
Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

1 Andrew Davison. 2003

Chapter 17.5. Terrain Generation with Terragen

A significant drawback of the FractalLand3D example from the last chapter is the
programmer's lack of control over the generated terrain. Most games require
mountains, fields, lakes, and so on, to be in fixed, specific places, rather than
randomly located each time the program starts.

A theme of earlier chapters is the use of external modeling software to create
complex-looking scenery, artifacts, and figures. The same argument applies to terrain
building – there are many excellent tools far more suited to the task than a DIY
approach coded in Java.

We will use Terragen, a popular scenery generation package. The landscape is
designed with Terragen, then exported as a OBJ file (representing the landscape as a
mesh), and as a BMP (showing the surface viewed from above). The BMP is
subsequently edited and converted into a JPG.

Our Terra3D application loads the OBJ and JPG files, using the JPG as a texture to
cover the Shape3D created from the landscape mesh. Figures 1 and 2 show two
landscapes, originally designed with Terragen, then loaded by Terra3D.

Figure 1. Green Valleys with a Castle. Figure 2. Desert with Sagebrush.

The figures show some of the other elements of Terra3D:

• the landscape can be decorated with two types of scenery: 3D models loaded with
our PropManager class, and 2D ground cover images (e.g. the trees, sagebrush)
which always stay oriented towards the viewer;

• the ground cover objects utilize SharedGroup nodes so that only a single instance
of a shape is created by Java 3D;

• the edges of the landscape are surrounded by walls covered in a mountain range
image;

• the sky is filled with stars (an approach suggested by Kevin Duling);

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

2 Andrew Davison. 2003

• picking is again employed for terrain following (as in chapter 17), but the
implementation is complicated by a need to deal with large landscapes. A
consequence is that a viewer can walk 'inside' a mountain, but will eventually be
repositioned on its surface.

1. UML Diagrams for Terra3D
Figure 3 shows the UML diagrams for all the classes in the Terra3D application. The
class names and public methods are shown.

Figure 3. UML Class Diagrams for Terra3D.

Terra3D is the top-level JFrame for the application.

WrapTerra3D creates the world, including the lighting and background. However,
most of the work is delegated to a Landscape object which loads the landscape (a
combination of an OBJ file and JPG texture), and places walls around it. Each wall is
an instance of TexturedPlane, so that a mountain range image can be wrapped over it.

The 3D scenery models are loaded with PropManager objects, and the 2D images are
represented by GroundShape objects. A GroundCover object manages the placement
of the ground cover, and the sharing of the GroundShape objects.

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

3 Andrew Davison. 2003

The KeyBehavior class is quite similar to the one in FractalLand3D in chapter 17. The
user can move forward, back, left, right, up, down (but not below the ground), and
turn left and right. In addition, the 'w' key prints the user's location in the landscape.

Terrain picking is handled by a HeightFinder thread, which communicates its answer
back to KeyBehavior when the picking is completed.

2. Terragen
Terragen is a scenery generation package for Windows and the Mac, aimed at
producing photorealistic landscape images and animations
(http://www.planetside.co.uk/Terragen/). It is extremely easy to use: a beautiful scene
can be generated in a few minutes. There are some examples at
http://www.planetside.co.uk/Terragen/images.shtml. Terragen is currently free for
personal, non-commercial use, although there are some restrictions on the size and
resolution of the scenes that can be built.

A terrain can be created using fractals (as in the last chapter), or by painting the shape
of the landscape, or as a combination of the two.

Terragen supports powerful surface and colour maps for decorating the landscape,
water effects, clouds, atmospheric elements, lighting, and shadows.

Terragen can import and export a wide range of file formats, through the use of
plugins. For example, the Firmament plugin allows Terragen to read BMPs, STMs,
POV-RAY height fields, and US Geological Survey (USGS) DEM (digital elevation
model) and SDTS (spatial data transfer standard) files. The FEO (For Export Only)
plugin permits exports to BMP, DXF, OBJ, and RIB files.

Our approach requires exporting to the Wavefront OBJ format, and so FEO must be
installed (http://homepages.ihug.co.nz/~jomeder/feo/), and the TGPGuiLib plugin
interface for Terragen (http://homepages.ihug.co.nz/~jomeder/tgpguilib/).

Terragen's popularity means that there are numerous other terrain-related tools which
can accept, manipulate, and help create Terragen landscapes. A long list is available at
http://www.planetside.co.uk/Terragen/resources.shtml. For example, 3DEM is
another terrain visualization system with a GIS emphasis
(http://www.visualizationsoftware.com/3dem.html). It can read a wide range of USGS
and NASA file formats, and save them as Terragen terrains.

2.1. Using Terragen
There is a user guide for Terragen, available from the main Terragen web site. Its
emphasis is on explaining the various menu items, dialog boxes, and other GUI
elements (http://www.planetside.co.uk/Terragen/guide/). Carol Brooksbank's tutorial
takes a different approach, based around explanations of common tasks
(http://caroluk2.crosswinds.net/terratut/); it is highly recommended.

Figure 4 shows the Landscape window inside Terragen after a random landscape has
been generated with the "Generate Terrain" button. Previously, the water level had
been set at –10m, and a surface map loaded for light snow.

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

4 Andrew Davison. 2003

The Rendering Control window is just visible behind the Landscape window, showing
a preview of the user's current vantage point.

Figure 4. Terragen in Action.

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

5 Andrew Davison. 2003

Clicking on the "Render Image" button in the Rendering Control window displays the
scene. Varying levels of detail can be selected; more detail takes longer to display.

Figure 5. Rendered View.

The landscape mesh can be saved by selecting the FEO Wavefront OBJ item from the
Accessories button in the Landscape window. This will only be present if FEO has
been installed. Click "Ok" to save, but only after unchecking the "Swap Y and Z
axes" radio box. This will make the floor of the mesh run along the XY plane, with
heights along the z-axis.

A basic landscape like this one will usually generate a 5MB OBJ file, taking a few
minutes to do so. An advantage of the OBJ file is its ASCII format, which means that
any text editor can open it (but the editor must be capable of viewing very large files).

The resulting OBJ file for our work (named test3.obj) contains two groups of data: the
vertices making up the mesh, and face information, with each face made from three
vertices. For example, the first few lines of vertex data in test3.obj:

v 0.000000 0.000000 198.037763
v 30.000000 0.000000 190.554714
v 60.000000 0.000000 177.648668
v 90.000000 0.000000 172.938180
v 120.000000 0.000000 170.091105
 :

The mesh's floor is the XY plane; the z-values are the heights. Each vertex is 30
landscape units apart, and the vertices are ordered by increasing column (y-axis), row
(x-axis) values. The bottom left hand corner of the XY floor is at coordinate (0,0).

