Java Prog. Techniques for Games. Chapter 14. Shooting Draft #1 (28th April 03)

Chapter 14. Shooting a Gun

The application in this chapter, Shooter3D, contains a gun (actually a cone mounted
on a cylinder) which fires a laser beam at the point on the checkered floor clicked on
by the user. The flight of the laser beam (actually a red cylinder) is accompanied by a
suitable sound, and followed by an explosion (an animated series of images and
another sound).

Figure 1 shows three screenshots of Shooter3D. The first one has the laser beam in
mid-flight, the second captures the explosion, and the third is another explosion after
the user has clicked on a different part of the floor, from a different viewpoint.

Note how the cone head rotates to aim at the target point. Also, the animated
explosion always faces the user’s viewpoint.

Figure 1. The Deadly Shooter3D.

Java 3D and Java features illustrated by this example:

e the user’s clicking on the floor is dealt with by Java 3D picking;

e the laser beam and explosion sounds are PointSound objects;

o the rotations of the cone and the laser beam are handled by AxisAngle4d objects;

o the explosion visual is created with our ImagesSeries class, which simplifies to the
loading and displaying of a sequence of transparent GIFs as an animation;

e the delivery of the laser beam, and subsequent explosion, are managed by a
FireBeam thread, showing how Java threads and the built-in threading of Java 3D
can co-exist;

e the overall complexity of this application is greatly reduced by using OO design
principles — each of the main entities (the gun, the laser beam, the explosion) are
represented by its own class.

1 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 14. Shooting Draft #1 (28th April 03)

1. UML Diagrams for Shooter3D

Figure 2 gives the UML diagrams for all the classes in the Shooter3D application. The
class names and public methods are shown.

CalouredTiles

+shomSeries

)

ExplosiansClip

—~ +getExplBG
/ +shomExplosion

e | Shapesp |

1\ -~
GunTurret \
CheckerFloar }‘ —{+getaunBe L~ R’“‘
. 7 .
+getBz / ,/ +makeRotation Iy Shu:u:-tlngElehaxrlu:uur H"“-.
/;{ o tupdateScene
I e FireBeam
—_— +zetFinishedShot
Shooter3D J — —— +run
: WrapShooter3D };_’ —
+main f
—
= LazerBeam -
o +oetBeamBe é, -
+zhootBeam
+makeRotation

Figure 2. UML Class Diagrams for Shooter3D.

Shooter3D is the top-level JFrame for the application, and very similar to our earlier
JFrame classes.

WrapShooter3D creates the 3D world as usual, and adds the gun, laser beam and
explosion, and their controlling behavior.

CheckerFloor and ColouredTiles manage the checkboard, but are slightly changed to
deal with floor picking.

ExplosionsClip represents the explosion, GunTurret represents the gun, and
LaserBeam the laser beam. ExplosionsClip uses ImagesSeries to animate the
explosion.

ShootingBehaviour contains the behavior triggered when the user clicks on the floor.
Its picking capabilities come from being a subclass of PickMouseBehavior, a utility
class in Java 3D, which is itself a subclass of Behavior.

The tasks of firing the laser beam and triggering the explosion are delegated to the
FireBeam thread.

2 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 14. Shooting Draft #1 (28th April 03)

2. WrapShooter3D

WrapShooter3D’s createSceneGraph() calls makeGun() to initialise the various
elements of the application.

private void makeGun (Canvas3D canvas3D)
{ // starting vector for the gun cone and beam
Vector3d startVec = new Vector3d(0, 2, 0);

// the gun
GunTurret gun = new GunTurret (startVec);
sceneBG.addChild(gun.getGunBG());

// explosion and sound

PointSound explPS = initSound("Explol.wav");

ExplosionsClip expl = new ExplosionsClip(startVec, explPS3);
sceneBG.addChild(expl.getExplBG());

// laser beam and sound

PointSound beamPS = initSound("laser2.wav");
LaserBeam laser = new LaserBeam(startVec, beamPS);
sceneBG.addChild(laser.getBeamBG());

// the behaviour that controls the shooting
ShootingBehaviour shootBeh =
new ShootingBehaviour (canvas3D, sceneBG, bounds,
new Point3d(0,2,0), expl, laser, gun);
sceneBG.addChild (shootBeh) ;
} // end of makeGun ()

The position vector of the gun cone is hard-wired to be (0,2,0). The same vector is
also used to place the laser beam (a red cylinder) inside the cone.

3. The Sound of Shooting

There are three kinds of sound nodes in Java 3D: a BackgroundSound object allows a
sound to permeate the entire scene, located at no particular place, a PointSound object
has a location, and so its volume varies as the user moves away from it (or the sound
node moves away from the user), and a ConeSound can be focused in a particular
direction. All three are subclasses of the Sound class.

