
Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 1 © Andrew Davison 2013

Chapter 16.5. Augmented Reality with NyARToolkit

[Note: this draft differs quite significantly from the previous version. I've removed the

reliance on JMF, replacing it with JavaCV's FrameGrabber. Since NyARToolkit on

the PC utilizes JMF for image capturing, this has meant some large changes to my

code. I've not changed any of the NyARToolkit API, but bypass most of its optional

utility classes.]

Augmented Reality (AR) enhances a user‟s view of the real world with computer-

generated imagery, rendered quickly enough so that the added content can be

changed/updated as the physical view changes.

AR started its rise with the development of Head Mounted Displays (HMDs) which

superimpose images over the user's field of vision. Tracking sensors allow these

graphics to be modified in response to the user‟s head movement. But AR received its

biggest boost with the appearance of mobile devices containing cameras, GPS,

accelerometers, wireless internet connection, and more. Applications are starting to

appear which allow you to simply point a camera phone at something (e.g. a shop

window, a theatre) and the on-screen display will be augmented with information (e.g.

sales offers, discounted tickets), customized to your interests, at that time and place.

Two popular examples are Layar (http://layar.com/) and Wikitude

(http://www.wikitude.org/).

ARToolkit is probably the most widely used AR library

(http://www.hitl.washington.edu/artoolkit/): it identifies predefined physical markers

in a supplied video stream, and overlays those markers with 3D models. One of its

many „children‟ is NyARToolkit – a OOP port aimed at Java 3D, Processing,

Android, C#, and C++ (http://nyatla.jp/nyartoolkit/wp/?page_id=198); I‟ll be using

the Java 3D version in this chapter.

Figure 1 illustrates how the toolkit can be utilized.

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 2 © Andrew Davison 2013

Figure 1. Using NyARToolkit.

A camera streams video into the NyARToolkit application (MultiNyAR.java in this

chapter), which searches for markers in each frame. The markers (squares with thick

black borders) are identified, and their orientation relative to the image frame is

calculated. 3D models associated with the markers are added to the frame, after being

transformed so they appear to be standing on top of their markers. Figure 2 shows the

MultiNyAR GUI in more detail.

Figure 2. The MultiNyAR GUI.

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 3 © Andrew Davison 2013

The application consists of a panel showing the augmented video stream, and a text

area giving extra details about the markers and models. For example, the robot model

in Figure 2 is positioned at (-1.9, -1.8, 51.0) and the cow at (8.2, -7.9, 41.8). The

positive z-axis points into the scene (as explained later), which means that the robot is

„behind‟ the cow.

Figure 3 shows the same scene after the markers have been moved around.

Figure 3. A Changed MultiNyAR Scene.

The model‟s orientation and position have changed to correspond to the new locations

of the markers. For instance, the robot‟s z-axis position in Figure 3 is now 41.2, while

the cow‟s is 50.5, indicating that the robot is in the foreground.

To summarize: the MultiNyAR.java program described in this chapter explains how

to:

 utilize multiple markers in Java 3D;

 place arbitrary 3D models on top of markers;

 extract position, orientation, and confidence information from NyARToolkit;

 reduce model „shaking‟ and handle undetected markers.

My code also replaces JMF with JavaCV's FrameGrabber. This only affects the

capturing parts of the code; the core elements of NyARToolkit are untouched.

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 4 © Andrew Davison 2013

1. Installing NyARToolkit

The first hurdle for writing AR applications in Java is the installation of a large

number of libraries. You‟ll need JavaCV and OpenCV to handle the video coming

from the camera (but I'll assume you've already installed those for the earlier

chapters). I also utilize Java 3D and the NCSA Portfolio library, a useful collection of

Java 3D model loaders. Java 3D installers for a variety of platforms can be obtained

from https://java3d.java.net/binary-builds.html. NCSA Portfolio was developed by the

now-defunct NCSA Java 3D Group, in a project led by Steve Pietrowicz and Chris

Heistad. It can be downloaded from

http://fivedots.coe.psu.ac.th/~ad/jg/code/portfolio.zip

The top-level English language page for NyARToolkit is at

http://nyatla.jp/nyartoolkit/wp/?page_id=198, which leads to different versions of the

library for Java, Android, and others. Source code is stored at

http://sourceforge.jp/projects/nyartoolkit/ I downloaded “NyARToolkit for Java -

NyARToolkit Core” v4.1.1 as a zipped file called NyARToolkit-4.1.1.zip.

1.1. Compiling NyARToolkit

Unfortunately, the unzipped NyARToolkit does not include a ready-to-use JAR

executable, but it‟s fairly simple to create one.

1. The unzipped NyARToolkit-4.1.1\lib\src\ directory should be copied to a new

location (e.g. into C:\NyARToolkit\).

2. The unzipped NyARToolkit-

4.1.1\utils\java3d\src\jp\nyatla\nyartoolkit\java3d\utils\ directory contains Java 3D

utilities. Copy only J3dNyARParam.java to a new java3d\utils\ directory in

C:\NyARToolkit\src\jp\nyatla\nyartoolkit\.

3. The unzipped NyARToolkit-4.1.1\utils\j2se\src\jp\nyatla\nyartoolkit\utils\j2se\

directory contains J2SE utilities. Copy only the three files into a new utils\j2se\

directory in C:\NyARToolkit\src\jp\nyatla\nyartoolkit\.

This C:\NyARToolkit subdirectory structure will now look something like Figure 4.

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 5 © Andrew Davison 2013

Figure 4. The Modified nyartoolkit\ Directory.

All the Java files in C:\NyARToolkit\src and below must now be compiled. The

easiest way of doing this is to create a text file listing all the Java files, using:

> dir /b /s *.java > sources.txt

If this command is called inside C:\NyARToolkit\src\, then sources.txt will end up

containing:

C:\NyARToolkit-4.1.1\src\jp\nyatla\nyartoolkit\core\INyARDisposable.java

C:\NyARToolkit-4.1.1\src\jp\nyatla\nyartoolkit\core\NyARCode.java

C:\NyARToolkit-4.1.1\src\jp\nyatla\nyartoolkit\core\NyARException.java

 :

On UNIX, you could try find src -name *.java -print > sources.txt

Then use a text editor to remove the “C:\NyARToolkit\src\” prefixes, leaving:

jp\nyatla\nyartoolkit\core\INyARDisposable.java

jp\nyatla\nyartoolkit\core\NyARCode.java

jp\nyatla\nyartoolkit\core\NyARException.java

 :

Still in C:\NyARToolkit\src\, javac.exe can be called with the sources.txt file as an

argument:

> javac -encoding ISO-8859-1 @sources.txt

Note the use of “@”. The javac call requires the "-encoding" option so the character

set is extended to deal with the Japanese text comments in the files. Ignore the

warning about NyARLinkList.java due to the lack of a generic declaration.

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 6 © Andrew Davison 2013

When javac finishes, a quick look in the code directories below src\ will show you

that the Java files have been compiled.

Still in src\, the jp\ directory containing all the compiled Java code can be packaged

into a JAR file:

> jar cf NyARToolkit.jar jp

The resulting NyARToolkit.jar can now be moved to your test directory, and the

C:\NyARToolkit\src\ directory (and subdirectories) deleted (if you wish).