The last few line of 'v' data are:
 :
v 7620.000000 7680.000000 217.026916
v 7650.000000 7680.000000 212.388668

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

6 Andrew Davison. 2003

v 7680.000000 7680.000000 198.037763

The top right hand corner of the floor is at (7680,7680), forming a square.

Each 'v' line has an implicit index, starting at 1, and the face lines use them to refer to
vertices:

f 1 2 258
f 2 259 258
f 2 3 259
f 3 260 259
f 3 4 260
 :

These define triangle strips, which will be loaded as a TriangleStripArray by Java 3D,
a particularly efficient mesh data structure.

The OBJ file format is somewhat more sophisticated than this. A good place to read
about the OBJ capabilities supported by Java 3D is in the documentation for the
ObjectFile class. A file may include information about normals, textures, colours, and
utilize a separate material file.

A specification of the complete OBJ format can be found at
http://www.dcs.ed.ac.uk/home/mxr/gfx/3d/OBJ.spec.

The file can be viewed graphically by a wide variety of packages, including the
ObjLoad demo example in the Java 3D distribution (which uses the ObjectFile class
to load the file).

One issue is the size of the mesh created by Terragen, which may be too large for
some software to handle. For example, ObjLoad requires 128MB of memory to run
successfully:
 java –Xmx128m ObjLoad test3.obj

Figure 6 shows the landscape as displayed by ObjLoad. Note that face culling is
switched on, so the terrain becomes virtually invisible if turned over.

The beautiful surface texturing is missing, but can be obtained from Terragen by
separate means.

Figure 6. test3.obj in ObjLoad.

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

7 Andrew Davison. 2003

2.2. Extracting a Terragen Texture
The trick for obtaining a texture is to position the viewpoint directly above the terrain,
looking straight down. Currently, Terragen does not support parallel projection, so the
view will suffer from distortion at the edges due to perspective effects. These can be
reduced by setting camera zoom to 1.

Sky rendering should be switched off, as well as terrain shadows. Setting the sun's
altitude to 90 degrees (directly overhead) also helps to minimize shadow effects on
the surface map.

The rendering window should be increased in size (e.g. to 800x800), and rendering set
to the highest resolution to produce a detailed image. The result is shown in Figure 7.

Figure 7. The Terrain from Above.

The image can be saved as a BMP (~2MB file sizes seem common), then converted to
a JPG by any number of graphics packages (reducing to ~500K in size). The most
important aspects of the conversion are to clip away the black background, and resize
the image to form a square. This will remove some of the terrain surface, but the loss
isn't noticeable inside Terra3D.

The image should be saved as a high quality JPG. Figure 8 contains the final image,
ready to be used as a texture.

Figure 8. The Terrain Texture.

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

8 Andrew Davison. 2003

Figure 9 shows the terrain as loaded into Terra3D, with the user standing in roughly
the same position as the view presented in Figure 5.

Figure 9. Terra3D's View of the Terrain.

The poor texture resolution compared to the surface maps in Terragen means that a lot
of detail is lost. However, the scene is quite sufficient for game play.

Figure 10 displays the user's view after he/she has moved to the other side of the lake,
and turned to look back towards the viewpoint employed in Figure 9.

Figure 10. The Other Side of the Lake.

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

9 Andrew Davison. 2003

3. WrapTerra3D
WrapTerra3D sets up the lighting, background, creates a Landscape object, and
initializes the KeyControl object for managing user navigation.

The background code sets the sky to be medium blue, with stars added to its
geometry:

 private void addBackground()
 { Background back = new Background();
 back.setApplicationBounds(bounds);
 back.setColor(0.17f, 0.50f, 0.92f);
 back.setGeometry(addStars());
 sceneBG.addChild(back);
 }

Background geometry can be any type of Group node, but there are some restrictions
on the shapes which can be held inside the group. For example, Shape3D is fine, but
OrientedShape3D is prohibited. The background geometry is restricted to a unit
sphere, but is drawn as if located at infinity.

addStars() creates a PointArray of coordinates at random places in the hemisphere
above the XZ plane (there's no reason to have stars below the horizon). The colours of
the points are randomly chosen.

This coding approach was suggested by Kevin Duling, in an example at
http://home.earthlink.net/~kduling/Java3D/Stars/.

 private BranchGroup addStars()
 {
 PointArray starField = new PointArray(NUM_STARS,
 PointArray.COORDINATES | PointArray.COLOR_3);
 float[] pt = new float[3];
 float[] brightness = new float[3];
 Random rand = new Random();

 for (int i=0; i < NUM_STARS; i++) {
 pt[0] = (rand.nextInt(2) == 0) ?
 -rand.nextFloat() : rand.nextFloat();
 pt[1] = rand.nextFloat(); // only above the y-axis
 pt[2] = (rand.nextInt(2) == 0) ?
 -rand.nextFloat() : rand.nextFloat();
 starField.setCoordinate(i, pt);

 float mag = rand.nextFloat();
 brightness[0] = mag;
 brightness[1] = mag;
 brightness[2] = mag;
 starField.setColor(i, brightness);
 }

 BranchGroup bg = new BranchGroup();
 bg.addChild(new Shape3D(starField));
 return bg;
 } // end of addStars()

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

10 Andrew Davison. 2003

3.1. Setting up the Users Controls
createUserControls() is quite similar to the same named method in
WrapFractalLand3D: it adjusts the clip distances and sets up the KeyBehavior object.
The front clip distance is adjusted to reduce the chance of the terrain being clipped
away when the user's viewpoint is very close to it.

An additional line sets up depth-sorting for transparent objects in the world:

View view = su.getViewer().getView();
view.setTransparencySortingPolicy(View.TRANSPARENCY_SORT_GEOMETRY);

Sorting multiple transparent objects is necessary in Terra3D since ground cover
objects are implemented as transparent GIFs textured over shapes. It is likely that the
user's viewpoint will include many overlapping instances of these.

The default behavior of Java 3D is to do no depth sorting, which may cause the
transparent objects to be drawn in the wrong order, so that far-away trees/bushes are
drawn in front of nearer ones.

TRANSPARENCY_SORT_GEOMETRY is limited to sorting independent geometries (e.g.
a Shape3D object containing a single geometry). It will not correctly order multiple
geometries in a shape.

4. The Landscape Class
The Landscape object is created by WrapTerra3D, and passed a reference to the
world's scene (sceneBG), and the filename supplied on the command line (e.g.
"test1").

Landscape's primary purpose is to display a terrain composed from a mesh and a
texture. Landscape looks in the models/ subdirectory for a OBJ file containing the
mesh (e.g. "test1.obj"), and a JPG (e.g. "test1.jpg") to act as the texture. The OBJ file
is loaded, becoming the landBG BranchGroup linked to sceneBG. The texture is laid
over the geometry stored within landBG.