Before sound nodes can be added to a scene, an audio device must be created and
linked to the Viewer object. This is quite simple if the SimpleUniverse class is being
used (as in Shooter3D):

AudioDevice audioDev = su.getViewer () .createAudioDevice () ;

This line of code appears in the WrapShooter3D constructor.

3 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 14. Shooting Draft #1 (28th April 03)

WrapShooter3D uses initSound() to load a WAV sound file and create a PointSound
object.

private PointSound initSound(String filename)
{ MediaContainer soundMC = null;

try {
soundMC = new MediaContainer ("file:sounds/" + filename);
soundMC.setCacheEnable (true) ; // load sound into container

}
catch (Exception ex)
{ System.out.println(ex); }

// create a point sound
PointSound ps = new PointSound() ;
ps.setSchedulingBounds (bounds) ;
ps.setSoundData (soundMC) ;

ps.setInitialGain(1.0f); // full on sound from the start

// allow sound to be switched on/off & its position to be moved
ps.setCapability (PointSound.ALLOW ENABLE WRITE) ;
ps.setCapability (PointSound.ALLOW POSITION WRITE) ;

System.out.println ("PointSound created from sounds/" + filename);
return ps;
} // end of initSound()

A Sound node needs a sound source, which is loaded with a MediaContainer object.
Loading can be done from a URL, local file, or input stream; possible failure means
that the loading must be wrapped in a try-catch block. initSound() loads its sound
from a local file in the subdirectory sounds/.

All Sound nodes must be given a bounding region, and assigned a sound source:

PointSound ps = new PointSound();
ps.setSchedulingBounds (bounds);
ps.setSoundData (soundMC) ;

In order to play, the sound node must be enabled with setEnable(). However,
initSound() does not call setEnable(), and so the sound isn’t played when first loaded.
Instead the node’s capability bits are set to allow it to be enabled and disabled during
execution:

ps.setCapability (PointSound.ALLOW ENABLE WRITE) ;

The explosion sound will be positioned at runtime, requiring another capability bit:

ps.setCapability (PointSound.ALLOW POSITION WRITE) ;

Other sound elements include setting the volume, and saying whether the sound
should loop (and if so, how many times). The relevant methods are:

void setInitialGain(float volume) ;
void setLoop (int loopTimes) ;

initSound() sets the volume to 1.0f (full on), and uses the default looping behaviour
(play once, finish).

4 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 14. Shooting Draft #1 (28th April 03)

PointSound nodes have a location in space, given by setPosition(). They also emit
sound in all directions, so attenuation factors can be specified in a similar way to
PointLight nodes.

Problems with Sound

The Sound classes in the current version of Java 3D (v.1.3.1) contain some severe
bugs, including poor volume adjustment when the user moves away from a
PointSound or ConeSound, strange interactions between multiple sounds at different
locations, and anomalies between left and right ear sounds. Hopefully, these will be
fixed in future versions of the APIL.

4. What to Pick and Not to Pick

Picking is the selection of a shape (or shapes) in the scene, usually by having the user
click the mouse while the pointer is ‘over’ a particular shape.

This is implemented by projecting a line (a ray) into the scene from the user’s
viewpoint, through the mouse pointer position on screen so it intersects with things in
the scene (see Figure 3).

cube in the scene

mouse
pointer

LY

. 'piCk ray screen

user

viewpoint

Figure 3. Picking using a Ray.

There are many variations of this idea, such as using parallel projection instead of a
perspective view. Another is to use a different projection geometry instead of a line --
a cone or cylinder, for example. A third variation is to return a list of all the
intersected objects rather than just the one nearest to the viewer.

Picking returns the visual object selected from in the scene, which may not contain
sufficient information for the application. However, visual objects are leaf nodes of
scene graph branches containing such things as TransfromGroups, Switches, and so
on. Java 3D allows the path from the Locale node to the selected node to be accessed.

By default, leaf nodes, such as Shape3D’s and OrientedShape3D’s, are pickable, and
so programmers try to switch off picking (with setPickable(false)) in as many nodes as
possible, to reduce the cost of intersection testing.

Nodes which are internal to a scene graph (typically subclasses of Group) are not
normally added to the scene graph path generated at picking time. Often a path will be

5 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 14. Shooting Draft #1 (28th April 03)

empty due to this. If a Group node needs to be added to the path then its
ENABLE PICK REPORTING capability must be set prior to picking.

The picking of a leaf node can return different amounts of information, but more
information means increased processing times, and requires the setting of a
bewildering range of capability bits. Fortunately, the PickTool class offers a
setCapabilities() method for setting the necessary bits in a Shape3D node at three
different levels of picking:

static void setCapabilities (Node node, int level);

The levels are: INTERSECT TEST, INTERSECT COORD, and INTERSECT FULL.
INTERSECT TEST is used to only test if a given shape intersects a ray,
INTERSECT COORD goes further by returning intersection coordinates, while
INTERSECT FULL returns details of the geometry’s colour, normals, and texture
coordinates.

