The ThreadedScoreServer class described in
this section solves that problem by creating a thread (a ThreadedScoreHandler object)
to process each client who connects. Since a thread interacts with each client, the
main server is free to accept multiple connections. Figure 10 shows this in diagram
form.

Figure 10. Clients and Multithreaded Server.

ScoreClient
objects

:

Threaded
ScoreServer

1234

Threaded
ScoreHandler

objects

network links

HighScores
object

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

20  Andrew Davison. 2003

The ScoreClient class need not be changed: a client is unaware that it is talking to a
thread.

The HighScores object is referenced by all the threads (indicated by the dotted lines in
Figure 10) so that the scores can be read and changed. The possibility of change
means that the data inside HighScores must be protected from concurrent updates by
two or more of the threads, and from an update occurring at the same time as the
scores are being read. These synchronization problems are quite easily solved, as
explained below.

ThreadedScoreServer is simpler than its sequential counterpart, since it no longer
processes client requests. It consists only of a constructor which sets up a loop waiting
for client contacts, handled by threads:

 public ThreadedScoreServer()
 {
 hs = new HighScores();
 try {
 ServerSocket serverSock = new ServerSocket(PORT);
 Socket clientSock;
 String cliAddr;

 while (true) {
 System.out.println("Waiting for a client...");
 clientSock = serverSock.accept();
 cliAddr = clientSock.getInetAddress().getHostAddress();
 new ThreadedScoreHandler(clientSock, cliAddr, hs).start();
 }
 }
 catch(Exception e)
 { System.out.println(e); }
 } // end of ThreadedScoreServer()

Each thread gets a reference to the client’s rendezvous socket and the HighScores
object.

ThreadedScoreHandler contains almost identical code to the sequential ScoreServer
class; for example, it has processClient() and doRequest() methods. The main
difference is the run() method:

 public void run()
 {
 try {
 // Get I/O streams from the socket
 BufferedReader in = new BufferedReader(
 new InputStreamReader(clientSock.getInputStream()));
 PrintWriter out =
 new PrintWriter(clientSock.getOutputStream(), true);

 processClient(in, out); // interact with a client

 // Close client connection
 clientSock.close();
 System.out.println("Client (" + cliAddr +

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

21  Andrew Davison. 2003

 ") connection closed\n");
 }
 catch(Exception e)
 { System.out.println(e); }
 }

A comparison with the sequential server shows that run() contains code like that
executed in ScoreServer’s constructor after a rendezvous socket is created.

The HighScores Class
The ThreadedScoreHandler objects call HighScores’ toString() and addScore()
methods. toString() returns the current scores list as a string, while addScore() updates
the list.

The danger of concurrent access to the scores list is easily avoided since the data is
maintained in a single object which is referenced by all the threads. Manipulation only
occurs through the toString() and addScore() methods.

A ‘lock’ can be placed on the object by making the toString() and addScore() methods
synchronized:

 synchronized public String toString()
 { ... }

 synchronized public void addScore(String line)
 { ... }

The lock means that only a single thread can be executing inside toString() or
addScore() at any time. Concurrent access is no longer possible.

This approach is relatively painless because of the decision to wrap the shared data
(the scores list) inside a single shared object.

One concern may be the impact on response times by prohibiting concurrent access,
but both toString() and addScores() are short, simple methods which quickly return
after being called.

One advantage of the threaded handler approach is not illustrated by this example:
each handler can store client-specific data locally. For instance, each
ThreadedScoreHandler could maintain information about the history of client
communication in its session. Since this data is managed by each thread, it relieves
the main server of unnecessary complexity.

4.3. TCP Client and Multiplexing Server
Java 2 Standard Edition 1.4. introduced nonblocking sockets, which allow networked
applications to communicate without blocking the processes/threads involved. This
made it possible to implement a server which can multiplex (switch) between
different clients without the need for threads.

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

22  Andrew Davison. 2003

At the heart of this approach is a method called select(), which may remind UNIX
network programmers of the select() system call. They are closely related, and the
coding strategy for a multiplexing server in Java is quite close to one in C on UNIX.

An advantage of the multiplexing server technique is the return to a single server
without threads. This may be an important gain on a platform with limited resources.

A related advantage is the absence of synchronization problems with shared data,
because there are no threads. The only process is the server.

A disadvantage is that any client-specific state (which had previously been placed in
each thread) must be maintained by the server. For instance, if there are multiple
clients connected to the server, each with a communications history to be maintained,
then the server must hold all their histories.

Nonblocking sockets mean that method calls that might potentially block forever,
such as accept() and readLine(), need only be executed when data is known to be
present, or can be wrapped in timeouts. This is particularly useful for avoiding some
forms of hacker attack, or dealing with users who are too slow!

Figure 11 shows the various objects involved in the multiplexing server example.

Figure 11. Clients and Multiplexing Server.

Selector is the main new class in the nonblocking additions to Java. A Selector object
is able to monitor multiple socket channels, and returns a collection of keys (client
requests) as required. A socket channel is a new type of socket (from the
SocketChannel class).

ClientInfo is our own class, developed for this application. Each ClientInfo object in
the hash map contains details about a client, and methods for receiving and sending
messages to the client. The principal complexity of ClientInfo is involved in dealing
with nonblocking client input.