Landscape can add two kinds of scenery to the terrain:

• 3D shapes, loaded with PropManager. This type of scenery includes irregular
objects which the user can move around, and perhaps enter (e.g. the castle shown
in Figure 1).

• ground cover, represented by 2D images that rotate to always face the user. This
kind of scenery is for simple, symmetrical objects that decorate the ground, such
as trees and bushes (see Figures 1 and 2 for examples). Ground cover shapes are
managed by a GroundCover object.

The terrain is surrounded by walls covered in a mountain range image.

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

11 Andrew Davison. 2003

4.1. Loading the Mesh
The Landscape() constructor loads the mesh, checks that the resulting Java 3D
subgraph has the right characteristics, and extracts various mesh dimensions. At the
end of the constructor, the land is added to the world, and the texture laid over it.

 // globals
 private BranchGroup sceneBG;
 private BranchGroup landBG = null;
 private Shape3D landShape3D = null;

 // various mesh dimensions, set in getLandDimensions()
 private double landLength, minHeight, maxHeight;
 private double scaleLen;

 public Landscape(BranchGroup sceneBG, String fname)
 {
 loadMesh(fname); // initialize landBG
 getLandShape(landBG); // initialize landShape3D

 // set the picking capabilities so that intersection
 // coords can be extracted after the shape is picked
 PickTool.setCapabilities(landShape3D, PickTool.INTERSECT_COORD);

 getLandDimensions(landShape3D); // extracts sizes from
 // landShape3D

 makeScenery(landBG, fname); // add any scenery
 addWalls(); // walls around the landscape
 GroundCover gc = new GroundCover(fname);
 landBG.addChild(gc.getCoverBG()); // add any ground cover

 addLandtoScene(landBG);
 addLandTexture(landShape3D, fname);
 }

loadMesh() uses Java 3D’s utility class, ObjectFile, to load the OBJ file. If the load is
successful, the geometry will be stored in a TriangleStripArray below a Shape3D
node and BranchGroup. loadMesh() assigns this BranchGroup to the global landBG.

 private void loadMesh(String fname)
 {
 FileWriter ofw = null;
 String fn = new String("models/" + fname + ".obj");
 System.out.println("Loading terrain mesh from: " + fn +" ...");
 try {
 ObjectFile f = new ObjectFile();
 Scene loadedScene = f.load(fn);

 if(loadedScene == null) {
 System.out.println("Scene not found in: " + fn);
 System.exit(0);
 }

 landBG = loadedScene.getSceneGroup(); // the land's BG
 if(landBG == null) {

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

12 Andrew Davison. 2003

 System.out.println("No land branch group found");
 System.exit(0);
 }
 }
 catch(IOException ioe)
 { System.err.println("Terrain mesh load error: " + fn);
 System.exit(0);
 }
 }

getLandShape() checks that the subgraph below landBG has a Shape3D node, and if
the Shape3D is holding a single GeometryArray. The Shape3D node is assigned to the
landShape3D global.

 private void getLandShape(BranchGroup landBG)
 {
 if (landBG.numChildren() > 1)
 System.out.println("More than one child in land branch group");
 Node node = landBG.getChild(0);
 if (!(node instanceof Shape3D)) {
 System.out.println("No Shape3D found in land branch group");
 System.exit(0);
 }
 landShape3D = (Shape3D) node;
 if (landShape3D == null) {
 System.out.println("Land Shape3D has no value");
 System.exit(0);
 }
 if (landShape3D.numGeometries() > 1)
 System.out.println("More than 1 geometry in land BG");
 Geometry g = landShape3D.getGeometry();
 if (!(g instanceof GeometryArray)) {
 System.out.println("No Geometry Array found in land Shape3D");
 System.exit(0);
 }
 }

getLandDimensions() is called from Landscape’s constructor to initialize three
globals related to the size of the mesh:

• landLength the length of the X (and Y) sides of the floor of the
 landscape

• scaleLen the scaling necessary to fit landLength into
 LAND_LEN units in the world. scaleLen will be
 used to scale the landscape.

• minHeight and maxHeight min and max heights of the landscape

The underlying assumptions are that the floor runs across the XY plane, is square,
with its lower left-hand corner at (0,0), and that the z-axis holds the height values.

 private void getLandDimensions(Shape3D landShape3D)
 {
 // get the bounds of the shape
 BoundingBox boundBox = new BoundingBox(landShape3D.getBounds());
 Point3d lower = new Point3d();

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

13 Andrew Davison. 2003

 Point3d upper = new Point3d();
 boundBox.getLower(lower); boundBox.getUpper(upper);
 System.out.println("lower: " + lower + "\nupper: " + upper);

 if ((lower.y == 0) && (upper.x == upper.y)) {
 // System.out.println("XY being used as the floor");
 }
 else if ((lower.z == 0) && (upper.x == upper.z)) {
 System.out.println("Error: XZ set as the floor;
 change to XY in Terragen");
 System.exit(0);
 }
 else {
 System.out.println("Cannot determine floor axes");
 System.out.println("Y range should == X range, and
 start at 0");
 System.exit(0);
 }

 landLength = upper.x;
 scaleLen = LAND_LEN/landLength;
 System.out.println("scaleLen: " + scaleLen);
 minHeight = lower.z;
 maxHeight = upper.z;
 } // end of getLandDimensions()

The lower and upper corners of the mesh can be obtained easily by extracting the
BoundingBox for the shape. However, this approach only works correctly if the shape
contains a single geometry.

4.2. Placing the Terrain into the World
The floor of the landscape runs across the XY plane, starting at (0,0), with sides of
landLength units, heights in the z-direction. The world’s floor is the XZ plane, with
sides of LAND_LEN units, and the y-axis corresponding to up and down.

Consequently, the landscape (stored in landBG) must be rotated to lie on the XZ
plane, and be scaled to have floor sides of length LAND_LEN. The scaling is a matter
of applying the scaleLen global, which equals LAND_LEN/landLength.

In addition, the terrain is translated so that the center of its floor is at (0,0) in the
world’s XZ plane.

These changes are illustrated by Figure 11.

Figure 11. Placing the Terrain.

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

14 Andrew Davison. 2003

 private void addLandtoScene(BranchGroup landBG)
 {
 Transform3D t3d = new Transform3D();
 t3d.rotX(-Math.PI/2.0); // so land's XY resting on XZ plane
 t3d.setScale(new Vector3d(scaleLen, scaleLen, scaleLen));
 TransformGroup sTG = new TransformGroup(t3d);
 sTG.addChild(landBG);

 // center the land, which starts at (0,0) on the XZ plane,
 // so move it left and forward
 Transform3D t3d1 = new Transform3D();
 t3d1.set(new Vector3d(-LAND_LEN/2, 0, LAND_LEN/2));
 TransformGroup posTG = new TransformGroup(t3d1);
 posTG.addChild(sTG);

 sceneBG.addChild(posTG); // add to the world
 }

The subgraph added to sceneBG is shown in Figure 12.