A consideration of the scene in Shooter3D (Figure 1) reveals a range of shapes:

two Shape3D nodes holding the QuadArrays for the blue and green floor tiles;
42 Text2D axis labels;

the Shape3D red tile at the origin;

the gun cylinder and cone;

the laser beam cylinder;

the explosion Shape3D.

Shooter3D switches off picking for all of these apart from the floor tiles and the red
tile at the origin. This means that small changes must be made to our familiar
CheckerFloor and ColouredTiles classes.

In CheckerFloor, makeText() is employed to create an axis label, and now includes a
call to setPickable():

private TransformGroup makeText (Vector3d vertex, String text)

// Create a Text2D object at the specified vertex

{
Text2D message = new Text2D(text,white,"SansSerif",36,Font.BOLD) ;
message.setPickable (false) ; // cannot be picked

In ColouredTile, picking is left on, but the amount of detail to return must be set with
a call to setCapabilities(). We only require intersection coordinates, not information

about the shape’s colour, normals, etc., and so the INTERSECT COORD picking mode is
sufficient:

public ColouredTiles (ArrayList coords, Color3f col)
{ plane = new QuadArray(coords.size(),
GeometryArray.COORDINATES | GeometryArray.COLOR 3);

createGeometry(coords, col);
createAppearance () ;
// set the picking capabilities so that intersection
// coords can be extracted after the shape is picked
PickTool.setCapabilities(this, PickTool.INTERSECT_ COORD) ;

6 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 14. Shooting Draft #1 (28th April 03)

The other objects in the scene: the gun, laser beam, and explosion, all contain calls to
setPickable(false).

ShootingBehaviour extracts and utilises the intersection information, so a detailed
discussion of that side of picking will be delayed until later. Essentially, it uses a ray
to find the intersection point on a tile nearest to the viewer. There is no need to obtain
path information about the Group nodes above it in the graph, so no need to set any
ENABLE PICK REPORTING capability bits for Group nodes.

5. The Gun

The GunTurret class hides the creation of a scene graph branch for the cylinder and
cone, and has two public methods: getGunBG() and makeRotation(). getGunBG() is
used by WrapShooter3D to retrieve a reference to the gun’s top-level BranchGroup,
gunBG, so it can be added to the scene. makeRotation() is called by
ShootingBehaviour to rotate the cone to point at the clicked position.

The scene graph branch built inside GunTurret is shown in Figure 4.

BG | gunBG
» 4
baseTG | TG TG | gunTG
Y Y
cyl cone
Cylinder ~ Cone

Figure 4. Scene Graph Branch for GunTurret.

The GunTurret constructor:

public GunTurret (Vector3d svec)

{ startVec = svec;
gunBG = new BranchGroup () ;
Appearance apStone = stonelpp();
placeGunBase (apStone) ;
placeGun (apStone) ;

StartVec contains the position of the gun cone (0,2,0).

apStone is a blending of a stone texture and white material, with lighting enabled,
which allows lighting effects to be seen on the gun’s surfaces. The blending is done
using the TextureAttribute. MODULATE setting for the texture mode; a similar
approach was used in chapter 12 for the texture applied to the particle system of
Quads.

placeGunBase() creates the left hand side of the sub-graph shown in Figure 4, and
placeGun() the right side.

7 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 14. Shooting Draft #1 (28th April 03)

The cylinder and cone are both made unpickable:

cyl.setPickable (false); cone.setPickable (false) ;

The TransformGroup for the cone (gunTG) will have its rotation details changed at
run-time, so its capability bits are set accordingly:

gunTG.setCapability (TransformGroup.ALLOW TRANSFORM WRITE) ;
gunTG.setCapability (TransformGroup.ALLOW TRANSFORM READ) ;

makeRotation() is called with an AxisAngle4d object which, as the name suggests, is
a combination of an axis (vector) and an angle to rotate around that vector. The vector
can specify any direction, and so the resulting rotation is a generalisation of the
rotations we have used so far, which have been around the x-, y-, or z- axes only.

public void makeRotation (AxisAngledd rotAxis)
// rotate the cone of the gun turret

{ gunTG.getTransform(gunT3d); // get current transform
gunT3d.get (currTrans); // get current translation
gunT3d.setTranslation(ORIGIN) ; // translate to origin
rotT3d.setRotation(rotAxis); // apply rotation

gunT3d.mul (rotT3d) ;

gunT3d.setTranslation(currTrans); // translate back
gunTG.setTransform(gunT3d);

The rotation is applied to gunTG. Since the cone is located away from the origin, it is
first translated to the origin, rotated, then moved back to it’s original position.

A general optimization used here, and in many other places in the application, is to
employ global variables for repeated calculations instead of creating new, temporary
objects. This is why the Transform3D and Vector3d objects are globals (gunT3d,
rotT3d, currTrans). A further optimization would be to hardwire the translation value,
since the cone never moves, only rotates.