1.2. Testing NyARToolkit

The NyARToolkit download includes a Java 3D example called NyARJava3D.java,

but unfortunately it relies on JMF to capture images from the webcam. I've recoded it

as the application BoxNyAR, using the same NyARToolkit processing, but with

images captured via JavaCV's FrameGrabber.

You must have your webcam pointing at a print-out of the “Hiro” marker (Figure 5).

Its PDF file can be found in the NyARToolkit download in Data/pattHiro.pdf.

Figure 5. The Hiro Marker.

If everything is working fine, BoxNyAR creates a small window displaying a Java 3D

colored cube resting on top of the marker, as in Figure 6.

Figure 6. A Colored Cube on the Hiro Marker.

Turning the marker, causes the cube to move as well, so it stays on top of the “Hiro”

text, as in Figure 7.

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 7 © Andrew Davison 2013

Figure 7. Moving the Marker and Cube.

BoxNyAR has the benefit of being relatively short, and relatively easy to understand.

However, it lacks several features needed for more useful AR programming. For

example, it utilizes the Java 3D built-in ColorCube class which is a rather boring 3D

model. More importantly, it employs the NyARToolkit NyARSingleDetectMarker

class which can only detect a single marker in an image.

1.3. More Help with NyARToolkit

The Japanese documentation for NyARToolkit is at http://sixwish.jp/Nyartoolkit/, and

a English version of the installation steps can be found at

http://sixwish.jp/Nyartoolkit/Java/section01.en/. This includes details for installing

Java, Java 3D, JOGL, and JMF, with numerous screenshots (although they are in

Japanese).

There‟s a English language forum for NyARToolkit at

http://sourceforge.jp/projects/nyartoolkit/forums/

The best place for an overview of NyARToolkit is at the parent ARToolkit site

(http://www.hitl.washington.edu/artoolkit/) which includes documentation and

publication sections. The documentation is particularly helpful for explaining how to

calibrate the camera, create new markers, and deal with multiple markers. The

ARToolkit download comes with several utilities which can help with calibration and

marker creation.

2. Introducing Java 3D

A few years ago, I wrote a book that spent hundreds of pages explaining the uses of

Java 3D for games programming (Killer Game Programming in Java), so it's not

realistic to try to explain all the intricacies of the API in a few pages. Instead this

section gives a non-technical overview of Java 3D's main idea (the scene graph),

which is enough to understand the general structure of the MultiNyAR application

(which is based around the manipulation of a scene graph).

For more details, you'll need to turn elsewhere. If you don't want to buy the oh-so-

excellent Killer Game Programming in Java text, then you can read early drafts of the

chapters at its website, http://fivedots.coe.psu.ac.th/~ad/jg/. Lots of code examples

can be found there, including the HelloUniverse example described below.

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 8 © Andrew Davison 2013

2.1. The Scene Graph

The scene graph makes 3D programming much easier for novices (and even for

experienced programmers) because it emphasizes scene design rather than rendering,

by abstracting away from the graphics pipeline. The pipeline is represented by a tree-

like structure built from nodes representing 3D models, lights, sounds, the

background, the camera, and many other scene elements.

The nodes are typed, the main division being between Group and Leaf nodes. A

Group node is one with child nodes, grouping the children so that operations such as

translations, rotations, and scaling can be applied en masse. Leaf nodes are the leaves

of the graph (did you guess that?), which often represent the visible things in the

scene, such as 3D shapes, but may also be non-tangible entities, such as lighting and

sounds. Additionally, a Leaf node may have node components, specifying color,

reflectivity, and other attributes of the Leaf.

The scene graph can contain behaviors – nodes holding code that affects other nodes

in the graph at run time. Typical behavior nodes move shapes, detect and respond to

shape collisions, and cycle lighting from day to night.

The term scene graph is used, rather than scene tree, because it's possible for nodes to

be shared (i.e. have more than one parent).

Before looking at a real Java 3D scene graph, Figure 8 shows how the scene graph

idea can be applied to defining the contents of a living room.

Figure 8. Scene Graph for a Living Room.

The room Group node is the parent of Leaf nodes representing a sofa and two chairs.

Each Leaf utilizes geometry (shape) and color node components, and the chair

geometry information is shared. This sharing means that both chairs will have the

same shape, but be different colors.

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 9 © Andrew Davison 2013

The choice of symbols in Figure 8 comes from a standard symbol set (shown in

Figure 9) used in scene graph diagrams. I'll explain the VirtualUniverse and Locale

nodes, and the Reference relationship in a moment.

Figure 9. Scene Graph Symbols.

2.2. Some Java 3D Scene Graph Nodes

The Java 3D API can be viewed as a set of classes which subclass the Group and Leaf

nodes in various ways. The Leaf class is subclassed to define different kinds of 3D

shapes and environmental nodes (i.e. nodes representing lighting, sounds, and

behaviors).

The main shape class is called Shape3D, which uses two node components, to define

its geometry and appearance; these classes are called Geometry and Appearance.

The Group class supports basic node positioning and orientation for its children, and

is subclassed to extend those operations. For instance, BranchGroup allows children

to be added or removed from the graph at run time, while TransformGroup permits

the position and orientation of its children to be changed.

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 10 © Andrew Davison 2013

2.3. The HelloUniverse Scene Graph

My HelloUniverse application displays a rotating colored cube, as in Figure 10.

Figure 10. A Rotating Colored Cube.

It can be downloaded from

http://fivedots.coe.psu.ac.th/~ad/jg/code/HelloUniverse.zip.

Its scene graph is given in Figure 11.

Figure 11. Scene Graph for HelloUniverse.

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 11 © Andrew Davison 2013

VirtualUniverse is the top node in every scene graph, and represents the virtual world

space and its coordinate system. Locale acts as the scene graph's location in the virtual

world. Below the Locale node there are always two subgraphs – the left branch is the

content branch graph, holding program-specific content such as geometry, lighting,

textures, and the world's background. The content branch graph differs significantly

from one application to another.

The ColorCube is composed from a Shape3D node and associated Geometry and

Appearance components. Its rotation is carried out by a Behavior node which affects

the TransformGroup parent of the ColorCube's shape.

There are many predefined Behavior subclasses in the API, whose objects are

triggered automatically at run time when their specified conditions become true. For

example, behaviors can be linked to geometry and appearance changes, to external

events such as keypresses and mouse movements, or to the passage of time.

The right hand branch below Locale is the view branch graph, and specifies the user‟s

position, orientation, and perspective as they look into the virtual world from the

physical world (e.g. from in front of a monitor). The ViewPlatform node stores the

viewer‟s position in the virtual world; the View node states how to turn what the

viewer sees into a physical world image (e.g. a 2D picture on the monitor). The

Canvas3D node is a Java GUI component that allows the 2D image to be placed

inside a Java application or applet.

The VirtualUniverse, Locale, and view branch graph often have the same structure

across different applications, since most programs use a single Locale and view the

virtual world as a 2D image on a monitor. For most applications, the relevant nodes

can be created with Java 3D's SimpleUniverse utility class, relieving the programmer

of a lot of graph construction work.