Figure 12. Subgraph for the Landscape.

An essential point is that any nodes added to landBG will be affected by the
translation, rotation, and scaling applied to the landscape. This includes the scenery
nodes (i.e. the 3D models and ground cover), but the landscape walls are connected to
sceneBG, so are not transformed.

The principal reason for connecting nodes to landBG is so their positioning in space
can utilize the local coordinate system in landBG. These are the coordinates specified
in Terragen: the floor in the XY plane, heights along the z-axis.

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

15 Andrew Davison. 2003

4.3. Adding Texture to the Terrain
The texture is stretched to fit the terrain stored in landShape3D below landBG. The
texture coordinates (s,t), which define a unit square, must be mapped to the (x,y)
coordinates of the terrain whose lower left hand corner is at (0,0), top right hand
corner at (landLength, landLength). The intended mapping is captured by Figure 13.
The simplest way of doing this is define generation planes to translate (x,y)
coordinates to (s,t) values.

Figure 13. Mapping the Terrain to the Texture.

addLandTexture() sets up the generation planes via a call to stampTexCoords(). It
creates an Appearance node for landShape3D, and loads the texture.

 private void addLandTexture(Shape3D shape, String fname)
 {
 Appearance app = shape.getAppearance();

 // generate texture coords
 app.setTexCoordGeneration(stampTexCoords(shape));

 // combine texture with colour and lighting of underlying surface
 TextureAttributes ta = new TextureAttributes();
 ta.setTextureMode(TextureAttributes.MODULATE);
 app.setTextureAttributes(ta);

 // apply texture to shape
 Texture2D tex = loadLandTexture(fname);
 if (tex != null) {
 app.setTexture(tex);
 shape.setAppearance(app);
 }
 }

The generation planes are specified using:

s = x / landLength and t = y / landLength

 private TexCoordGeneration stampTexCoords(Shape3D shape)
 {
 Vector4f planeS =
 new Vector4f((float)(1.0/landLength), 0.0f, 0.0f, 0.0f);
 Vector4f planeT =
 new Vector4f(0.0f, (float)(1.0/landLength), 0.0f, 0.0f);

 // generate new texture coordinates for GeometryArray

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

16 Andrew Davison. 2003

 TexCoordGeneration texGen = new TexCoordGeneration();
 texGen.setPlaneS(planeS);
 texGen.setPlaneT(planeT);
 return texGen;
 }

5. Making 3D Scenery
3D scenery are models which the user may enter, move around, and view from
different angles. An example is the castle in the test2.obj landscape, as seen in Figures
1 and 14.

Figure 14. The Castle in the test2.obj Terrain

The user can enter a model; in fact the user can walk right through its walls. Terra3D
does not impose any constraints on the user’s movements around models.

The placement of models, and the user’s initial position in the terrain, are specified in
a text file with the same name as the landscape’s OBJ file; for this example, the text
file is test2.txt in the directory models/:

start 3960 1800 255.64
Castle.cob 4100 4230 220 70
bldg4.3ds 6780 3840 780 90
hand1.obj 1830 570 781.98 120

The file has the format:
 start x y z
 <model file> x y z scale
 <model file> x y z scale
 :

A start line must be included -- it says where the user is placed in the landscape at
start time; the scenery objects are optional. The (x,y,z) values are in landscape
coordinates, and the scale value is used to adjust the model’s size in the terrain.

Each scenery object is loaded with a PropManager object; we assume the existence of
"coords" data files for the models.

A difficult question is how to decide on suitable (x,y,z) and scale values? One
approach is to jot down likely coordinates while running Terragen. Another technique

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

17 Andrew Davison. 2003

is to move over the loaded terrain in Terra3D and print out the current position by
pressing the ‘w’ button (‘w’ for ‘where’). This functionality is supported by
KeyBehavior, described later. Yet another possibility is to open the OBJ file with a
text editor, and search through the ‘v’ lines for likely looking coordinates.

None of these approaches help with scale factors, which are mostly ‘guess-timates’.

The scenery models are attached to landBG, and so will be translated, rotated, and
scaled in the same way as the landscape. The scale factor for the terrain is stored in
scaleLen (it is 0.0078125 in the test2 example). Thus, to render the model at the same
size as it was created, the scaling must be ‘undone’ by enlarging it by 1/scaleLen (128
in test2).

Another consideration is the height of the user’s viewpoint. In KeyBehavior, the
user’s height above the XZ plane is set to the USER_HEIGHT constant (0.5 world
units), which is equivalent to 0.5/0.0078125, or 64 landscape units.

In practice, it is a good idea to start with a scaling factor between 64 and 128: 90
seems a good value.

Landscape’s constructor calls makeScenery() to add scenery to landBG:
 makeScenery(landBG, fname);

fname is the file name supplied on the command line (e.g. “test2”).

makeScenery() parses the scenery file, storing the user’s starting position in
originVec, and calls placeScenery() to place each model in the terrain.

originVec is used by KeyBehavior, and so must be specified in world coordinates.
However, the input from the scenery file is in terrain coordinates. The translation
between the two coordinate systems is done through a call to landToWorld():

 originVec = landToWorld(xCoord, yCoord, zCoord);
 :

 private Vector3d landToWorld(double xCoord, double yCoord,
 double zCoord)
 { double x = (xCoord * scaleLen) - LAND_LEN/2;
 double y = zCoord * scaleLen; // z-axis -> y-axis
 double z = (-yCoord * scaleLen) + LAND_LEN/2; // y- -> z-axis
 return new Vector3d(x, y, z);
 }

landToWorld() applies the rotation, scaling, and translation utilized when the terrain
is connected to the world, as illustrated in Figure 12. The rotation is achieved by
swapping the terrain (z,y) values to becomes world (y,z) coordinates. The scaling
must be done before the translation in order to mimic the ordering of the transforms in
Figure 12.

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

18 Andrew Davison. 2003

5.1. Placing the Models
placeScenery() attaches a model to landBG. However, some additional
transformations must be applied, as shown in Figure 15.

Figure 15. A Model Subgraph below landBG.

The translation and scaling values are supplied for the model in the scenery file.
These are given in terms of terrain coordinates because the model is being added to
landBG. The rotation is slightly harder to fathom.