8 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 14. Shooting Draft #1 (28th April 03)

6. The Laser Beam

The LaserBeam object is a red cylinder, which is hidden inside the gun cone when not
in use, so there is no need for a Switch or visibility-controlling code.

ShootingBehaviour rotates the cylinder (and gun cone) to point at the location picked
by the user on the checkboard. It then lets FireBeam handle the shooting of the beam
and subsequent explosion.

The laser beam is accompanied by a PointSound, which moves along with it. This
means that its volume increases (or diminishes) as the beam travels towards (or away
from) the user’s viewpoint.

The class diagram for LaserBeam in Figure 5 shows its public methods.

LaserBeam

getBeamBG(...)
LaserBean(...)
makeRotation(...)
shootBeam(...)

Figure 5. LaserBeam’s Public Methods.

WrapShooter3D uses getBeamBG() to retrieve the beam’s BranchGroup for addition
to the scene. ShootingBehaviour rotates the beam with makeRotation(), which is
identical to the method in GunTurret, except that it applies the rotation to the beam’s
TransformGroup. shootBeam() is called from FireBeam to deliver the beam to the
position on the floor clicked on by the user.

The scene graph branch built inside LaserBeam (by makeBeam()) is shown in Figure
6.

BG | beamBG
Y
TG beamTG
» 4
beamPS beam
PointSound Cylinder.

Figure 6. Scene Graph Branch for LaserBeam.

The cylinder is made unpickable:

beam.setPickable (false);

The capability bits of beamTG are set to allow it to be rotated and translated.

shootBeam() moves the beam towards a point (the intercept), in incremental steps
defined by stepVec, with a brief delay between each move of SLEEP _TIME ms.
While the beam is in flight, a sound is played.

9 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 14. Shooting

public void shootBeam(Point3d intercept)

Draft #1 (28th April 03)

{ double travelDist = startPt.distance (intercept);

calcStepVec (intercept, travelDist);

beamPS.setEnable (true) ; // switch on laser beam sound

double currDist = 0.0;
currVec.set (startVec) ;

beamTG.getTransform (beamT3d) ; // get current beam transform

while (currDist <= travelDist) { // not at destination yet
beamT3d.setTranslation (currVec); // move the laser beam

beamTG.setTransform (beamT3d) ;
currVec.add (stepVec) ;
currDist += STEP_ SIZE;

try {

Thread.sleep (SLEEP_TIME) ; // wait a while

}

catch (Exception ex) {}

}

// reset beam to its original coordinates

beamT3d.setTranslation (startVec);
beamTG.setTransform (beamT3d) ;

beamPS.setEnable (false) ; // switch off laser beam sound

} // end of shootBeam()

shootBeam() first calculates the distance to be traveled (travelDist) from the starting
point to the intercept, and a translation increment (stepVec) based on a hardwired step
size constant. These values are shown graphically in Figure 7.

travel Dist

intercept

Figure 7. Moving the Laser Beam.

The playing of the sound is controlled by setEnable() which requires the wRITE
capability bit to be set in initSound(), as explained earlier.

The beam’s current position is stored in currVec, and its current distance along the
path to the intercept in currDist. currVec is used to update the beam’s position by
modifying its TransformGroup, beamTG. The while loop continues this process until

the required distance has been traveled.

When the beam has reached the intercept, it is reset to its original position at startVec,

which hides it from the user back inside the cone.

10

© Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 14. Shooting Draft #1 (28th April 03)

7. The Explosion

The explosion is best explained by considering the subgraph created inside
ExplosionsClip (see Figure 8).

BG | explBG
» 4
explPS Switch | explSwitch
PointSound v
TG | explTG
v
explShape

hﬁagcsSedcs
(subclass of Shape3D)

Figure 8. Scene Graph Branch for ExplosionsClip.

The visual component of the explosion is implemented as a series of transparent GIF
images, drawn one after another onto the surface of a QuadArray inside explShape.
The details will be explained below when we consider the ImagesSeries class.

explTG is utilised to position the explosion shape at the point where the user clicked
the mouse, and rotate it around the y-axis to face the user’s viewpoint. The Switch
node is used to hide the explosion until needed.

The original design for the explosion had the PointSound attached to the
TransformGroup, in a similar way to the laser beam subgraph (Figure 6). However, a
runtime exception was always raised as the sound was enabled, apparently because of
its presence below a Switch node. Consequently, it was moved to a separate branch
but now requires explicit positioning.

The subgraph is created in the constructor for ExplosionsClip, and a reference to
explBG is retrieved by WrapShooter3D calling getExplBG().