The main purpose of the server is to listen to several socket channels at once by using
a Selector object. Initially, the server’s own socket channel is added to the selector,
and subsequent connections by new clients, represented by new socket channels, are
also added.

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

23  Andrew Davison. 2003

When input is available from a client, it is read immediately. However, the input may
only contain part of a message: there is no waiting for a complete message.

The pseudo-code algorithm for the server is given below.

create a SocketChannel for the server;
create a Selector;
register the SocketChannel with the Selector (for accepts);

while(true) {
 wait for keys (client requests) in the Selector;
 for each key in the Selector {
 if (key is Acceptable) {
 create a new SocketChannel for the new client;
 register the SocketChannel with the Selector (for reads);
 }
 else if (key is Readable) {
 extract the client SocketChannel from the key;
 read from the SocketChannel;
 store partial message, or process full message;
 }
 }
}

The server waits inside a while loop for keys to be generated by the Selector. A key
contains information about a pending client request. A Selector object may store four
types of key:

• a request by a new client to connect to the server (an isAcceptable key)

• a request by an existing client to deliver some input (an isReadable key)

• a request by an existing client for the server to send it data (an isWriteable
key)

• a request by a server accepting a client connection (an isConnectable key)

The first two request types are used in the multiplexing server. The last type of key is
typically employed by a nonblocking client to detect when a connection has been
successfully made with a server.

The socket channel for the server is created in the SelectScoreServer() constructor:

 ServerSocketChannel serverChannel = ServerSocketChannel.open();
 serverChannel.configureBlocking(false); // use non-blocking mode

 ServerSocket serverSocket = serverChannel.socket();
 serverSocket.bind(new InetSocketAddress(PORT_NUMBER));

The nonblocking nature of the socket is made possible by first creating a
ServerSocketChannel object, and then extracting a ServerSocket.

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

24  Andrew Davison. 2003

The server’s socket channel is registered a Selector so it will collect connection
requests.
 Selector selector = Selector.open();
 serverChannel.register(selector, SelectionKey.OP_ACCEPT);

Other possible options to register() are OP_READ, OP_WRITE and OP_CONNECT,
corresponding to the different types of keys.

The while loop of the pseudocode is translated fairly directly into real code:

 while (true) {
 selector.select(); // wait for keys
 Iterator it = selector.selectedKeys().iterator();
 SelectionKey key;
 while (it.hasNext()) { // look at each key
 key = (SelectionKey) it.next(); // get a key
 it.remove(); // remove it
 if (key.isAcceptable()) // a new connection?
 newChannel(key, selector);
 else if (key.isReadable()) // data to be read?
 readFromChannel(key);
 else
 System.out.println("Did not process key: " + key);
 }
 }

newChannel() is called when a new client has requested a connection. The connection
is accepted and registered with the selector to make it collect read requests (i.e. data
from the client which should be read).

 private void newChannel(SelectionKey key, Selector selector)
 {
 try {
 ServerSocketChannel server =
 (ServerSocketChannel) key.channel();
 SocketChannel channel = server.accept(); // get channel
 channel.configureBlocking (false); // use non-blocking
 channel.register(selector, SelectionKey.OP_READ);
 // register it with selector for reading

 clients.put(channel,
 new ClientInfo(channel, this)); // store info
 }
 catch (IOException e)
 { System.out.println(e); }
 }

The call to accept() is nonblocking: it will raise a NotYetBoundException if there is
no pending connection. The connection is represented by a SocketChannel (a
nonblocking version of the Socket class), and this is registered with the Selector to
collect its read requests.

Since a new client has just connected, a new ClientInfo object is added to the
HashMap. The key for the HashMap entry is the client’s channel, which is unique.

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

25  Andrew Davison. 2003

readFromChannel() is called when there is a request by an existing client for the
server to read its data. As mentioned above, this may not be a complete message,
which introduces some problems. It is necessary to store partial messages from clients
until they are completed (a complete message ends with a ‘\n’). The reading and
storage is managed by the ClientInfo object representing the client with the request.

 private void readFromChannel(SelectionKey key)
 // process input that is waiting on a channel
 {
 SocketChannel channel = (SocketChannel) key.channel();
 ClientInfo ci = (ClientInfo) clients.get(channel);
 if (ci == null)
 System.out.println("No client info for channel " + channel);
 else {
 String msg = ci.readMessage();
 if (msg != null) {
 System.out.println("Read message: " + msg);
 if (msg.trim().equals("bye")) {
 ci.closeDown();
 clients.remove(channel); // delete ci from hash map
 }
 else
 doRequest(msg, ci);
 }
 }
 } // end of readFromChannel()

readFromChannel() extracts the channel reference from the client request, and uses it
to lookup the associated ClientInfo object in the hash map. The ClientInfo object
deals with the request via a call to readMessage(), which returns the full message or
null if the message is still incomplete.