The landscape is rotated -90 degrees around the x-axis, and this is applied to the
model as well. However, the model is already correctly orientated to rest on the XZ
plane, and so the terrain rotation must be undone, by rotating the model +90 degrees
back around the x-axis.

 private void placeScenery(BranchGroup landBG,
 TransformGroup modelTG, double x, double y,
 double z, double scale)
 {
 modelTG.setPickable(false); // so not pickable in scene

 Transform3D t3d = new Transform3D();
 t3d.rotX(Math.PI/2.0); // to counter the -ve rot of land
 t3d.setScale(new Vector3d(scale, scale, scale)); // scaled
 TransformGroup scaleTG = new TransformGroup(t3d);
 scaleTG.addChild(modelTG);

 Transform3D t3d1 = new Transform3D();
 t3d1.set(new Vector3d(x,y,z)); // translated
 TransformGroup posTG = new TransformGroup(t3d1);
 posTG.addChild(scaleTG);

 landBG.addChild(posTG);
 }

The model is made unpickable, since picking could interact with it if the user went
inside the model at run time.

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

19 Andrew Davison. 2003

6. Adding Landscape Walls
The landscape walls surround the terrain, and are covered with a mountain range
image. Calculating the wall’s position in space is somewhat simpler if they are added
to sceneBG, which permits world coordinates to be used. The walls surround the
terrain after it has been rotated and scaled, so lie in the XZ plane, with lengths
LAND_LEN (see Figure 16). Their y-axis extent is obtained from the minimum and
maximum heights for the terrain, scaled to world-size.

Figure 16. Landscape Walls.

 // Landscape globals
 private static final double LAND_LEN = 60.0;
 // length of landscape in world coordinates
 private static final String WALL_PIC = "models/mountain2Sq.jpg";
 :

 private void addWalls()
 { // heights used for the walls, in world coords
 double minH = minHeight * scaleLen;
 double maxH = maxHeight * scaleLen;

 // the eight corner points
 // back, left
 Point3d p1 = new Point3d(-LAND_LEN/2.0f, minH, -LAND_LEN/2.0f);
 Point3d p2 = new Point3d(-LAND_LEN/2.0f, maxH, -LAND_LEN/2.0f);

 // front, left
 Point3d p3 = new Point3d(-LAND_LEN/2.0f, minH, LAND_LEN/2.0f);
 Point3d p4 = new Point3d(-LAND_LEN/2.0f, maxH, LAND_LEN/2.0f);

 // front, right
 Point3d p5 = new Point3d(LAND_LEN/2.0f, minH, LAND_LEN/2.0f);
 Point3d p6 = new Point3d(LAND_LEN/2.0f, maxH, LAND_LEN/2.0f);

 // back, right
 Point3d p7 = new Point3d(LAND_LEN/2.0f, minH, -LAND_LEN/2.0f);
 Point3d p8 = new Point3d(LAND_LEN/2.0f, maxH, -LAND_LEN/2.0f);

 // load texture; set mag filter since the image is enlarged
 TextureLoader loader = new TextureLoader(WALL_PIC, null);
 Texture2D texture = (Texture2D) loader.getTexture();
 if (texture == null)
 System.out.println("Cannot load wall image from " + WALL_PIC);

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

20 Andrew Davison. 2003

 else {
 System.out.println("Loaded wall image: " + WALL_PIC);
 texture.setMagFilter(Texture2D.BASE_LEVEL_LINEAR);
 }

 // left wall
 sceneBG.addChild(new TexturedPlane(p3, p1, p2, p4, texture));
 // front wall
 sceneBG.addChild(new TexturedPlane(p5, p3, p4, p6, texture));
 // right wall
 sceneBG.addChild(new TexturedPlane(p7, p5, p6, p8, texture));
 // back wall
 sceneBG.addChild(new TexturedPlane(p1, p7, p8, p2, texture));
 } // end of addWalls()

The same image is used for each wall, mountain2Sq.jpg, shown in Figure 17.

Figure 17. mountain2Sq.jpg: the Mountain Range

It was originally a wide, thin image, but resized to form a square suitable for a texture.
It is only 7K in size, and so becomes very pixilated when viewed up close inside
Terra3D. For that reason, mag filtering is switched on, to smooth the image’s
enlargement. It may also be advisable to use a larger image.

Figure 18 shows one of the walls in the test2.obj terrain.

Figure 18. A Landscape Wall in Terra3D.

6.1. The TexturedPlane Class
Each wall is an instance of the TexturedPlane class, which is a simplified descendent
of TexturedPlanes in the FractalLand3D example of chapter 17.

The geometry is simpler since only a single QuadArray is created to hold the four
corners of the wall. Also, no normals are specified since the node’s appearance does

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

21 Andrew Davison. 2003

not enable lighting or utilize a Material node. The appearance is only the texture, with
no lighting effects.

7. Ground Cover
Ground cover is the other kind of scenery for decorating a landscape. A piece of
ground cover is represented by a transparent GIF pasted onto a ‘screen’ which stands
on the terrain’s surface, and is always oriented towards the viewer. The ‘screen’ is
implemented as a 4-sided QuadArray, inside a GroundShape object (a subclass of
OrientedShape3D).

Typical ground cover includes trees, bushes, and road signs. Such elements will
appear many times inside a scene, and it would be inefficient to create a separate
shape for each one. Instead, the GroundShape object (e.g. a tree) is embedded in a
SharedGroup node, which allows the geometry to be shared by multiple
TransformGroups. Each TransfromGroup specifies a location for a particular ground
cover element, but the actual object is a shared node.

The approach is illustrated by Figure 19.

Figure 19. A Subgraph using a Shared GroundShape Object.

Since a GroundShape object is ultimately attached to landBG, terrain coordinates can
be used to set its position inside the landscape.

The constructor for Landscape() adds ground cover by calling:

 GroundCover gc = new GroundCover(fname);

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

22 Andrew Davison. 2003

 landBG.addChild(gc.getCoverBG());

The GroundCover object, gc, manages the creation of the subgraph holding the
ground cover items. The call to getCoverBG() returns the coverBG BranchGroup, the
top-level of the subgraph.

7.1. The GroundCover Class
Information about what ground cover should be added to the terrain is given in a
<fname>GC.txt text file, where <fname> is the name of the landscape OBJ file. For
instance, the information for the test2 scene is stored in test2GC.txt in models/.

range 0 500
tree1.gif 90 200
tree2.gif 90 200
tree3.gif 90 200
tree4.gif 90 200

The format of a ‘GC’ file is:

 range [min max]
 <gc file1> scale1 number1
 <gc file2> scale2 number2
 :

The range line specifies the height range within which ground cover may appear. A
range restriction is useful for stopping scenery appearing on the surface of lakes or on
the tops of peaks.

A <gc file> holds a transparent GIF, which is loaded into its own GroundShape
object. The scale argument is used to set the size of the ‘screen’, and number
determines the number of copies of the ground cover placed in the scene.

As with 3D models, the best scale value is largely a matter of trial-and-error, but 90 is
a reasonable starting value – it makes the cover a bit taller than the user’s viewpoint.

The programmer does not supply terrain coordinates for the scenery. Instead, they are
positioned at random locations. Even this is not that simple, since the (x,y,z) data
must be obtained from somewhere.