In summary: Java 3D applications are mostly about constructing a scene graph using a

variety of classes to create different kinds of nodes.

3. Multiple Markers and Models

MultiNyAR demonstrates how to use multiple markers, each with its own 3D model.

The application also displays position, orientation, and confidence information for its

markers, which is useful if marker models need to be examined (e.g. is the robot

facing the camera?, is the robot in front of the cow?) MultiNyAR also includes simple

techniques for reducing model „shaking‟ and handling undetected markers.

Figure 12 shows the class diagrams for MultiNyAR, with only public methods listed.

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 12 © Andrew Davison 2013

Figure 12. The MultiNyAR Class Diagrams.

MultiNyAR.java creates the GUI interface and the Java 3D scene graph. The interface

is quite simple (see Figure 2): the JFrame contains a JPanel holding a Java 3D

Canvas3D component for rendering the scene graph, and a JTextArea below it for

displaying position, orientation, and confidence information about the markers and

their models.

The content branch of the scene graph is shown in Figure 13 (I‟ve left out the view

branch for now).

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 13 © Andrew Davison 2013

Figure 13. The Content Branch of the 3D Scene.

There are three lights (an ambient and two directional lights), a background node that

displays the current webcam image, two branches for the robot and cow models, and a

behavior.

NyARMarkersBehavior, is a time-triggered behavior which executes 30 times every

second. It changes the image in the background node to be the current camera picture,

and updates the position and orientation of the models so they stay on top of their

respective markers.

Model updating is quite complex, and so NyARMarkersBehavior delegates the work

to a DetectMarkers object which maintains a list of MarkerModel objects and a

detector that finds the markers in the camera's captured image. A marker position is

used to move its corresponding model via a TransformGroup (the TG nodes in Figure

13). Each MarkerModel object holds marker information and builds the Java 3D

scene graph for its associated model.

The models are loaded using the PropManager class, which is described in chapter 16

of Killer Game Programming in Java (http://fivedots.coe.psu.ac.th/~ad/jg/ch9/). It

utilizes the NCSA Portfolio library so the models can be defined in a range of

different 3D formats.

The transforms applied to the models tend to make them „jitter‟, due to slight

variations in their calculated rotations and positions from frame to frame.

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 14 © Andrew Davison 2013

SmoothMatrix reduces the shaking by employing an averaged transform derived from

the current and several previous values.

4. Creating the 3D Scene

The MultiNyAR class‟ constructor creates the GUI interface (a Canvas3D object and

a text area for messages), and builds the Java 3D scene graph that's drawn onto the

canvas.

// globals

private final String PARAMS_FNM = "Data/camera_para.dat";

private static final int WIDTH = 640; // size of panel

private static final int HEIGHT = 480;

private J3dNyARParam cameraParams;

private NyARMarkersBehavior nyaBeh;

private JTextArea statusTA;

public MultiNyAR()

{

 super("Multiple markers NyARToolkit Example");

 Loader.load(opencv_objdetect.class);

 cameraParams = readCameraParams(PARAMS_FNM);

 Container cp = getContentPane();

 // create a JPanel in the center of JFrame

 JPanel p = new JPanel();

 p.setLayout(new BorderLayout());

 p.setPreferredSize(new Dimension(WIDTH, HEIGHT));

 cp.add(p, BorderLayout.CENTER);

 // put the 3D canvas inside the JPanel

 p.add(createCanvas3D(), BorderLayout.CENTER);

 // add status field to bottom of JFrame

 statusTA = new JTextArea(7, 10);

 // updated by DetectMarkers object (see createSceneGraph())

 statusTA.setEditable(false);

 cp.add(statusTA, BorderLayout.SOUTH);

 addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e)

 { nyaBeh.stop();

 System.exit(0);

 }

 });

 setResizable(false);

 pack();

 setLocationRelativeTo(null);

 setVisible(true);

} // end of MultiNyAR()

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 15 © Andrew Davison 2013

One AR-related aspect of the constructor is the call to readCameraParams(), which

loads details about the webcam. These will be used later to set up the Java 3D view

graph branch, which controls the user‟s view of the 3D scene.

private J3dNyARParam readCameraParams(String fnm)

{

 J3dNyARParam cameraParams = null;

 try {

 cameraParams = J3dNyARParam.loadARParamFile(

 new FileInputStream(fnm));

 cameraParams.changeScreenSize(WIDTH, HEIGHT);

 }

 catch(Exception e)

 { System.out.println("Could not read params from " + fnm);

 System.exit(1);

 }

 return cameraParams;

} // end of readCameraParams()

createCanvas3D() builds the scene graph, using createSceneGraph() to construct the

content branch (see Figure 13), and createView() for the view branch (Figure 14

below).

private Canvas3D createCanvas3D()

{

 Locale locale = new Locale(new VirtualUniverse());

 locale.addBranchGraph(createSceneGraph()); // add the scene

 // get preferred graphics configuration for screen

 GraphicsConfiguration config =

 SimpleUniverse.getPreferredConfiguration();

 Canvas3D c3d = new Canvas3D(config);

 locale.addBranchGraph(createView(c3d)); // add view branch

 return c3d;

} // end of createCanvas3D()

createSceneGraph() calls lightScene() to add the ambient and directional lights to the

graph, makeBackground() for the Background node, and creates two MakerModel

objects which handle the loading of the models and their association with markers.

// globals

private J3dNyARParam cameraParams;

private NyARMarkersBehavior nyaBeh;

private BranchGroup createSceneGraph()

// creates the scene graph shown in Figure 13 above

{

 BranchGroup sceneBG = new BranchGroup();

 lightScene(sceneBG); // add lights

 Background bg = makeBackground();

 sceneBG.addChild(bg); // add background

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 16 © Andrew Davison 2013

 DetectMarkers detectMarkers = new DetectMarkers(this);

 // the "hiro" marker uses a robot model

 MarkerModel mm1 =

 new MarkerModel("patt.hiro", "robot.3ds", 0.15, false);

 if (mm1.getMarkerInfo() != null) { // creation was successful

 sceneBG.addChild(mm1.getMoveTg());

 detectMarkers.addMarker(mm1);

 }

 // the "kanji" marker uses a cow model

 MarkerModel mm2 =

 new MarkerModel("patt.kanji", "cow.obj", 0.12, true);

 if (mm2.getMarkerInfo() != null) {

 sceneBG.addChild(mm2.getMoveTg());

 detectMarkers.addMarker(mm2);

 }

 // start the detector once all markers have been added

 detectMarkers.createDetector(cameraParams);

 // create a NyAR multiple marker behavior

 nyaBeh = new NyARMarkersBehavior(bg, detectMarkers);

 sceneBG.addChild(nyaBeh);

 sceneBG.compile(); // optimize the sceneBG graph

 return sceneBG;

 } // end of createSceneGraph()

The MarkerModel objects are managed by a DetectMarkers object, which finds the

markers in the current camera frame, and moves their models so they stay positioned

over those markers.

The top-level TransformGroups for the model branches are retrieved with calls to

MarkerModel.getMoveTg(), and linked to the sceneBG BranchGroup node.