If the message is “bye” then the server requests that the ClientInfo object closes the
connection, and the object is discarded. Otherwise, the message is processed using
doRequest().

 private void doRequest(String line, ClientInfo ci)
 /* The input line can be one of:
 "score name & score &"
 or "get" */
 {
 if (line.trim().toLowerCase().equals("get")) {
 System.out.println("Processing 'get'");
 ci.sendMessage(hs.toString());
 }
 else if ((line.length() >= 6) && // "score "
 (line.substring(0,5).toLowerCase().equals("score"))) {
 System.out.println("Processing 'score'");
 hs.addScore(line.substring(5)); // cut the score keyword
 }
 else
 System.out.println("Ignoring input line");
 }

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

26  Andrew Davison. 2003

The input line can be a “get” or a “score” message. If it is a “get”, then the ClientInfo
object is asked to send the high scores list to the client. If the message is a new
name/score pair, then the HighScores object is notified.

The ClientInfo Class
ClientInfo has three public methods: readMessage(), sendMessage(), and closeDown
(). readMessage() reads input from a client’s socket channel. sendMessage() sends a
message along a channel to the client, and closeDown() closes the channel.

Data is read from a socket channel into a Buffer object holding bytes. Buffer is
another new class in the nonblocking additions. A Buffer object is a fixed size
container for items belong to a Java base type, such as byte, int, char, double, boolean,
and so on. A Buffer object works in a similar way to a file: there is a “current
position”, and after each read or write operation, the current position indicates the
next item in the buffer.

There are two important size notions for a buffer: its capacity and its limit. The
capacity is the maximum number of items the buffer can contain, while the limit is a
value between 0 and capacity representing the current size limit for the buffer.

Since data sent through a socket channel is stored in a ByteBuffer object (a buffer of
bytes), it is necessary to translate it (decode it) into a String before the data can be
tested to see if it is a complete or not. A complete message is a string ending with a
‘\n’.

The constructor for ClientInfo initialises the byte buffer and the decoder.

 // globals
 private static final int BUFSIZ = 1024; // max size of a message

 private SocketChannel channel; // the client’s channel
 private SelectScoreServer ss; // the top-level server
 private ByteBuffer inBuffer; // for storing input

 private Charset charset; // for decoding bytes --> string
 private CharsetDecoder decoder;

 public ClientInfo(SocketChannel chan, SelectScoreServer ss)
 {
 channel = chan;
 this.ss = ss;
 inBuffer = ByteBuffer.allocateDirect(BUFSIZ);
 inBuffer.clear();

 charset = Charset.forName("ISO-8859-1");
 decoder = charset.newDecoder();

 showClientDetails();
 }

The buffer is a fixed size, 1024 bytes. The obvious question is whether this is
sufficient for message passing. The only long message is the high scores list which is
sent from the server back to the client, and 1024 characters (bytes) should be
adequate.

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

27  Andrew Davison. 2003

readMessage() is called when the channel contains data.

 public String readMessage()
 {
 String inputMsg = null;
 try {
 int numBytesRead = channel.read(inBuffer);
 if (numBytesRead == -1) { // channel has gone
 channel.close();
 ss.removeChannel(channel); // tell SelectScoreServer
 }
 else
 inputMsg = getMessage(inBuffer);
 }
 catch (IOException e)
 { System.out.println("rm: " + e);
 ss.removeChannel(channel); // tell SelectScoreServer
 }

 return inputMsg;
 } // end of readMessage()

A channel read() will not block, returning the number of bytes read (which may be 0).
If it returns -1 then something has happened to the input channel; the channel is
closed and the ClientInfo object removed by calling removeChannel() in the main
server. It is also possible for read() to raise an IOException, which triggers the same
removal.

The real work of reading a message is done by getMessage()

 private String getMessage(ByteBuffer buf)
 {
 String msg = null;
 int posn = buf.position(); // current buffer sizes
 int limit = buf.limit();

 buf.position(0); // set range of bytes for translation
 buf.limit(posn);
 try { // translate bytes-->string
 CharBuffer cb = decoder.decode(buf);
 msg = cb.toString();
 }
 catch(CharacterCodingException cce)
 { System.out.println(cce); }

 // System.out.println("Current msg: " + msg);
 buf.limit(limit); // reset buffer to full range of bytes
 buf.position(posn);

 if (msg.endsWith("\n")) { // we assume '\n' is the last char
 buf.clear();
 return msg;
 }
 return null; // since we still only have a partial mesg
 } // end of getMessage()

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

28  Andrew Davison. 2003

position() returns the index position of the next empty spot in the buffer: there are
bytes stored from position 0 up to posn-1. The current limit for the buffer is also
stored, and then changed to be the current position. This means that when decode() is
called, only the part of the buffer containing bytes will be considered.

After the translation, the resulting string is checked to see if it ends with a ‘\n’, in
which case the buffer is reset (treated as being empty) and the message returned.

There is a potential problem with this approach: the assumption that the last character
in the buffer will eventually be ‘\n’. This depends on what data is present in the
channel when read() is called in readMessage(). It might be that the channel contains
the final bytes of one message and some bytes of the next, as illustrated by Figure 12.

Figure 12. Reading Bytes in a Channel.