The solution in GroundCover is to read in the OBJ file (e.g. test2.obj) as a text file,
and record the ‘v’ data (the (x,y,z) coordinates of its mesh) as Vector3d objects in the
coords ArrayList. Positioning is then a matter of randomly selecting a coordinate from
the coords list.

This approach is surprisingly fast, although memory intensive. The principal
drawback is the lack of programmer control over placement, including the inability to
‘clump’ ground cover together: each mesh coordinate is 30 terrain units apart.

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

23 Andrew Davison. 2003

Figure 20 gives class diagrams for GroundCover and GroundShape, showing all the
data and methods.

Figure 20. GroundCover and GroundShape Classes.

In GroundCover, loadCoverInfo() loads and parses the ‘GC’ text file. It calls
loadObj() and readObj() to parse the coordinates information extracted from the OBJ
file, storing them in the coords ArrayList. Each <gc file> line from the 'GC' file
triggers a call to loadGC(), which attaches a subgraph to coverBG similar to the one
in Figure 19.

 private void loadGC(String gcFnm, double scale, int gcNo)
 {
 String gcFile = new String("models/" + gcFnm);

 SharedGroup gcSG = new SharedGroup();
 gcSG.addChild(new GroundShape((float) scale, gcFile));
 gcSG.setPickable(false); // so not pickable in scene

 Vector3d coordVec;
 for(int i=0; i < gcNo; i++) { // make multiple TGs using same SG
 coordVec = selectCoord();
 placeCover(gcSG, coordVec);
 }
 }

The arguments passed to loadGC() are the three values supplied on the <gc file> line
in the 'GC' file. A single GroundShape object is created, and multiple transforms are
connected to it by repeatedly calling placeCover().

 private void placeCover(SharedGroup gcSG, Vector3d coordVec)
 {
 Transform3D t3d = new Transform3D();
 t3d.rotX(Math.PI/2.0); // to counter rotation of the land
 TransformGroup rotTG = new TransformGroup(t3d);
 rotTG.addChild(new Link(gcSG));

 Transform3D t3d1 = new Transform3D();
 t3d1.set(coordVec);
 TransformGroup posTG = new TransformGroup(t3d1);
 posTG.addChild(rotTG);

 coverBG.addChild(posTG);

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

24 Andrew Davison. 2003

 }

placeCover() creates a single branch down from coverBG to the GroundShape node
(see Figure 19).

A common coding error when using a SharedGroup node is to attempt to link it
directly to the rest of the scene graph. Each link must be through a Link node.

Figure 19 shows that each branch from coverBG to a Link node holds two
TransformGroups. The first (posTG) moves the shape to a location on the terrain’s
surface; its value comes from a call to selectCoord() in loadGC().

 private Vector3d selectCoord()
 // randomly select a landscape coordinate
 { int index = (int) Math.floor(Math.random()*coords.size());
 return (Vector3d) coords.get(index);
 }

The second TransformGroup (rotTG) plays a similar role to the sTG node for 3D
models (see Figure 12): it counters the –90 degree rotation around the x-axis applied
to the landscape.

The reader may notice that sTG in Figure 12 also scales the 3D model, which is not
done in the ground cover subgraph in Figure 19. Ground cover scaling is applied
directly to the quad geometry inside GroundShape.

7.2. The GroundShape Class
A GroundShape object displays a transparent GIF drawn on the front face of a 4-sided
QuadArray. The center of the quad's base is at (0,0,0), resting on the ground. It has
sides of screenSize, and is always oriented towards the viewer. The orientation is
achieved by making GroundShape a subclass of OrientedShape3D, and setting its axis
of rotation to be the y-axis.

GroundShape’s createAppearance() sets up the necessary transparency attributes for
the shape, and loads the GIF as a texture.

 private void createAppearance(String fnm)
 {
 Appearance app = new Appearance();

 // blended transparency so texture can be irregular
 TransparencyAttributes tra = new TransparencyAttributes();
 tra.setTransparencyMode(TransparencyAttributes.BLENDED);
 app.setTransparencyAttributes(tra);

 // Create a two dimensional texture with min and mag filtering
 TextureLoader loader = new TextureLoader(fnm, null);
 Texture2D tex = (Texture2D) loader.getTexture();
 if (tex == null)
 System.out.println("Image Loading Failed for " + fnm);
 else {
 tex.setMinFilter(Texture2D.BASE_LEVEL_LINEAR);
 tex.setMagFilter(Texture2D.BASE_LEVEL_LINEAR);
 app.setTexture(tex);

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

25 Andrew Davison. 2003

 }

 setAppearance(app);
 } // end of createAppearance()

Min and mag filtering is used to improve the texture’s appearance when viewed close
to and from far away.

8. The KeyBehavior Class
The KeyBehaviour class is quite similar to the one in FractalLand3D, it permits the
user to move over the surface of the terrain, and to ‘float’ above it. However, there is
one small change, and one large one.

The small change is the addition of the ‘w’ key, which prints the user’s current
location on the landscape.

The major change is that a move does not immediately affect the user's vertical
position on the terrain. The height calculation is delegated to a HeightFinder object,
which may take 1-2 secs to obtain the result through picking. In the meantime,
KeyBehavior continues to use the old value. As a consequence, the user can move
inside mountains, but his vertical position will eventually be corrected.

The reason for the slow picking is the large size of the terrain (e.g. over 66,000
vertices in test2.obj, 131,000 faces), all packaged inside a single GeometryArray.

Our approach has the advantage that key processing is decoupled from the height
calculation. This means that the KeyBehavior object does not have to wait 1-2
seconds after each move-related key press, which would quickly drive the user to
distraction.

At the end of the chapter, we discuss various alternatives to this coding technique.

8.1. Where am I?
When the user presses the ‘w’ key, printLandLocation() is called.

 private void printLandLocation()
 { targetTG.getTransform(t3d);
 t3d.get(trans);
 trans.y -= MOVE_STEP*zOffset; // ignore user floating
 Vector3d whereVec = land.worldToLand(trans);

 System.out.println("Land location: (" + df.format(whereVec.x) +
 ", " + df.format(whereVec.y) + ", " +
 df.format(whereVec.z) + ")");
 }

The slight problem is that the KeyBehaviour object is attached to sceneBG, and so
utilizes world coordinates. However, printing the landscape coordinates is more
helpful, and so the (x,y,z) data maintained in KeyBehavior must be transformed. This
is achieved by calling worldToLand() in Landscape:

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

26 Andrew Davison. 2003

 public Vector3d worldToLand(Vector3d worldVec)
 {
 double xCoord = (worldVec.x + LAND_LEN/2) / scaleLen;
 double yCoord = (-worldVec.z + LAND_LEN/2) / scaleLen;
 // z-axis --> y-axis
 double zCoord = worldVec.y / scaleLen; // y-axis --> z-axis
 return new Vector3d(xCoord, yCoord, zCoord);
 }

The transformations apply the operations implicit in the subgraph in Figure 12: the
world coordinates are translated, scaled and rotated, to make them into terrain
coordinates.