The NyARMarkersBehavior must communicate with the background node, and with

the model branches (see Figure 13). Instead of passing TransformGroup references to

NyARMarkersBehavior, the behavior is supplied with a pointer to the DetectMarkers

object, which acts as their manager.

The Background node is initialized in the standard manner inside makeBackground(),

except that its capability bits are set to allow its image to be updated at run time. The

background will keep being changed to show the current webcam view.

private Background makeBackground()

{

 Background bg = new Background();

 BoundingSphere bounds = new BoundingSphere();

 bounds.setRadius(10.0);

 bg.setApplicationBounds(bounds);

 bg.setImageScaleMode(Background.SCALE_FIT_ALL);

 bg.setCapability(Background.ALLOW_IMAGE_WRITE); // to change image

 return bg;

} // end of makeBackground()

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 17 © Andrew Davison 2013

The User’s Viewpoint

The view branch shown in Figure 14 is built by createView() since its View node has

to be initialized with the camera‟s properties. The content branch generated by

createSceneGraph() is drawn as a dotted triangle in the figure.

Figure 14. The View Branch of the 3D Scene.

The createView() method:

// globals

private J3dNyARParam cameraParams;

private BranchGroup createView(Canvas3D c3d)

// create a view graph using the camera parameters

{

 View view = new View();

 ViewPlatform viewPlatform = new ViewPlatform();

 view.attachViewPlatform(viewPlatform);

 view.addCanvas3D(c3d);

 view.setPhysicalBody(new PhysicalBody());

 view.setPhysicalEnvironment(new PhysicalEnvironment());

 view.setCompatibilityModeEnable(true);

 view.setProjectionPolicy(View.PERSPECTIVE_PROJECTION);

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 18 © Andrew Davison 2013

 view.setLeftProjection(cameraParams.getCameraTransform());

 // camera projection

 TransformGroup viewGroup = new TransformGroup();

 Transform3D viewTransform = new Transform3D();

 viewTransform.rotY(Math.PI); // rotate 180 degrees

 viewTransform.setTranslation(new Vector3d(0.0, 0.0, 0.0)); //origin

 viewGroup.setTransform(viewTransform);

 viewGroup.addChild(viewPlatform);

 BranchGroup viewBG = new BranchGroup();

 viewBG.addChild(viewGroup);

 return viewBG;

} // end of createView()

The user‟s viewpoint is placed at the origin and faces along the positive z-axis, as

illustrated by Figure 15.

Figure 15. The User‟s Viewpoint.

The Background node is rendered at the back of the scene, and the models positioned

so they appear to be resting on top of the markers shown in the background picture.

The y-axis rotation of the camera means that the positive x-axis runs to the left.

5. The Scene Graph’s Behavior

The NyARMarkersBehavior object is a time-based behavior which grabs a image

from the webcam, pastes it into the background node, and also passes it to

DetectMarkers. Inside DetectMarkers, a NyARToolkit detector examines the image

and updates the 3D positions of the models drawn above the markers.

The NyARMarkersBehavior constructor initializes the FrameGrabber, and sets the

'wakeup' period for the behavior to 1000/30 milliseconds, so it will fire roughly 30

times/second.

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 19 © Andrew Davison 2013

// globals

private final double FPS = 30.0;

private FrameGrabber grabber;

private NyARBufferedImageRaster raster;

private ImageComponent2D imc2d;

private DetectMarkers detectMarkers;

private Background bg;

private WakeupCondition wakeup;

private boolean cameraStopped = false;

public NyARMarkersBehavior(Background bg,DetectMarkers ms)

{

 super();

 this.bg = bg;

 detectMarkers = ms;

 wakeup = new WakeupOnElapsedTime((int)(1000.0/FPS));

 setSchedulingBounds(new BoundingSphere(new Point3d(), 100.0));

 grabber = initGrabber(CAMERA_ID);

 BufferedImage im = (picGrab(grabber,CAMERA_ID)).getBufferedImage();

 try {

 raster = new NyARBufferedImageRaster(im);

 imc2d = new ImageComponent2D(ImageComponent2D.FORMAT_RGB, im,

 true, false);

 imc2d.setCapability(ImageComponent.ALLOW_IMAGE_WRITE);

 }

 catch(NyARException e)

 { System.out.println(e);

 System.exit(1);

 }

} // end of NyARMarkersBehavior()

An image is snapped by the FrameGrabber in this method so that a Java 3D

ImageComponent2D object can be initialized. ImageComponent2D is an image-

wrapper used by Java 3D to update the background during execution.

The behavior‟s processStimulus() method is called every 'wakeup' milliseconds, grabs

an image, updates the background (using the imc2d global), and passes the

BufferedImage to the detector.

// globals

private FrameGrabber grabber;

private NyARBufferedImageRaster raster;

private ImageComponent2D imc2d;

private DetectMarkers detectMarkers;

private Background bg;

private WakeupCondition wakeup;

private boolean cameraStopped = false;

public void processStimulus(Enumeration criteria)

{

 if (cameraStopped)

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 20 © Andrew Davison 2013

 return;

 try {

 BufferedImage im = (picGrab(grabber, CAMERA_ID)).

 getBufferedImage();

 raster.wrapImage(im);

 if (raster.hasBuffer()) {

 if (bg != null) {

 imc2d.set(im);

 bg.setImage(imc2d);

 }

 detectMarkers.updateModels(raster);

 }

 wakeupOn(wakeup);

 }

 catch (Exception e) {

 e.printStackTrace();

 }

} // end of processStimulus()

The NyARBufferedImageRasterclass is a NyARToolkit wrapper around

BufferedImage. processStimulus() uses it's wrapImage() method to update the raster.

6. Markers and Models

The MarkerModel constructor is supplied with the filenames of the marker pattern

(e.g. "patt.hiro") and the 3D model (e.g. "robot.3ds"), and loads them. For example:

MarkerModel mm1 =

 new MarkerModel("patt.hiro", "robot.3ds", 0.15, false);

Loading the model is the harder of the two tasks, but most of the work is handled by

the PropManager class which uses the NCSA Portfolio library. A sequence of three

nodes are attached below the sceneBG BranchGroup node as shown in Figure 19.

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 21 © Andrew Davison 2013

Figure 16. The Scene Graph for a Model.