The explosion is displayed by showExplosion() called from FireBeam, after the laser
beam has reached the click point.

public void showExplosion (double turnAngle, Point3d intercept)
// turn to face eye and move to click point
{
endVec.set (intercept.x, intercept.y, intercept.z);
rotateMove (turnAngle, endVec);

explSwitch.setWhichChild(Switch.CHILD ALL); // make visible
explPS.setPosition((float)intercept.x,

(float)intercept.y, (float)intercept.z);

// move sound to click point

explPS.setEnable (true) ; // switch on explosion sound
explShape.showSeries () ; // show the explosion
explPS.setEnable (false) ; // switch off sound

explSwitch.setWhichChild(Switch.CHILD NONE); // invisible

11 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 14. Shooting Draft #1 (28th April 03)

// face front again, and reset position
rotateMove (-turnAngle, startVec);
} // end of showExplosion ()

FireBeam passes the user’s click point (intercept) and the turning angle for the
explosion (turnAngle) to showExplosion(). The rotation is handled by rotateMove(),
explained below, and the animation is triggered by a call to showSeries() in the
ImagesSeries object.

Note that the positioning and enabling of the PointSound, explPS, require capabilities
to have been set previously, which was done in initSound().

After the explosion has finished, it is hidden, and rotated back to its original
orientation.

rotateMove() uses the turning angle to rotate around the y-axis and so can employ
rotY() rather than an AxisAngle4d object. As usual, the object must be translated to
the origin before the rotation, then translated to its new position afterwards.

private void rotateMove (double turn, Vector3d vec)
// rotate the explosion around the Y-axis, and move to vec

{

explTG.getTransform(explT3d) ; // get transform info
explT3d.setTranslation (ORIGIN) ; // move to origin
rotT3d.rotY (turn) ; // rotate around the y-axis

explT3d.mul (rotT3d) ;

explT3d.setTranslation (vec) ; // move to vector
explTG.setTransform(explT3d) ; // update transform

The ImagesSeries Class

The constructor for the ImagesSeries class takes a partial filename (e.g.
“images/explo”), and a number (e.g. 6), and attempts to loads GIF files which use that
name and numbering scheme (e.g. “images/explo0.gif”, ..., “images/explo5.gif”). The
images are stores as ImageComponent2D objects in an ims[] array.

ImagesSeries is a Shape3D subclass, containing a QuadArray placed on the XZ plane
centered at (0,0). The quad is a single square, of size screenSize, with its front face
oriented along the positive z-axis, as in Figure 9.

screenSize

//V
(0,0,0) x>

A7
Figure 9. The ImagesSeries QuadArray.

12 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 14. Shooting Draft #1 (28th April 03)

Implicit in the square shape is the assumption that the GIFs will be square, otherwise
they will be distorted as they are laid over the face.

The texture coordinates are assigned anti-clockwise from the bottom left coordinate of
the quad, so the texture will be the right way up, and facing out along the positive z-
axis, towards the viewer.

The important component of the shape is its appearance, which uses blended
transparency so that the any transparent parts of a GIF will remain transparent when
the image is applied as a texture.

Appearance app = new Appearance () ;

// blended transparency so texture can be irregular
TransparencyAttributes tra = new TransparencyAttributes();
tra.setTransparencyMode (TransparencyAttributes.BLENDED) ;
app.setTransparencyAttributes (tra);

No Material node component is assigned to the shape which means that lighting
cannot be enabled, and so the shape is unaffected by the lighting in the scene. The
code to do this would be:

// mix the texture and the material colour
TextureAttributes ta = new TextureAttributes();
ta.setTextureMode (TextureAttributes .MODULATE) ;
app.setTextureAttributes (ta);

Material mat = new Material(); // set material and lighting
mat.setLightingEnable (true) ;
app.setMaterial (mat) ;

The Texture2D object that holds the texture is based on the size of the first image in
ims([], and the code assumes that all the subsequent GIFs are the same size:

// Set the texture from the first loaded image
texture = new Texture2D(Texture2D.BASE LEVEL, Texture.RGBA,
ims[0] .getWidth (), ims[O0].getHeight());
texture.setImage (0, ims[0]);
texture.setCapability (Texture.ALLOW IMAGE WRITE) ;
// texture can change
app.setTexture (texture) ;

setAppearance (app) ;

The capability bit allows the texture to be changed by showSeries(), which is called
from ExplosionsClip:

public void showSeries()
{ for (int i=0; 1 < ims.length; i++) {
texture.setImage (0, ims[i]);
try {
Thread.sleep (DELAY) ; // wait a while
}

catch (Exception ex) {}

13 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 14. Shooting Draft #1 (28th April 03)

There are obvious variants of this idea, such as allowing the animation to cycle, or to
be played from some arbitrary point in the sequence.

8. Picking with a Mouse Click

As mentioned earlier, picking is usually implemented by projecting a line (a ray) into
the scene from the user’s viewpoint, through the mouse pointer position on screen,
until it intersects with a shape in the scene (see Figure 3).

The PickCanvas class is used to turn a mouse click into a ray (a PickShape object).
Java 3D finds the pickable shapes which intersect with the PickShape object,
returning them as a list of PickResult objects. It is also possible to return just the
PickResult object closest to the viewer.