The rotation (a –90 degree rotation around the x-axis) can be conveniently expressed
as a switching of the y and z coordinates.

Another way of understanding worldToLand() is as the reverse of landToWorld(),
which is also in Landscape.

The ‘w’ key is quite useful when the programmer is trying to decide where to place
scenery on the terrain. The user can move over the landscape inside Terra3D, and
press ‘w’ when a promising location is encountered. These coordinates can be used in
the scenery file to position 3D models.

8.2. Strolling Around the Terrain
The principal method for moving is moveBy(), which has the same interface as the
moveBy() method in KeyBehavior in FractalLand3D. The method is called with a
predefined ‘step’ for moving forward, back, left, or right.

In FractalLand3D, KeyBehavior’s moveBy() moves the viewpoint in three stages:

1. The next (x,z) position on the floor is calculated by carrying out the move but not
updating the user’s actual position. This is done by the tryMove() method.

2. The resulting (x,z) data is passed to getLandHeight() in the Landscape object
which employs picking to get the floor height at that location.

3. The viewpoint’s movement along the y-axis is calculated as the change between
the current floor height and the height at the new location.

In Terra3D, KeyBehavior’s moveBy() has four stages:

1. The next (x,z) position on the floor is calculated with tryMove(), which is
identical to the version in FractalLand3D.

2. The (x,z) data is not passed to Landscape, but instead to a HeightFinder thread.
HeightFinder uses picking to get the floor height.

3. In the meantime, moveBy() uses the current floor height as the height of the new
location.

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

27 Andrew Davison. 2003

4. Later, perhaps 1-2 seconds later, HeightFinder calls adjustHeight() in
KeyBehavior. adjustHeight() updates the user’s height by the difference between
the current floor height and the height at the new location. This is the same as step
(3) in FractalLand3D, but is done in a separate method, initiated by a separate
thread.

 private void moveBy(Vector3d theMove)
 {
 Vector3d nextLoc = tryMove(theMove); // next (x,?,z) position
 if (!land.inLandscape(nextLoc.x, nextLoc.z)) //not on landscape
 return;

 hf.requestMoveHeight(nextLoc); // height request to HeightFinder
 Vector3d actualMove = new Vector3d(theMove.x, 0, theMove.z);
 // no y-axis change... yet
 doMove(actualMove);
 }

 public void adjustHeight(double newHeight)
 {
 double heightChg = newHeight - currLandHeight -
 (MOVE_STEP*zOffset);
 Vector3d upVec = new Vector3d(0, heightChg, 0);
 currLandHeight = newHeight; // update current height
 zOffset = 0; // back on floor, so no offset
 doMove(upVec);
 }

Both moveBy() and adjustHeight() call doMove() which updates the viewpoint
position. This method is unchanged from the one in FractalLand3D, except that is it
now prefixed with the synchronized keyword. This prevents KeyBehavior and
HeightFinder from calling it at the same time.

9. The HeightFinder Class
KeyBehaviour interacts with HeightFinder by calling requestMoveHeight() which
stores a (x,y,z) coordinate in the global theMove Vector3d object.

 // globals
 private Vector3d theMove; // current move request from KeyBehavior
 private boolean calcRequested;
 :

 synchronized public void requestMoveHeight(Vector3d mv)
 { theMove.set(mv.x, mv.y, mv.z);
 // will overwrite any pending request in theMove
 calcRequested = true;
 }

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

28 Andrew Davison. 2003

The (x,z) values in theMove will be used for the picking calculation. The
calcRequested boolean signals a pending request.

If the user presses the move keys very rapidly, KeyBehavior will call
requestMoveHeight() frequently, which will cause theMove to be updated. Thus,
when HeightFinder eventually processes the next request it will find only the most
recent one in theMove, saving itself unnecessary work. This illustrates the decoupling
of key processing from height calculation – the user can move as fast (or as slow) as
they like.

requestMoveHeight() returns immediately; KeyBehavior does not wait for an answer,
or it might be waiting for 1-2 seconds. Instead, KeyBehavior uses the current y-height
for its move.

HeightFinder's run() method constantly loops: reading the current move request from
theMove, then calling getLandHeight(). At the end of getLandHeight(), the new
height is passed back to KeyBehavior.

 public void run()
 { Vector3d vec;
 while(true) {
 if (calcRequested) {
 vec = getMove(); // get the requested move
 getLandHeight(vec.x, vec.z); // pick with it
 }
 else { // no pending request
 try {
 Thread.sleep(200); // sleep a little
 }
 catch(InterruptedException e) {}
 }
 }
 }

The data in theMove is obtained via getMove():

 synchronized private Vector3d getMove()
 { calcRequested = false;
 return new Vector3d(theMove.x, theMove.y, theMove.z);
 }

The method is synchronized, as is requestMoveHeight(), since both access/change
theMove and calcRequested, and we want to impose mutual exclusion on those
operations.

9.1. Picking in HeightFinder
getLandHeight() in HeightFinder implements picking on the landscape, and
essentially uses the same code as getLandHeight() in the Landscape class in
FractalLand3D.

Placing the code in the HeightFinder class is a matter of taste – all the height
calculations should be located in a single object.

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

29 Andrew Davison. 2003

The HeightFinder constructor is passed a reference to the Landscape object so that
terrain-related data and methods can be accessed.

 // globals
 private Landscape land;
 private KeyBehavior keyBeh;
 private PickTool picker;
 private double scaleLen;
 :

 public HeightFinder(Landscape ld, KeyBehavior kb)
 {
 land = ld;
 keyBeh = kb;
 picker = new PickTool(land.getLandBG()); //only check landscape
 picker.setMode(PickTool.GEOMETRY_INTERSECT_INFO);

 scaleLen = land.getScaleLen(); // scale factor for terrain
 theMove = new Vector3d();
 calcRequested = false;
 }

The PickTool object, picker, is configured to examine only landBG. However, 3D
models and ground cover are also attached to this node, so they should be made
unpickable; we are only interested in obtaining floor coordinates at pick time.

getLandHeight() is like the same named method in FractalLand3D. One, perhaps
surprising, feature of the code is that the pick ray is specified in world coordinates
even though the PickTool is attached to landBG (which uses landscape coordinates).