Most of the code for building the branch in Figure 16 is located in MarkerModel(), as

shown below:

// globals

private String markerName, modelName;

private NyARCode markerInfo = null; // NyARToolkit marker details

private TransformGroup moveTg; // for moving the marker model

private Switch visSwitch; // for changing the model's visibility

private boolean isVisible;

private SmoothMatrix sMat;

 // for smoothing the transform applied to the model

public MarkerModel(String markerFnm, String modelFnm,

 double scale, boolean hasCoords)

{

 markerName = markerFnm;

 modelName = modelFnm.substring(0, modelFnm.lastIndexOf('.'));

 // remove filename extension

 // build a branch for model: TG --> Switch --> TG --> model

 // load the model, with scale and coords info

 TransformGroup modelTG = loadModel(modelFnm, scale, hasCoords);

 // create switch for model visibility

 visSwitch = new Switch();

 visSwitch.setCapability(Switch.ALLOW_SWITCH_WRITE);

 visSwitch.addChild(modelTG);

 visSwitch.setWhichChild(Switch.CHILD_NONE); // make invisible

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 22 © Andrew Davison 2013

 isVisible = false;

 // create transform group for positioning the model

 moveTg = new TransformGroup();

 moveTg.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 // so this tg can change

 moveTg.addChild(visSwitch);

 try { // load marker info

 markerInfo = NyARCode.createFromARPattFile(

 new FileInputStream(MARKER_DIR+markerName),16, 16);

 }

 catch(NyARException e)

 { System.out.println(e);

 markerInfo = null;

 }

 sMat = new SmoothMatrix();

} // end of MarkerModel()

The MarkerModel constructor takes four arguments: the filenames of the marker

pattern (markerFnm) and the 3D model (modelFnm), a scale factor, and a coordinates

file boolean. The scale factor is used to tweak the size of the model on top of the

marker. The coordinates file boolean specifies whether the model comes with optional

coordinates information in a separate file, which is used by PropManager when it

loads the model (I‟ll explain this in a little more detail when I overview the

PropManager class).

The scale factor and coordinates boolean are passed to loadModel(), which calls

PropManager, and creates the „standing‟ rotation and scaling TransformGroup node at

the bottom of Figure 16.

private TransformGroup loadModel(String modelFnm,

 double scale, boolean hasCoords)

// load the model, rotating and scaling it

{

 PropManager propMan = new PropManager(modelFnm, hasCoords);

 // get the TG for the model

 TransformGroup propTG = propMan.getTG();

 // rotate and scale the model

 Transform3D modelT3d = new Transform3D();

 modelT3d.rotX(Math.PI/2.0);

 // the model lies flat on the marker;

 // rotate forwards 90 degrees so it is standing

 Vector3d scaleVec = calcScaleFactor(propTG, scale);

 modelT3d.setScale(scaleVec); // scale the model

 TransformGroup modelTG = new TransformGroup(modelT3d);

 modelTG.addChild(propTG);

 return modelTG;

} // end of loadModel()

The modelTG node created by loadModel() transforms the loaded model in two ways

– it scales the model using the scale argument and rotates it 90 degrees around the x-

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 23 © Andrew Davison 2013

axis. The latter operation deals with the way that NyARToolkit positions a model on

top of a marker. By default, it is lying „on its back‟ on the marker; the rotation turns

the model so it is „standing‟.

Back in MarkerModel(), the two other nodes shown in Figure 16 are added. The

Switch node allows the branch to be made invisible when the model‟s marker is not

found in the image. The top-most TransformGroup (moveTG) is utilized to position

the model so it stays with its marker.

6.1. Moving a Model

Updates to the model's moveTg TransformGroup node are handled by moveModel().

DetectMarker passes the method the position of the marker (transMat) specified in the

camera‟s coordinate system. It is converted into a transformation in the scene‟s

coordinate system and applied to moveTg.

// globals

private TransformGroup moveTg; // for moving the marker model

private Switch visSwitch; // for changing the model's visibility

private boolean isVisible;

private SmoothMatrix sMat;

 // for smoothing the transforms applied to the model

public void moveModel(NyARDoubleMatrix44 transMat)

// update the model's moveTG

{

 visSwitch.setWhichChild(Switch.CHILD_ALL); // make visible

 isVisible = true;

 sMat.add(transMat);

 Matrix4d mat = sMat.get();

 Transform3D t3d = new Transform3D(mat);

 int flags = t3d.getType();

 if ((flags & Transform3D.AFFINE) == 0)

 System.out.println("Ignoring non-affine transformation");

 else {

 if (moveTg != null)

 moveTg.setTransform(t3d);

 calcPosition(mat);

 calcEulerRots(mat);

 }

} // end of moveModel()

If moveModel() is called at all, then it means that DetectMarkers has found the

model‟s marker in the image. In that case, the model must be made visible, and

moved to the marker‟s position. The conversion of the transMat value from camera

coordinates to scene coordinates is dealt with by an instance of SmoothMatrix (sMat).

which also reduces the shaking of a model. The SmoothMatrix.get() method returns

an averaged transform based on the value just added (with SmoothMatrix.add()), and

several values from previous frame captures.

The transformation, mat, is 4 x 4 homogenous matrix like the one shown in Figure 17.

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 24 © Andrew Davison 2013

Figure 17. The Transformation Matrix.

The top-left 3 x 3 sub-matrix contains the rotational parts of the transformations,

while the top 3 elements of the fourth column are the translation component.

calcPosition() and calcEulerRots() extracts this information, storing it in globals for

future use.

// global

private Point3d posInfo = null; // the model's current position

private void calcPosition(Matrix4d mat)

{

 // convert to larger units and round to 1 dp

 double x = roundToNumPlaces(mat.getElement(0,3)*100, 1);

 double y = roundToNumPlaces(mat.getElement(1,3)*100, 1);

 double z = roundToNumPlaces(mat.getElement(2,3)*100, 1);

 posInfo = new Point3d(x, y, z);

} // end of reportPosition()

private double roundToNumPlaces(double val, int numPlaces)

{

 double power = Math.pow(10, numPlaces);

 long temp = Math.round(val*power);

 return ((double)temp)/power;

}

calcPosition() stores the (x, y, z) position in a global Point3d object, after multiplying

the values by 100, and rounding that value to 1 decimal place with

roundToNumPlaces(). This data is accessible via a getPos() method, and is printed in

the status area of the GUI (e.g. see Figures 2 and 3).

Probably the most user-friendly way of understanding a model‟s orientation is in

terms of Euler rotation angles around the x-, y-, and z- axes. Extracting these from the

rotational sub-matrix in Figure 17 is a little tricky mathematically, as calcEulerRots()

demonstrates.

// global

private Point3d rotsInfo = null;

 // the model's current orientation (in degrees)

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 25 © Andrew Davison 2013

private void calcEulerRots(Matrix4d mat)

/* calculate the Euler rotation angles from the upper 3x3 rotation

 components of the 4x4 transformation matrix. */

{

 rotsInfo = new Point3d();

 rotsInfo.y = -Math.asin(mat.getElement(2,0));

 double c = Math.cos(rotsInfo.y);

 double tRx, tRy, tRz;

 if(Math.abs(rotsInfo.y) > 0.00001) {

 tRx = mat.getElement(2,2)/c;

 tRy = -mat.getElement(2,1)/c;

 rotsInfo.x = Math.atan2(tRy, tRx);

 tRx = mat.getElement(0,0)/c;

 tRy = -mat.getElement(1,0)/c;

 rotsInfo.z = Math.atan2(tRy, tRx);

 }

 else {

 rotsInfo.x = 0.0;

 tRx = mat.getElement(1,1);

 tRy = mat.getElement(0,1);

 rotsInfo.z = Math.atan2(tRy, tRx);

 }

 rotsInfo.x = -rotsInfo.x;

 rotsInfo.z = -rotsInfo.z;

 // ensure the values are positive by adding 2*PI if necessary...

 if(rotsInfo.x < 0.0)

 rotsInfo.x += 2*Math.PI;

 if(rotsInfo.y < 0.0)

 rotsInfo.y += 2*Math.PI;

 if(rotsInfo.z < 0.0)

 rotsInfo.z += 2*Math.PI;

 // convert to degrees and round

 rotsInfo.x = roundToNumPlaces(Math.toDegrees(rotsInfo.x), 0);

 rotsInfo.y = roundToNumPlaces(Math.toDegrees(rotsInfo.y), 0);

 rotsInfo.z = roundToNumPlaces(Math.toDegrees(rotsInfo.z), 0);

} // end of calcEulerRots()

calcEulerRots() is based on code written by Daniel Selman, which was derived from

pseudo-code in Question 37 of the "Matrix and Quaternion FAQ" at

http://www.j3d.org/matrix_faq/matrfaq_latest.html. A good discussion of the maths

can be found in “Computing Euler angles from a rotation matrix” by Gregory G.