The read() call in Figure 11 will add the bytes for “a\nbbb” to the byte buffer, so
placing ‘\n’ is in the midst of the buffer rather than at the end. Consequently, a simple
endsWith() test of the extracted string is insufficient:
 if (msg.endsWith("\n")) {. . . }

However, in our tests this problem never appeared since read() was called very
quickly, adding each incoming byte to the buffer as soon as it arrived – a ‘\n’ was
always read before the next byte appeared in the channel.

sendMessage() sends a specified message along the channel back to the client. The
two issues here are:

1) the need to translate the string to bytes in a buffer before transmission, and

2) dealing with the case that the message requires several writes before it is all
placed onto the channel.

 public boolean sendMessage(String msg)
 {
 String fullMsg = msg + "\r\n";

 ByteBuffer outBuffer = ByteBuffer.allocateDirect(BUFSIZ);
 outBuffer.clear();
 outBuffer.put(fullMsg.getBytes());
 outBuffer.flip();

a \n b b bread()

socket channel

server end of
msg 1

start of
msg 2

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

29  Andrew Davison. 2003

 boolean msgSent = false;
 try {
 // send the data, don't assume it goes all at once
 while(outBuffer.hasRemaining())
 channel.write(outBuffer);
 msgSent = true;
 }
 catch(IOException e)
 { System.out.println(e);
 ss.removeChannel(channel); // tell SelectScoreServer
 }

 return msgSent;
 } // end of sendMessage()

The buffer is filled with the message. The flip() call sets the buffer limit to the current
position (i.e. the just after the end of the message), and then sets the current position
back to 0.

The while loop uses hasRemaining(), which returns true so long has there are
elements remaining between the current position and the buffer limit. Each write()
calls advanced the position through the buffer. One write() call should be sufficient to
place all the bytes onto the channel unless the buffer is very large or the channel is
overloaded.

write() may raise an exception, which causes the channel and the ClientInfo object to
be discarded.

The Client
ScoreClient stays as the client-side application. The advantage is that high-level IO
can be used instead of byte buffers.

A nonblocking client can be useful for attempting a connection without having to wait
for the server to respond. Whether a connection operation is in progress can be
checked by calling isConnectionPending().

4.4. UDP Client and Server
All the previous examples use TCP, but the client and server in this section are
recoded to utilize UDP communication. The result is another form of multiplexing
server, but without the need for nonblocking sockets. The complexity of the code is
much less than in the last example.

The downsides of this approach are the usual ones related to UDP: the possibility of
packet loss and reordering, although these problems did not occur in our tests which
were run on the same machine, and on machines connected by a LAN.

Another disadvantage of using UDP is the need to write a client before the server can
be tested; telnet uses TCP/IP so cannot be employed here.

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

30  Andrew Davison. 2003

Figure 13 illustrates the form of communication between ScoreUDPClient objects and
the ScoreUDPServer.

Figure 13. UDP Clients and Server.

Since there is no long-term connection between a client and the server, it is possible
for multiple clients to send datagrams at the same time. The server will process them
in their order of arrival. A datagram automatically includes the hostname and IP
address of its sender, so response messages can be easily sent back.

The server sets up a DatagramSocket listening at port 1234, and then enters a loop
which waits for a packet, processes it, and repeats.

 // globals
 private static final int PORT = 1234;
 private static final int BUFSIZE = 1024; // max size of a message

 private HighScores hs;
 private DatagramSocket serverSock;

 public ScoreUDPServer()
 {
 try { // try to create a socket for the server
 serverSock = new DatagramSocket(PORT);
 }
 catch(SocketException se)
 { System.out.println(se);
 System.exit(1);
 }
 waitForPackets();
 }

 private void waitForPackets()
 {
 DatagramPacket receivePacket;
 byte data[];
 hs = new HighScores();

 try {

client 1

:

c1

client 2

client N

c1

c1c2 c2

cN

cN

cN server

c1

1234

c1

cN

c2

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

31  Andrew Davison. 2003

 while (true) {
 data = new byte[BUFSIZE]; // set up an empty packet
 receivePacket = new DatagramPacket(data, data.length);
 System.out.println("Waiting for a packet...");
 serverSock.receive(receivePacket);

 processClient(receivePacket);
 hs.saveScores(); // backup scores after each package
 }
 }
 catch(IOException ioe)
 { System.out.println(ioe); }
 } // end of waitForPackets()

The data in a packet is extracted into a byte array of a fixed size. Naturally, the size of
the array should be sufficient for the kinds of messages being delivered.

processClient() extracts the client’s address, IP number and converts the byte array
into a string.

 InetAddress clientAddr = receivePacket.getAddress();
 int clientPort = receivePacket.getPort();
 String clientMesg = new String(receivePacket.getData(), 0,
 receivePacket.getLength());

These are passed to doRequest() which deals with the two possible message types:
“get” and “score”. There is no “bye” message because there is no long-term
connection that needs to be broken. Part of the reason for the simplicity of coding
with UDP is the absence of processing related to connection termination (whether
intended or due to an error).