A single PickResult may contain many PickIntersection objects, which hold the data
for each intersection of the shape (e.g. the ray may go through the front and back face
of the shape, leading to two intersection points for the single shape).

The complexity of the picking coding is somewhat alleviated by using the
PickMouseBehavior utility class, a subclass of Behaviour, which hides much of the
picking mechanism. The general format for a subclass of PickMouseBehavior:

import javax.media.j3d.*;

import com.sun.j3d.utils.picking.PickTool;

import com.sun.j3d.utils.picking.PickResult;

import com.sun.j3d.utils.picking.behaviors.PickMouseBehavior;
// other imports as necessary

public class ExamplePickBehavior extends PickMouseBehavior
{
public PickHighlightBehavior (Canvas3D canvas, BranchGroup bg,
Bounds bounds)
{ super (canvas, bg, bounds);
setSchedulingBounds (bounds) ;

pickCanvas.setMode (PickTool.GEOMETRY INTERSECT INFO);
// allows PickIntersection objects to be returned

}

public void updateScene (int xpos, int ypos)

{
pickCanvas.setShapelocation (xpos, ypos);
// register mouse pointer location on the screen (canvas)

Point3d eyePos = pickCanvas.getStartPosition();
// get the viewer's eye location

PickResult pickResult = null;
pickResult = pickCanvas.pickClosest();

// get the intersected shape closest to the viewer

if (pickResult != null) {
PickIntersection pi =

14 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 14. Shooting Draft #1 (28th April 03)

pickResult.getClosestIntersection (eyePos) ;
// get the closest intersect to the eyePos point
Point3d intercept = pi.getPointCoordinatesVW() ;
// extract the intersection pt in scene coords space

}
} // end of updateScene ()

} // end of ExamplePickBehavior class

The constructor must pass the Canvas3D object, a BranchGroup, and bounds
information to the superclass in order for it to create a PickCanvas object and a
PickShape. The PickCanvas object, pickCanvas, is available, and can be used to
configure the PickShape, such as changing it from a ray to a cone, or adjusting the
tolerance for how close a shape needs to be to the PickShape to be picked.

There are many subclasses of PickShape (e.g. PickRay, PickCone, PickCylinder)
which specify different kinds of ray geometries; the default one employed by
PickMouseBehavior is a line (PickRay).

PickCanvas is intended to make picking based on mouse events easier. It is a subclass
of PickTool which has many further features/methods.

The call to pickCanvas.setMode() in ExamplePickBehavior’s constructor specifies the
level of detail for the returned pick and intersection data. The various modes are:
BOUNDS, GEOMETRY, and GEOMETRY INTERSECT INFO. The BounDs mode tests for
intersection using the bounds of the shapes rather than the shapes themselves, so is
quicker. GEOMETRY uses the actual shapes, so it more accurate. Both modes return the
intersected shapes, but nothing more detailed.

The GEOMETRY INTERSECT INFO mode tests for intersection using the shapes, and
returns details about the intersections, stored in PickIntersection objects. The level of
detail is controlled by the capabilities set in the shapes using PickTool’s
setCapabilities() method.

Although PickMouseBehavior is a Behavior subclass, no use should be made of the
initialize() or processStimulus() methods. Instead the programmer should implement
the updateScene() method which is called whenever the user clicks the mouse button
— the method is passed the (x,y) coordinate of the mouse click on the screen (the
Canvas3D).

The first step in updateScene() is to call setShapeLocation() to inform pickCanvas of
the mouse position so that the PickShape (the ray) can be cast into the scene.

The intersecting shapes can be obtained in a variety of ways: pickClosest() gets the
PickResult object closest to the viewer. Other methods include:
PickResult[] pickAll();

PickResult[] pickAllSorted()
PickResult pickAny();

The first two return all the intersecting shapes, with the second method sorting them
into increasing distance from the viewer. pickAny() returns any shape from the ones
found, which should be quicker than finding the closest.

15 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 14. Shooting Draft #1 (28th April 03)

Finding Intersections

A PickResult will usually refer to a Shape3D containing a GeometryArray subclass
made up of many surfaces. All the intersections between the shape and the ray can be
obtained in the following way:

PickIntersection pi;
for (int i = 0; i < pickResult.numIntersections(); i++) {
pi = pickResult.getIntersection(i);

More commonly, the intersection closest to some point in the scene is obtained:

PickIntersection pi = pickResult.getClosestIntersection (pt);

In ExamplePickBehavior, the point is the viewer’s position, which is extracted from
pickCanvas with getStartPosition().

A PicklIntersection object can hold a wide range of information about the
GeometryArray, such as the point, line, triangle, or quad that was intersected, and the
intersection point both in the local coordinates of the shape or the coordinate space of
the scene. If the picking level for the shape is INTERSECT FULL, then there will also
be details about the closest vertex to the intersection point, and the color, normal and
texture coordinates at the intersection point.