Slabaugh at https://truesculpt.googlecode.com/hg-

history/38000e9dfece971460473d5788c235fbbe82f31b/Doc/rotation_matrix_to_euler

.pdf.

These angles are accessible via a getRots() method, and are printed in the status area

of the GUI (e.g. see Figures 18, 20, and 21 below).

Figure 18 shows a view of the robot model with the camera directly above the “Hiro”

marker, with the marker writing straight up.

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 26 © Andrew Davison 2013

Figure 18. The “Hiro” Marker Upwards, Facing the Camera.

The rotation values should be understood in terms of the z-, y-, and z- axes relative to

the camera, which are shown in Figure 19.

Figure 19. The Axes Relative to the Camera in Figure 21.

The positive z-axis heads forwards from the camera, which in the case of Figure 18 is

straight down onto the table top.

The rotation angles shown in Figure 18 are (185, 1, 178), which roughly corresponds

to a half rotation of the model around the x-axis and another half turn around the z-

axis.

Figure 20 shows the “Hiro” marker after being turned 90 degrees clockwise relative to

the camera.

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 27 © Andrew Davison 2013

Figure 20. The “Hiro” Marker Turned to the Right, Facing the Camera.

The rotations shown in Figure 20 are (183, 3, 270) which is roughly a 90 degree

rotation around the z-axis change from the values reported in Figure 18.

Figure 21 shows the “Hiro” marker after being turned 90 degrees anti-clockwise from

its position in Figure 18.

Figure 21. The “Hiro” Marker Turned to the Left, Facing the Camera.

The rotation values confirm this change from Figure 18, reporting (177, 4, 89), which

is roughly a -90 degree turn around the z-axis.

6.2. Model Visibility

Figures 18, 20, and 21 also illustrate what happens when a marker cannot be found in

the webcam image. The “kanji” marker is missing, so the cow model is not added to

the scene. This is noted in the status area as the marker and model being “not visible”.

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 28 © Andrew Davison 2013

Visibility is controlled by a Switch node (see Figure 16) and a boolean, which are

initialized in the MarkerModel constructor:

// globals

private Switch visSwitch; // for changing the model's visibility

private boolean isVisible;

// in MarkerModel()

// create switch for model visibility

visSwitch = new Switch();

visSwitch.setCapability(Switch.ALLOW_SWITCH_WRITE);

visSwitch.addChild(modelTG);

visSwitch.setWhichChild(Switch.CHILD_NONE); // make invisible

isVisible = false;

When DetectMarker calls moveModel() to move the model, it is also made visible:

// in makeModel()

visSwitch.setWhichChild(Switch.CHILD_ALL); // make visible

isVisible = true;

It is possible to test a model‟s visibility by calling isVisible(), and turn a model

invisible with hideModel().

public boolean isVisible()

{ return isVisible; }

public void hideModel()

{

 visSwitch.setWhichChild(Switch.CHILD_NONE); // make invisible

 isVisible = false;

}

The tricky aspect of hideModel() is deciding when to call it. As Figures 18, 20, and 21

suggest, if a marker cannot be found then the model should be hidden. However, in

practice this leads to a model „flickering‟ in and out of sight since a marker is usually

only „lost‟ briefly, as occurs when a user‟s fingers obscure part of the marker's black

border. A better strategy is to hide the model only after the marker has gone missing

for several frames.

This delayed hiding technique is implemented in DetectMarkers, and so will be

described in more detail later. However, it relies on a numTimesLost counter

maintained in each MarkerModel object.

// global

private int numTimesLost = 0;

 // number of times marker for this model not detected

public void resetNumTimesLost()

{ numTimesLost = 0; }

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 29 © Andrew Davison 2013

public void incrNumTimesLost()

{ numTimesLost++; }

public int getNumTimesLost()

{ return numTimesLost; }

7. Smoothing a Matrix Transform

SmoothMatrix reduces model shaking caused by slight variations in the calculated

rotations and positions of the transformation matrix in each video frame.

The current transformation matrix is passed to SmoothMatrix as a

NyARDoubleMatrix44 object, and converted to a Java 3D Matrix4d object. In the

process the coordinates, which are specified relative to the camera, are converted into

scene coordinates.

The resulting Java 3D matrix is added to a list which stores up to the MAX_SIZE

matrices.

// globals

private final static int MAX_SIZE = 10;

private ArrayList<Matrix4d> matsStore;

private int numMats = 0;

public boolean add(NyARDoubleMatrix44 transMat)

{

 Matrix4d mat = new Matrix4d(-transMat.m00, -transMat.m01,

 -transMat.m02, -transMat.m03,

 -transMat.m10, -transMat.m11,

 -transMat.m12, -transMat.m13,

 transMat.m20, transMat.m21,

 transMat.m22, transMat.m23,

 0, 0, 0, 1);

 Transform3D t3d = new Transform3D(mat);

 int flags = t3d.getType();

 if ((flags & Transform3D.AFFINE) == 0) {

 System.out.println("Not adding a non-affine matrix");

 return false;

 }

 else {

 if (numMats == MAX_SIZE) {

 matsStore.remove(0); // remove oldest

 numMats--;

 }

 matsStore.add(mat); // add at end of list

 numMats++;

 return true;

 }

} // end of add()

The coordinates conversion is done as the Matrix4d object is filled with values from

the NyARDoubleMatrix44 object, by negating the first two rows of data. I copied this

code, with some simplifications, from the NyARToolkit Java 3D example,

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 30 © Andrew Davison 2013

NyARJava3D.java, but I have to admit to being baffled by it (although it „works‟).

The conversion does not seem to match the documentation on the coordinate systems

employed in ARToolkit, as described at

http://www.hitl.washington.edu/artoolkit/documentation/cs.htm.

SmoothMatrix‟s get() method calculates an average of the matrices in its list, thereby

reducing any errors caused by incorrect readings.

public Matrix4d get()

// average matrices in store

{

 if (numMats == 0)

 return null;

 Matrix4d avMat = new Matrix4d();

 for(Matrix4d mat : matsStore)

 avMat.add(mat);

 avMat.mul(1.0/numMats);

 return avMat;

} // end of get()

The maximum size of the list is defined in MAX_SIZE (10), and the larger this value,

the more smoothed will be the transformation returned by get(). The downside is that

a marker movement will take longer to have a visible effect on a displayed model.