A reply is sent by calling sendMessage():

 private void sendMessage(InetAddress clientAddr,
 int clientPort, String mesg)
 // send message to socket at the specified address and port
 {
 byte mesgData[] = mesg.getBytes(); // convert to byte[] form
 try {
 DatagramPacket sendPacket =
 new DatagramPacket(mesgData, mesgData.length,
 clientAddr, clientPort);
 serverSock.send(sendPacket);
 }
 catch(IOException ioe)
 { System.out.println(ioe); }
 }

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

32  Andrew Davison. 2003

The ScoreUDPClient
The client has the same GUI interface as the TCP version (see Figure 14), allowing
the user to send commands by clicking on the “Get Scores” button or by entering
name/score pairs into the text fields.

Figure 14. The UDP Client GUI.

The application uses the implicit thread associated with Swing’s processing of GUI
events to send commands to the server. Processing of the messages returned by the
server is handled in the application’s main execution thread.

The constructor starts the application thread by setting up the client’s datagram
socket:

 // globals
 private static final int SERVER_PORT = 1234; // server details
 private static final String SERVER_HOST = "localhost";
 private static final int BUFSIZE = 1024; // max size of a message

 private DatagramSocket sock;
 private InetAddress serverAddr;
 :

 public ScoreUDPClient()
 { super("High Score UDP Client");

 initializeGUI();
 try { // try to create the client's socket
 sock = new DatagramSocket();
 }
 catch(SocketException se) {
 se.printStackTrace();
 System.exit(1);
 }
 try { // try to turn the server's name into an internet address
 serverAddr = InetAddress.getByName(SERVER_HOST);
 }
 catch(UnknownHostException uhe) {
 uhe.printStackTrace();
 System.exit(1);
 }

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

33  Andrew Davison. 2003

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setSize(300,450);
 setResizable(false); // fixed size display
 show();

 waitForPackets();
 } // end of ScoreUDPClient();

waitForPackets() bears a striking resemblance to the same named method in the
server. It contains a loop which waits for an incoming packet (from the server),
processes it, and repeats.

 private void waitForPackets()
 { DatagramPacket receivePacket;
 byte data[];
 try {
 while (true) {
 // set up an empty packet
 data = new byte[BUFSIZE];
 receivePacket = new DatagramPacket(data, data.length);

 System.out.println("Waiting for a packet...");
 sock.receive(receivePacket);

 processServer(receivePacket);
 }
 }
 catch(IOException ioe)
 { System.out.println(ioe); }
 }

processServer() extracts the address, port number, and message string from the
packet, prints the address and port to standard output, and adds the message into the
text area.

The GUI thread is triggered by the system calling actionPerformed():

 public void actionPerformed(ActionEvent e)
 {
 if (e.getSource() == jbGetScores) {
 sendMessage(serverAddr, SERVER_PORT, "get");
 jtaMesgs.append("Sent a get command\n");
 }
 else if (e.getSource() == jtfScore)
 sendScore();
 }

An important issue with threads is synchronization of shared data. The
DatagramSocket is shared but the GUI thread only transmits datagrams, while the
application thread only receives, so conflict is avoided.

The JTextArea component, jtaMesgs, is shared between the threads, as a place to
write messages for the user. However, there is little danger of multiple writes
occurring at the same time due to the request/response nature of the communication
between the client and server – a message from the server only arrives as a response

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

34  Andrew Davison. 2003

to an earlier request by the client. Synchronization would be more important if the
server could deliver messages to the client at any time, as in the Chat systems
developed in chapter 19.

Another reason for the low risk of undue interaction is that the GUI thread only places
short messages into the text area, which are added quickly.

5. Peer-to-Peer Programming in Java
The simplest form of P2P programming in Java employs UDP multicasting –
datagram packets with a MulticastSocket object.

A MulticastSocket requires a multicast IP address (a class D IP address) and a port
number. Class D IP addresses fall in the range 224.0.0.0 to 239.255.255.255, although
certain addresses are reserved.

A peer wishing to ‘subscribe’ to a multicast group must create a MulticastSocket
representing the group, and use joinGroup() to begin receiving communication. A
peer leaves a group by calling leaveGroup(), or by terminating.

Currently applets are not allowed to use multicast sockets.

The application described here takes a (welcome) break from accessing/modifying
high score lists, which doesn’t make for a particularly suitable P2P example. Instead,
a MultiTimeServer transmits a packet to a multicast group every second, containing
the current time and date. MultiTimeClient objects wait for packets to appear in the
group, and print them to standard output. The situation is shown in Figure 15.

Figure 15. UDP Multicasting Clients and Server.

The use of the words ‘client’ and ‘server’ are a little misleading since all the objects
involved in the group can potentially send and receive messages. It is our choice to
restrict the 'server' to sending, and the 'clients' to reading.

The MultiTimeServer Class
The MultiTimeServer object creates a multicast socket for a group at IP address
228.5.6.7, port 6789, and enters a loop which sends a packet out every second.

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

35  Andrew Davison. 2003

public class MultiTimeServer
{
 private static final String MHOST = "228.5.6.7";
 private static final int PORT = 6789;

 public static void main(String args[]) throws Exception
 {
 InetAddress address = InetAddress.getByName(MHOST);
 MulticastSocket msock = new MulticastSocket(PORT);
 msock.joinGroup(address);

 DatagramPacket packet;
 System.out.print("Ticking");
 while(true){
 Thread.sleep(1000); // 1 second delay
 System.out.print(".");
 String str = (new Date()).toString();
 packet = new DatagramPacket(str.getBytes(), str.length(),

address, PORT);
 msock.send(packet);
 }
 }

} // end of MultiTimeServer class

The server is started like so:
$ java MultiTimeServer
Ticking.......