The call to getPointCoordinatesVW() obtains the intercept point in the scene’s
coordinate space:

Point3d intercept = pi.getPointCoordinatesVW() ;

9. ShootingBehaviour

ShootingBehaviour is a subclass of PickMouseBehavior, and controls the various
shooting-related entities when the user clicks the mouse. The gun cone and laser beam
are rotated to point at the placed clicked on the checkboard. Then a FireBeam thread
is created to move ('fire") the beam to the location, and display the explosion.

ShootingBehaviour’s central role in the application means that it is passed references
to the GunTurret, LaserBeam, and ExplosionsClip objects. In the first version of this
class, the code was extremely complex since it dealt directly with the
TransformGroups and Shape3Ds of the shooting elements. Good OO design of the
application entities (e.g. hiding subgraph details and computation) meant a halving of
ShootingBehaviour’s code length, making it much easier to understand, maintain, and
modify.

The ShootingBehaviour constructor is quite similar to the constructor in
ExamplePickBehavior:

public ShootingBehaviour (Canvas3D canvas, BranchGroup root,
Bounds bounds, Point3d sp, ExplosionsClip ec,
LaserBeam 1lb, GunTurret qg)

{ super (canvas, root, bounds):;

16 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 14. Shooting Draft #1 (28th April 03)

setSchedulingBounds (bounds) ;

pickCanvas.setMode (PickCanvas.GEOMETRY INTERSECT INFO) ;
// allows PickIntersection objects to be returned

startPt = sp; // location of the gun cone
explsClip = ec;

laser = 1b;

gun = gy

updateScene() is also similar to the one in ExamplePickBehavior since it requires
intersection information. updateScene() rotates the gun cone and beam to point at the
intercept and starts an FireBeam thread to fire the beam and display an explosion.

public void updateScene (int xpos, int ypos)

{
if (finishedShot) { // previous shot has finished
pickCanvas.setShapelocation (xpos, ypos):;

Point3d eyePos = pickCanvas.getStartPosition(); // viewer loc

PickResult pickResult = null;
pickResult = pickCanvas.pickClosest();

if (pickResult != null) {
pickResultInfo (pickResult); // for debugging

PickIntersection pi =
pickResult.getClosestIntersection(startPt);
// get intersection closest to the gun cone
Point3d intercept = pi.getPointCoordinatesVW() ;

rotateToPoint (intercept) ; // rotate the cone and beam
double turnAngle = calcTurn (eyePos, intercept);

finishedShot = false;
new FireBeam(intercept, this, laser,
explsClip, turnAngle).start();
// fire the beam and show explosion
}

}
} // end of updateScene ()

The finishedShot flag has an important effect on the behaviour of the application — it
only allows a single laser beam to be ‘in the air’ at a time. As FireBeam is started,
finishedShot is set to false, and will remain so until the thread has moved the beam to
the intercept point. This means that if the user clicks on the checkboard while a beam
is still travelling, nothing will happen since the if-test in updateScene() will return
false.

The reason for this design is to limit the number of laser beam objects required by the
application to just one! Otherwise, the coding would have to deal with a user that
could quickly click multiple times, each requiring its own laser beam.

The call to getClosestIntersection() uses startPt, which is set in the constructor to be
the cone’s location. The resulting intercept will be the point nearest to the cone.

17 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 14. Shooting Draft #1 (28th April 03)

Debugging Picking

The call to pickResultInfo() plays no part in the shooting process; it is used to print
extra information about the PickResult object (pr), to check that the picking code is
selecting the correct shape.

getNode() is called to return a reference to the shape that the PickResult object
represents:
Shape3D shape = (Shape3D) pr.getNode (PickResult.SHAPE3D) ;

The code must deal with a potential null result which would occur if the selected node
was not a Shape3D object.

The PickResult object, pr, also contains the scene graph path between the Locale and
picked node, which can be used to access an object above the picked node, such as a
TransformGroup. The path is obtained by calling getSceneGraph():

SceneGraphPath path = pr.getSceneGraphPath();
This path may often be empty, since internal nodes are not added to it unless their
ENABLE PICK REPORTING capability bit is set. (In fact, the matter is a little more
complex than this if there are SharedGroup nodes in the scene graph.)
The path can be printed with a for-loop:

int pathLen = path.nodeCount () ;

for (int i=0; 1 < pathLen; i++) {
Node node = path.getNode (1) ;
System.out.println(i + ". Node: " + node);

}

If the sceneBG BranchGroup node created in WrapShooter3D has the necessary
capability bit set:
sceneBG.setCapability (BranchGroup.ENABLE PICK REPORTING) ;
Then the output from the for-loop in pickResultInfo() is:
0. ©Node: javax.media.j3d.BranchGroup@2bcd4db
This is not particularly informative. A typical way of improving the labeling of scene

graph nodes is to use the setUserData() method from SceneGraphObject, which
allows arbitrary objects to be assigned to a node (e.g. a String object):

sceneBG.setUserData (“the sceneBG node”);
After a reference to the node has been retrieved, getUserData() can be employed:

String name = (String)node.getUserDatal() ;
System.out.println(i + ". Node name: " + name);

Rotating the Cone

rotateToPoint() rotates the gun cone and laser beam cylinder to point at the intercept.
The problem is that a simple rotation about the x-, y-, or z- axis is insufficient, since
the intercept can be anywhere on the floor. Instead, an AxisAngle4d rotation is
utilised, which allows a rotation about any vector.