The timing of NyARMarkersBehavior is controlled by the constant FPS (30), which is

utilized as the millisecond time 1000/FPS. This means that the behavior fires roughly

30 times per second, and so the ten transforms stored in SmoothMatrix span about a

third of a second. This will be the maximum lag time before a marker movement is

reflected in its model‟s movement.

8. Loading a Model

The loadModel() method in MarkerModel uses the PropManager class to do the hard

work of loading a model.

// in loadModel()

PropManager propMan = new PropManager(modelFnm, hasCoords);

TransformGroup propTG = propMan.getTG();

The filename of the 3D model (modelFnm) and a coordinates file boolean are passed

to PropManager‟s constructor. The coordinates file boolean specifies whether the

model comes with optional coordinates information in a separate file.

PropManager is described in detail in chapter 16 of Killer Game Programming in

Java (http://fivedots.coe.psu.ac.th/~ad/jg/ch9/). It utilizes the NCSA Portfolio library

which supports many formats, including 3D Studio Max (3DS files), AutoCAD

(DXF), Digital Elevation Maps (DEM), TrueSpace (COB), and VRML 97 (WRL).

The drawbacks of Portfolio are its very advanced age (the current version is 1.3, from

1998), and its relatively simple support of the formats: often only the geometry and

shape colors are loaded, without textures, behaviors, or lights. Aside from Portfolio,

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 31 © Andrew Davison 2013

there's a wide range of Java 3D loaders for different file formats, written by third

party developers; try searching for "Java 3D loaders".

I utilize three features of PropManager:

1. It loads the specified model, scales it to a standard size, and rotates the model if

it's been saved as a 3DS (3D Studio Max) file.

2. It loads a coords data file if requested, and applies the translations, rotations, and

scaling values in that file to the model.

3. It makes the top-level TransformGroup for the model available.

In Figure 16 a model loaded by PropManager is represented by a rounded rectangular

box, labeled as “scene graph for model”. Figure 22 shows some of the hidden detail in

that box.

Figure 22. Scene Graph for a Model.

PropManager creates a chain of four TransformGroup nodes, and utilizes the Portfolio

library to convert the 3D model into the BranchGroup and its children. The

TransformGroups deal with different aspects of the model‟s configuration:

 moveTG handles the translations;

 rotTG for rotations;

 scaleTG for scaling;

 objBoundsTG carries out the scaling and possible rotation of the model when it is

first loaded.

The reason for this separation is to process distinct operations in different nodes in the

graph. This reduces the overall complexity of the coding, because I can take

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 32 © Andrew Davison 2013

advantage of the hierarchy of local coordinate systems used by the TransformGroup

nodes.

A coords data file is created with the Loader3D application, which is described in

chapter 16 of Killer Game Programming in Java

(http://fivedots.coe.psu.ac.th/~ad/jg/ch9/). The robot model doesn‟t need one, but the

cow‟s data file is

cow.obj

-p 0 0.6 0.2

-r 34444444444

-s 1

stored in cowCoords.txt, in the same model/ subdirectory as cow.obj.

The -p line gives a (x, y, z) translation, the -r line contains a series of rotations, and

the -s value is for scaling.

The aim of using a coordinates file is to ensure that the model is positioned so it is

standing over the origin on the XZ plane, with its front facing the positive z-axis.

There‟s no real need to scale the model, since that aspect can be tweaked with the

scale factor parameter passed to the MarkerModel constructor.

No coordinates file is needed for the robot since it‟s already standing on the XZ plane,

and facing forward. This positioning can be done with any 3D modeling tool; a simple

one that I‟ve used in the past is AccuTrans3D (http://www.micromouse.ca/), which is

mainly a 3D file conversion program, but can also be used for simple model re-

orientation tasks.

Alternatives to PropManager and NCSA Portfolio

There‟s no need to use PropManager and Portfolio. Any loader that can create a scene

branch like the one in Figure 16 is fine.

Inspector3ds is a feature-rich 3DS loader, developed by John Wright at Starfire

Research (http://www.starfireresearch.com/services/java3d/inspector3ds.html). The

loader handles geometry, materials, textures, and normals.

Programmers wishing to utilize a modern VRML loader should consider the Xj3D

loader (http://www.xj3d.org/), which covers most of the VRML 2.0 standard. The

actual aim is to load X3D files, which extend VRML with XML functionality.

For the artistically-impaired (e.g. yours truly), there are a profusion of Web sites that

offer 3D models. Two sites with many free models are Archive3d

(http://archive3d.net/) and 3Dxtras (http://www.3dxtras.com/).

9. Detecting Markers

The DetectMarkers object maintains two data structures – a list of MarkerModel

objects and a NyARDetectMarker detector. At execution time, its updateShapes()

method is repeatedly called with the current image from the webcam. The picture is

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 33 © Andrew Davison 2013

analyzed by the detector, markers found, and their positions and orientations used to

update the models.

The creation of the detector and its search for multiple markers are two important

differences between this example and the NyARJava3D sample in the NyARToolkit

download. (Another difference is that my code employs JavaCV rather than JMF.)

NyARJava3D utilizes a utility class called NyARSingleMarkerBehaviourHolder

which creates a detector by instantiating the NyARSingleDetectMarker class. As the

name suggests, this detector only looks for a single marker (via a call to

NyARSingleDetectMarker.detectMarkerLite()). The code surrounding this call

assumes that the marker is either found or missed, and doesn‟t deal with multiple

results or confidence levels.

An explanation of the extra complexity of dealing with multiple markers can be found

in the ARToolkit documentation “Developing your First Application, Part 2”,

(http://www.hitl.washington.edu/artoolkit/documentation/devmulti.htm), but it utilizes

a C-like interface to OpenGL.

NyARToolkit does include a multiple marker example, but coded in JOGL

(JavaSimpleLite2.java).

9.1. Creating a Detector

A multiple markers detector is created by instantiating the NyARDetectMarker class,

which requires details about the markers and camera parameters. This is done by

createDetector() in DetectMarkers:

// globals

private ArrayList<MarkerModel> markerModels;

private int numMarkers;

private NyARDetectMarker detector;

public void createDetector(NyARParam params)

{

 NyARCode[] markersInfo = new NyARCode[numMarkers];

 double[] widths = new double[numMarkers];

 int i = 0;

 for (MarkerModel mm : markerModels) {

 markersInfo[i] = mm.getMarkerInfo();

 widths[i] = mm.getMarkerWidth();

 i++;

 }

 try {

 detector = new NyARDetectMarker(params, markersInfo,

 widths, numMarkers);

 detector.setContinueMode(false);

 // no history stored; use SmoothMatrix instead

 }

 catch(NyARException e)

 { System.out.println("Could not create markers detector");

 System.exit(1);

 }

} // end of createDetector()

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 34 © Andrew Davison 2013

createDetector() is called after all the MarkerModel objects have been added to the

markerModels list. The camera parameters (params) is passed in as an argument, and

the markers information is extracted from the MarkerModels.

The built-in detector has a “continue” mode which maintains a history of previous

detections to help it find markers in the current image, set by

NyARDetectMarker.setContinueMode(). When I tried using it, I usually found that

marker detection became less reliable, causing models to be positioned and rotated all

around the image. For that reason, I decided to write my own SmoothMatrix class to

help reduce model „shake‟, and so setContinueMode() is false in createDetector().