The MultiTimeClient Class
The client creates a multicast socket for the same group, and enters an infinite loop
waiting for packets to appear.

public class MultiTimeClient
{
 private static final String MHOST = "228.5.6.7";
 private static final int PORT = 6789;

 public static void main(String args[]) throws IOException
 {
 InetAddress address = InetAddress.getByName(MHOST);
 MulticastSocket msock = new MulticastSocket(PORT);
 msock.joinGroup(address);

 byte[] buf = new byte[1024];
 DatagramPacket packet = new DatagramPacket(buf, buf.length);
 String dateStr;
 while(true){
 msock.receive(packet);
 dateStr = new String(packet.getData()).trim();
 System.out.println(packet.getAddress() + " : " + dateStr);
 }
 }
}

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

36  Andrew Davison. 2003

A client’s execution is shown in Figure 16.

Figure 16. Multicast UDP Client in Action.

Chapter 19 contains a UDP multicasting version of a Chat application.

6. Firewalls
Firewalls are unfortunately a part of today’s networking experience, or rather the lack
of it. Most companies, government institutions, universities, and so on, utilize
firewalls to block access to the wider internet – typically socket creation on non-
standard ports, and most standard ones, are prohibited, and Web pages must be
retrieved through a proxy which filters (limits) the traffic.

This situation means that the code described so far may not actually work, because it
requires the creation of sockets. The DayPing example given below is a simple Java
application that attempts to contact a ‘time of day’ server. The example in Figure 17
uses the server at the National Institute of Standards and Technology in Boulder,
Colorado.

Figure 17. Time of Day Client

DayPing opens a socket to the host at port 13 where the standard ‘time of day’ service
is always set to be listening. The response is printed out using println() after layering a
BufferedReader stream on top of the network link.

public class DayPing
{
 public static void main(String args[]) throws IOException
 { if (args.length != 1) {
 System.out.println("usage: java DayPing <host> ");
 System.exit(0);
 }

 Socket sock = new Socket(args[0],13); // host and port
 BufferedReader br = new BufferedReader(
 new InputStreamReader(sock.getInputStream()));

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

37  Andrew Davison. 2003

 System.out.println(args[0] + " is alive at ");
 String line;
 while ((line = br.readLine()) != null)
 System.out.println(line);
 sock.close();
 }
} // end of DayPing class

Figure 17 is the desired output, but this program will not work on most student
machines in the department where I work. For them, the result is:

D> java DayPing time-A.timefreq.bldrdoc.gov
Exception in thread "main"
java.net.NoRouteToHostException: Operation timed out: no further
information
 at java.net.PlainSocketImpl.

socketConnect (Native Method)
:

 at DayPing.main(DayPing.java:34)

There is a long delay (2-3 minutes) before the exception is raised, due to the OS
waiting for a possible connection. The exception indicates the presence of a firewall
preventing the link.

With TCP client applications like DayPing, it is possible to check the server with
telnet:

 $ telnet time-A.timefreq.bldrdoc.gov 13

There is a similar outcome: a delay of a few minutes, followed by an error message
saying that the connection could not be made.

My university has a policy of disallowing socket creation for hosts outside the local
domain, and Web pages can only be retrieved by going through a proxy located at
cache.psu.ac.th, port 8080.

There are two choices:

1) use a commercial ISP which does allow socket creation, or

2) rewrite the DayPing application to utilize URLs. This is the approach taken here.

6.1. Retrieving a Web Page
The simplest way of obtaining a Web page in Java is with a URL object, which
retrieves it as a stream of text in a similar way to streams connected to sockets. The
GetWebPage application downloads a Web page using a URL specified on the
command line.

public class GetWebPage
{
 public static void main(String args[]) throws IOException
 { if (args.length != 1) {
 System.out.println("usage: java GetWebPage <url> ");

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

38  Andrew Davison. 2003

 System.exit(0);
 }

 URL url = new URL(args[0]);
 BufferedReader br = new BufferedReader(
 new InputStreamReader(url.openStream()));
 // print first ten lines of contents
 int numLine = 0;
 String line;
 while (((line = br.readLine()) != null) && (numLine <= 10)) {
 System.out.println(line);
 numLine++;
 }
 if (line != null)
 System.out.println(". . .");

 br.close();
 }
} // end of GetWebPage class

GetWebPage can (theoretically) access any Web page, including one giving the
current time in Thailand, http://www.bsdi.com/xdate?Asia/Bangkok. However, the
command line must include three proxy options (proxySet, proxyHost, proxyPort) to
tell the JVM to employ the university’s proxy server. The result is shown in Figure
18.

Figure 18. Retrieving a Web Page through a Proxy.

An alternative to command line settings is to specify the proxy details within the
program:

 Properties props = System.getProperties();
 props.put("proxySet", "true");
 props.put("proxyHost", "cache.psu.ac.th");
 props.put("proxyPort", "8080");
 System.setProperties(props);

This should be done before the creation of the URL object.