 // global
 private final static Vector3d DOWN_VEC =
 new Vector3d(0.0,-1.0,0.0);
 :

 private void getLandHeight(double x, double z)
 {
 // high up in world coords; shoot a ray downwards
 Point3d pickStart = new Point3d(x, 2000, z);
 picker.setShapeRay(pickStart, DOWN_VEC);

 PickResult picked = picker.pickClosest();
 if (picked != null) { // pick sometimes misses at edge/corner
 if (picked.numIntersections() != 0) { //sometimes no intersects
 PickIntersection pi = picked.getIntersection(0);
 Point3d nextPt;
 try { // handles 'Interp point outside quad' error
 nextPt = pi.getPointCoordinates();
 }
 catch (Exception e) {
 System.out.println(e);
 return; // don't talk to KeyBehavior as no height found
 }

 double nextYHeight = nextPt.z * scaleLen;

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

30 Andrew Davison. 2003

 // z-axis land --> y-axis world
 keyBeh.adjustHeight(nextYHeight); //tell KeyBehavior height
 }
 }
 } // end of getLandHeight()

The intersection point is obtained in local (i.e. terrain) coordinates by calling
getPointCoordinates(); there is also a getPointCoordinatesVW() which would return
the point in world coordinates.

KeyBehavior utilizes world coordinates, and so the height value (nextPt.z) must be
converted, but this can be done inexpensively by scaling the point directly, to give
nextYHeight. This is passed to KeyBehavior by calling adjustHeight().

10. Speeding up Terrain Following
The code for terrain following sacrifices accuracy for speed, meaning that a user can
move relatively quickly over the terrain with the disadvantage that he/she can move
straight into the side of a mountain or float off the edge of a cliff. Eventually, their
vertical position will be corrected, but even a temporary position disparity is
disconcerting. What can be done?

There are a number of tricks that can be utilized, without making any fundamental
changes to the application.

The step distance used in KeyBehavior is 0.2 world units, which is 26 terrain units
(0.2/0.0078125). As a rough comparison, each mesh coordinate is 30 units apart. If
the step distance was reduced, the user would move over the terrain slower, and
height changes would occur more gradually. This would help the picking code keep
up with the height adjustments.

It is possible to increase the user's height, which is 0.5 world unit in KeyBehavior, or
64 terrain units. If the eye line is higher off the floor, then a larger height change
would be required before the user noticed that he had sunk beneath the surface.

Two other 'solutions' are to create landscapes with gentler slopes, and make it
impossible for a user to move into rough terrain by imposing restrictions on
KeyBehavior. This kind of behavior is typical of racing games, where a vehicle can
only move a short distance off the racing track.

Since HeightFinder is a thread, why not throw more threads at the task? The single
HeightFinder thread takes 1-2 seconds to finish a calculation before it can start the
next one, which adds a considerable delay to the processing time for the next request.
By having several threads, the turn-around time would be reduced since the wait time
is less.

I tried this and discovered that picking cannot be threaded! Multiple threads can
initiate picking at roughly the same time, but each operation is sequentialised, and a
bit of extra time added in the process. Threads may be more successful if the picking
is carried out on distinct GeometryArrays, but I have yet to try this.

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

31 Andrew Davison. 2003

The real problem is that the mesh is too large for efficient picking. It should be
divided into pieces, perhaps based on the terrain's latitude and longitude. Then, as a
user moves over the terrain, the relevant terrain piece can be selected easily, and
picking would be much faster due to the smaller size of the piece.

Multiple pieces also lend themselves to the support of multiple levels of detail and
dynamic loading. Most of the approaches described below use these ideas.

11. Other Approaches
The reader should look back to sections 8 and 10 of chapter 17 for some discussion of
fractal landscapes and ROAM.

The rendering of USGS height field data is a popular way of creating a real-world
scene. As mentioned in section 10 of chapter 17, j3d.org contains a DEM loader, and
the JLand applet/application can read DEM files and several other formats.

Terragen can utilize a variety of USGS and NASA file formats, when used in
conjunction with plugins and/or other terrain-based applications, such as 3DEM. This
makes the data available to Terra3D, once it has been saved as OBJ and JPG files.

11.1. DEM Viewer
The JavaWorld article "Navigate through Virtual Worlds using Java 3D" by Mark O.
Pendergast is an excellent tutorial on utilizing DEM files, and includes fly-through
navigation controls using the keyboard and mouse, and level-of-detail (LOD) displays
of the data (http://www.javaworld.com/javaworld/jw-07-2003/jw-0704-3d_p.html).

All the source code can be downloaded, and includes a Grand Canyon example.

The data is stored internally in TriangleStripArrays using interleaving and by-
reference, which is the most efficient format in terms of memory and processor usage.
The data is stored as floats, which is adequate for the terrain resolution, and matches
Java 3D's internal data representation.

Interleaving is utilized to support colour and normal information alongside the
coordinates. The normals are generated in the code, rather than via a
NormalGenerator. Texturing is not used. Although interleaved data complicates the
coding, it speeds up rendering.

Rather than using a single TriangleStripArray (as in Terra3D), Pendergast employs
many arrays so that LOD features can be offered. The terrain is divided into segments,
with each segment represented by several TriangleStripArray holding varying
amounts of (by-reference) mesh detail. By-reference means that mesh data is shared
between the various segments, saving considerable space.

Switch nodes multiplex between the arrays at run-time: as the user approaches a
segment (moves away from one), then more (less) mesh detail is displayed.

Pendergast's article is a work-in-progress. He is currently working on swapping
segments in and out of memory at run time.

Java Prog. Techniques for Games. Chapter 17.5. TerraGen Draft #1 (19th August ' 03)

32 Andrew Davison. 2003

11.2. The CLOD Algorithm
Martin Barbisch implemented a Java 3D application for his student project which
illustrates the CLOD (Continuous Level of Detail) algorithm
(http://wwwvis.informatik.uni-stuttgart.de/javatevi/). The amount of detail visible to
the user is adjusted at run time as the viewer moves. The drawback is a 'popping'
effect as details suddenly appear as the user gets closer to some part of the terrain.
The solution is geomorphing, a form of mesh morphing

11.3. DTV Applet
Nathan Bower has written a Java 3D applet which displays a UK ordinance survey
map, textured over a height field for the same area
(http://www.nathanbower.com/cms?page_id=03_Java3D_Applet.htm&folder=/02_M
y_Work). No source code is available, but the information supplied on the Web page
suggests that he has implemented most of the components himself: the triangulation
scheme, viewpoint clipping, the mouse controls.

He also mentions an application that can display multiple ordinance survey maps,
tiled together, sufficient in number to cover the entire UK.

11.4. JCanyon
JCanyon is a flight simulator which visualizes its large data set (about 300MB) using
"OpenGL for Java" rather than Java 3D
(http://java.sun.com/products/jfc/tsc/articles/jcanyon/).

The terrain is divided into tiles, and multiple samples are prepared for each tile, with
varying coordinate and texture resolutions. Only the data for the required resolution is
mapped into memory at any given time. Tiles are fetched from the disk in a
background thread.

Two novelties of JCanyon are its texture selection technique and a method for
eliminating cracks between tiles, called filleting.