9.2. Updating Shapes

Pseudo-code for updateShapes() roughly corresponds to the first three stages of

Figure 1:

for each MarkerModel

 find marker in image frame that best matches the MarkerModel;

 get transformation for the found marker;

 update the MarkerModel’s model with the transformation;

The loop becomes a bit more complicated when we factor in what to do when no

marker is found for a given MarkerModel, or the found marker has a low likelihood of

matching the MarkerModel.

I deal with the first issues by having each MarkerModel keep a count of how many

times no suitable marker is found when updateShapes() is called. When the number of

missed detections reaches a given maximum, the model is made invisible, until it‟s

marker is found again. This means that if a marker is lost only for a short time, then

the model will stay on screen at its last position, but eventually the model will

disappear if the marker remains undetected.

The full code for updateShapes():

// globals

private final static double MIN_CONF = 0.3;

 // smallest confidence accepted for finding a marker

private final static int CONF_SIZE = 1000;

 // for converting confidence level double <--> integer

private final static int MAX_NO_DETECTIONS = 50;

 /* number of times a marker goes undetected

 before being made invisible */

private ArrayList<MarkerModel> markerModels;

private int numMarkers;

private MultiNyAR top; // for reporting MarkerModel status info

private NyARDetectMarker detector;

private NyARDoubleMatrix44 transMat = new NyARDoubleMatrix44();

 // transformation matrix for moving a model

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 35 © Andrew Davison 2013

public void updateModels(NyARBufferedImageRaster raster)

{

 int numDetections = getNumDetections(detector, raster);

 try {

 StringBuffer statusInfo = new StringBuffer();

 // find the best detected match for each marker

 for (int mkIdx = 0; mkIdx < numMarkers; mkIdx++) {

 MarkerModel mm = markerModels.get(mkIdx);

 int[] detectInfo =

 findBestDetectedIdx(detector, numDetections, mkIdx);

 // look for marker mkIdx in image

 int bestDetectedIdx = detectInfo[0];

 double confidence = ((double)detectInfo[1])/CONF_SIZE;

 // (hacky) conversion back to a double

 if (bestDetectedIdx == -1) // marker not found

 mm.incrNumTimesLost();

 else { // marker found

 if (confidence >= MIN_CONF) {

 // detected a marker for mkIdx with high confidence

 mm.resetNumTimesLost();

 // apply transformation from detected marker

 // to the marker's model

 detector.getTransmationMatrix(bestDetectedIdx, transMat);

 mm.moveModel(transMat);

 }

 }

 if (mm.getNumTimesLost() > MAX_NO_DETECTIONS)

 // marker not detected too many times

 mm.hideModel(); // so make its model invisible

 statusInfo.append(mkIdx + ". " + mm.getNameInfo() +

 " (" + confidence + ")\n");

 addToStatusInfo(mm, statusInfo);

 }

 top.setStatus(statusInfo.toString()); // display status in GUI

 }

 catch(NyARException e)

 { System.out.println(e); }

} // end of updateModels()

One of the quirks of updateModels() is that it first does a quick analysis of the raster

image to find the number of detected markers. This is used later to speed up the

search for more detailed marker information inside the image.

The number of detected markers is returned by getNumDetections():

private int getNumDetections(NyARDetectMarker detector,

 NyARBufferedImageRaster raster)

{

 int numDetections = 0;

 try {

 synchronized (raster) {

 if (raster.hasBuffer())

 numDetections = detector.detectMarkerLite(raster, 100);

 }

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 36 © Andrew Davison 2013

 }

 catch(NyARException e)

 { System.out.println(e); }

 return numDetections;

} // end of getNumDetections()

The call to NyARDetectMarker.detectMarkerLite() is surrounded by a synchronized

block to prevent the image being updated by the Java 3D behavior while it is being

examined here.

The number of MarkerModels is stored in numMarkers, which is used by

updateModels()‟s for-loop to increment a marker index, mkIdx.

findBestDetectedIdx() is called to find the most likely marker in the image that

matches that particular marker.

// global

private final static int CONF_SIZE = 1000;

 // for converting confidence level double <--> integer

private int[] findBestDetectedIdx(NyARDetectMarker detector,

 int numDetections, int markerIdx)

{ int iBest = -1;

 double confBest = -1;

 for (int i = 0; i < numDetections; i++) { //check detected markers

 int codesIdx = detector.getARCodeIndex(i);

 double conf = detector.getConfidence(i);

 if ((codesIdx == markerIdx) && (conf > confBest)) {

 iBest = i; // detected marker index with highest confidence

 confBest = conf;

 }

 }

 /* return best detected marker index, and its confidence

 value as an integer */

 int[] detectInfo = {iBest, (int)(confBest*CONF_SIZE)};

 return detectInfo;

} // end of findBestDetectedIdx()

I‟m a little bit embarrassed by the hacky nature of findBestDetectedIdx() which

returns two values in an integer array – the first is the index of the best marker in the

image (iBest), and the second is its confidence value, converted from a double

(confBest) to an integer. The conversion multiples confBest by CONF_SIZE and then

casts it to an integer, an unnatural transformation that has to be subsequently reversed

(with some loss of precision) back in updateShapes().

If a suitable marker is not found in the image then iBest will be -1, a situation that is

tested for in updateShapes(), and results in an increment of the MarkerModel‟s

numTimesLost counter (via a call to MarkerModel.incrNumTimesLost()).

If a marker has been found, we must still check its confidence value to see if it

exceeds some arbitrary minimum (MIN_CONF). If it doesn‟t then no transformation

is applied to the model, meaning that it stays in its current position.

Java Prog. Techniques for Games. Chapter 16.5. Augmented Reality Draft #2 (24th July 2013)

 37 © Andrew Davison 2013

If the confidence level exceeds MIN_CONF then

NyARDetectMarker.getTransmationMatrix() is called to retrieve its transformation

matrix, which is passed to the MarkerModel for applying to the model.

At the end of an iteration of updateModels()‟s for-loop, the numTimesLost counter

for a MarkerModel is checked to see if it‟s been incremented too many times. In that

case, the model is rendered invisible. Also, various details about the model are added

to a string in addToStatusInfo() and written to the text box in the GUI.

private void addToStatusInfo(MarkerModel mm, StringBuffer statusInfo)

{

 if (!mm.isVisible())

 statusInfo.append(" not visible\n");

 else { // model is visible, so report position and orientation

 Point3d pos = mm.getPos();

 if (pos != null)

 statusInfo.append(" at (" + pos.x + ", " +

 pos.y + ", " + pos.z + ")\n");

 else

 statusInfo.append(" at an unknown position\n");

 Point3d rots = mm.getRots();

 if (rots != null)

 statusInfo.append(" rots (" + rots.x + ", " +

 rots.y + ", " + rots.z + ")\n");

 else

 statusInfo.append(" with unknown rotations\n");

 }

} // end of addToStatusInfo()

A model‟s name, current visibility, position and rotation could be used in more

complex ways. For example, by maintaining a history of a model‟s positions across

multiple frames, it would be possible to plot its trajectory and perhaps predict its

future location.