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

39  Andrew Davison. 2003

An important aspect of this coding style is the processing of the text stream arriving
from the Web server. It is often far from trivial to delve through the mix of HTML
tags, JavaScript, and others, to find the required piece of information (e.g. that the
current time in Bangkok is 9.37am).

Another problem is that text analysis code tends to break after a while, as the format
of the Web page is changed/updated by the Web server’s administrator.

6.2. Proxy Authorization
Some proxy servers demand a login and password before pages can be downloaded
(this is true of one of the high bandwidth links in my department).

Supplying these from within a Java application requires the use of a URLConnection
object to permit greater control over the URL link.

URL url = new URL(args[0]);
URLConnection conn = url.openConnection();

The login and password strings must be passed to the proxy server as a single string of
the form “login:password” translated into Base64 encoding

Base64Converter bc = new Base64Converter();
String encoding = bc.encode(login + “:” + password);

The Base64Converter class was written by David W. Croft, and available with
documentation from:

Java Tip 47, JavaWorld.com, April 6th 2000
http://www.javaworld.com/javaworld/javatips/jw-javatip47.html

There is also an undocumented BASE64Encoder class in the sun.misc package of
J2SDK. It is used like so:

Base64Encoder bc = new Base64Encoder();
String mesg = login + “:” + password;
String encoding = bc.encode(mesg.getBytes());

The encoded string is sent to the proxy as an authorization request:
conn.setRequestProperty("Proxy-Authorization",
 "Basic " + encoding);

GetWebPageP.java contains all of this functionality; it reads the user’s password and
desired URL from the command line.

public class GetWebPageP
{
 private static final String LOGIN = "ad"; // modify this

 public static void main(String args[]) throws IOException
 { if (args.length != 2) {
 System.out.println("usage: java GetWebPageP <password> <url>");
 System.exit(0);
 }

 // set the properties used for proxy support

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

40  Andrew Davison. 2003

 Properties props = System.getProperties();
 props.put("proxySet", "true");
 props.put("proxyHost", "cache.psu.ac.th");
 props.put("proxyPort", "8080");
 System.setProperties(props);

 // create a URL and URLConnection
 URL url = new URL(args[1]); // URL string
 URLConnection conn = url.openConnection();

 // encode the "login:password" string
 Base64Converter bc = new Base64Converter();
 String encoding = bc.encode(LOGIN + ":" + args[0]);

 // send the authorization
 conn.setRequestProperty("Proxy-Authorization",
 "Basic " + encoding);

 BufferedReader br = new BufferedReader (
 new InputStreamReader (conn.getInputStream()));

 // print first ten lines of contents
 int numLine = 0;
 String line;
 while (((line = br.readLine()) != null) && (numLine <= 10)) {
 System.out.println(line);
 numLine++;
 }
 if (line != null)
 System.out.println(". . .");

 br.close();
 System.exit(0);
 } // end of main()
} // end of GetWebPageP class

6.3. A Web-based Client and Server
These ‘time of day’ examples fit the familiar client/server model, but in the case when
a server already exists. However, most applications require new clients and a new
server. The question then is how to make the server-side of the program act as a Web
server, deliver Web pages, and so satisfy the restrictions of the client-side firewall?

Enter J2EE, the Java 2 Enterprise Edition, aimed at the construction of Web-based
client/server applications: it supports simplified networking, concurrency,
transactions, easy access to databases, and much more (http://java.sun.com/j2ee/).

Aside from Sun’s implementation, many companies offer J2EE compatible systems,
including Tomcat from the Jakarta Project (http://jakarta.apache.org/tomcat/) and
JRun from Macromedia (http://www.macromedia.com/software/jrun).

J2EE is a complex development environment, centered around servlets, Java Server
Pages (JSPs), and Enterprise Java Beans (EJBs). Servlets are objects specialised for
the serving of Web content, typically Web pages, in response to client requests. JSPs
are Web pages which may contain embedded Java. EJBs focus on server-side
processing, including the connection of server-side applications to other Java

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

41  Andrew Davison. 2003

functionality, such as JTA (the Java Transaction API), JMS (the Java Message
Service), and JDBC (Java’s database connectivity).

Servlets deal with client requests using the HTTP protocol, which thankfully only
contains a few commands; the two principal ones are the GET method and POST
method. A GET method (request) is usually sent by a Web browser when it asks for a
page from a server. A POST method (request) is more typically associated with the
submission of details taken from a Web page form.

A servlet which inherits the HttpServlet class will automatically call its doGet()
method when a GET request arrives from a client; there is also a doPost() for
processing POST requests.

Our Web-based client will communicate with a simple servlet which implements a
‘time of day’ service. The use of the HTTP protocol to ‘bypass’ firewall restrictions
on client/server communication is called HTTP Tunneling.

TimeServlet will be called when the TimeClient application refers to the servlet’s
URL (i.e. sends a GET request to the Web server managing the servlet). The situation
is illustrated by Figure 19.

Figure 19. Client and Servlet Configuration.

A servlet can output a stream of HTML which is displayed nicely in the client, if it is
a browser. However, TimeServlet will deliver ordinary text since the client does not
require extraneous formatting around the result.

An excellent book on servlets and JSPs is:

Core Servlets and Java Server Pages
by Marty Hall, Sun Microsystems Press, 2001
http://www.coreservlets.com/

The TimeServlet Servlet
The doGet() method in TimeServlet is called automatically when the servlet’s URL is
sent to the Web server.

public class TimeServlet extends HttpServlet
{
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

42  Andrew Davison. 2003

 {
 SimpleDateFormat formatter =

new SimpleDateFormat("d M yyyy HH:mm:ss");
 Date today = new Date();
 String todayStr = formatter.format(today);
 System.out.println("Today is: " + todayStr);

 PrintWriter output = response.getWriter();
 output.println(todayStr); // send date & time
 output.close();
 }
}

Various client and request information is made available in the HttpServletRequest
object passed to doGet(), but TimeServlet doesn’t need it.

The other argument of doGet() is a HttpServletResponse object which permits various
forms of output to be delivered to the client. TimeServlet creates an output stream and
sends a formatted date and time.

The TimeClient Application
The TimeClient application is a simple variant of the GetWebPage program described
earlier, except that the servlet’s URL is hardwired into the code.

Since the client and servlet are running on the same machine, there is no need for
proxy settings. The Web server is running at port 8080, and stores its servlets in a
fixed location referred to by the URL “http://localhost:8080/servlet/”.

public class TimeClient
{
 public static void main(String args[]) throws IOException
 {
 URL url = new URL("http://localhost:8080/servlet/TimeServlet");

 BufferedReader br = new BufferedReader(
 new InputStreamReader(url.openStream()));
 String line;
 while ((line = br.readLine()) != null)
 System.out.println(line);
 br.close();
 }
}

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

43  Andrew Davison. 2003

Figure 20 shows the output from TimeClient.

Figure 20. TimeClient in Action.

An advantage of (simple) servlets is that they can also be tested from a browser.
Figure 21 shows the output when http://localhost:8080/servlet/TimeServlet is typed
into the Opera browser.

Figure 21. A Browser as Client for TimeServlet.

Servlets enable clients to use the HTTP protocol for communication with the server
part of the application (i.e. the clients employ URLs to access the server). This mode
of communication is permitted by firewalls, which usually block socket links.

The downside is that HTTP is purely a request/response protocol – the client must
initiate the communication to receive a reply. It is not at all easy for the server to send
a message to the client without first receiving one from it. This means that a Web-
based server cannot easily broadcast (multicast) a message received from one client to
all the others; a common requirement of multiplayer games and chat applications.

In chapter 19, we implement a Web-based version of a chat system by having a client
periodically query the server to receive messages from the other clients.

6.4. Applets as Clients
The default security associated with applets means that they can only connect back to
their home server. This restriction applies to sockets and to the downloading of Web
pages. However, the security can be modified with a policy file and by signing the
applet. However, most multiplayer games which utilize applets host them on their
own servers, and so the default security policy is sufficient.

The real problem with applets is the excessive download time required to move the
necessary functionality and resources (e.g. images, sounds) to the client side.
Commercial games (e.g. Everquest) distribute CDs containing client applications.

Java Prog. Techniques for Games. Chapter 18. Net Basics Draft #1 (16th June ‘03)

44  Andrew Davison. 2003

7. Other Kinds of Java Networking
The networking support in Java is one of its greatest strengths. This section is a brief
tour of some of its capabilities that have not previously been mentioned.

J2SDK 1.4 added support for secure sockets (using the SSL and TLS protocols).
Security is a complex topic, but it is still fairly easy to do a common thing such as
retrieve a Web page using the HTTPS protocol.

Remote Method Invocation (RMI) allows Java objects on separate machines to
communicate via remote method calls. This is considerably higher-level than the
transmission of data through sockets. RMI is based on a procedural programming
technique, the Remote Procedure Call (RPC), but with some powerful extensions.
One is dynamic code loading, which allows a client to download the communication
code (called a stub) for accessing a remote method at run time. Code loading from
clients can also be carried out by a server.

RMI is the basis of a number of expressive networking models, including Jini and
JavaSpaces mentioned below. RMI is also integrated with the communications
protocol for CORBA (the Common Object Request Broker Architecture) which
permits Java objects to interact with objects coded in other languages.

Jini is a service discovery architecture which allows Jini-enabled clients to find and
utilize whatever services are available on a network, dynamically adjusting their
connections as new services come on-stream, and others leave. This is of key
importance for mobile devices. The starting point for Jini is http://www.jini.org/.

A JavaSpaces service creates a shared space for its clients, where objects of any kind
can be added, read, or removed. JavaSpaces makes it much easier to implement
coordination models between groups of peers, where the interchange of data and tasks
is represented by objects. The virtual space also provides persistence. More
information can be found at http://java.sun.com/products/javaspaces/.

Java Shared Data Toolkit (JSDT) (http://java.sun.com/products/java-media/jsdt/)
shares the same aim as JavaSpaces – to support collaborative applications. However,
its basic abstract is a session – a group of objects associated with some common
communications pattern. JSDT offers full-duplex multipoint communication among
the participants, and multicasting.