18 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 14. Shooting Draft #1 (28th April 03)

The essential algorithm is illustrated in Figure 10.

UPVECT /v

startPt shootAngle

intercep

Figure 10. Rotating to face the Intercept.

The cone (and beam) start by pointing in the UPVEC direction at the StartPt location,
and they must be rotated to point in the clickVec direction, a rotation of shootAngle
radians. The rotation is around the axisVec vector, which is normal to the plane
defined by the two vectors UPVEC and clickVec.

startPt and UPVEC values are predefined, and intercept is supplied by updateScene()
when it calls rotateToPoint(). clickVec is readily calculated from the startPt and
intercept points:

clickVec.set (intercept.x-startPt.x, intercept.y-startPt.y,
intercept.z-startPt.z);

axisVec is known as the cross product, and the Vector3d class contains a cross()
method which calculates it, given normalized values for UPVEC and clickVec:

clickVec.normalize () ;
axisVec.cross(UPVEC, clickVec):

The rotation angle, shootAngle, between UPVEC and clickVec can also be easily
calculated with Vector3d’s angle() method:

shootAngle = UPVEC.angle(clickVec);

shootAngle is related to the dot product: the dot product of vectors a and b (often
written as a . b) gives the length of the projection of b onto a. For example,
a.b=]|x|inFigure 11.

theta

Figure 11. The Dot Product of Vectors a and b.

The angle between a and b, theta, can be expressed as:

a.b
laf [b]
If a and b are unit vectors, as in our code, then:

cos theta =

costheta = a.b

This leads to another way of calculating shootAngle in Java 3D:

19 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 14. Shooting Draft #1 (28th April 03)

shootAngle = Math.acos(UPVEC.dot (clickVec));

dot() is the dot product operation, acos() the arc cosine.

An AxisAngle4d object requires a vector and rotation, which can now be supplied:

rotAxisAngle.set (axisVec, shootAngle);

This is used to rotate both the cone and laser beam:

gun.makeRotation (rotAxisAngle) ;
laser.makeRotation (rotAxisAngle) ;

An extra complication is that rotateToPoint() assumes that the cone and beam start in
the UPVEC direction, which is only true at the start of the application. For rotations
after the first, the objects must be rotated back to the vertical first. This is achieved by
rotating by shootAngle around the negative of the axisVec vector:
if (!firstRotation) { // undo previous rotations

axisVec.negate() ;

rotAxisAngle.set (axisVec, shootAngle);

gun.makeRotation (rotAxisAngle) ;

laser.makeRotation (rotAxisAngle) ;

}

Making the Explosion Face the Viewer

updateScene() also calls calcTurn() to calculate the angle which the explosion shape
should rotate in order to face the viewer:

double turnAngle = calcTurn (eyePos, intercept);

The algorithm is illustrated by Figure 12.

@ "
eyePos xDiff .

Figure 12. Turning to Face the Viewer.

The eyePos and intercept points are supplied by updateScene(). turnAngle is readily
calculated as the arc tangent of xDiff and zDiff:

double zDiff = eyePos.z - intercept.z;
double xDiff = eyePos.x - intercept.x;
double turnAngle = Math.atan2 (xDiff, zDiff);

Figure 12 shows the explosion shape as a striped rectangle facing the positive z- axis,
which must be rotated to face eyePos. A little geometry confirms that its required
rotation is the same as turnAngle calculated above.

20 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 14. Shooting Draft #1 (28th April 03)

10. Firing the Beam
The FireBeam thread is started from updateScene() like so:

new FireBeam(intercept, this, laser, explsClip,
turnAngle) .start () ;

A basic question is why use a thread? One answer is that by passing the job of beam
delivery and explosion to a new thread, the ShootingBehaviour object is free to do
other tasks. Actually, this benefit is not much exploited in our code since updateScene
() will only process new user picks once the finishedShot boolean has been set to true
near the end of run() in the FireBeam thread.

public void run{()

{
laser.shootBeam (intercept) ;
shooter.setFinishedShot () ; // beam has reached its target
explsClip.showExplosion (turnAngle, intercept); // boom!

}

The call to setFinishedShot() sets finishedShot to true, which permits updateScene()
to respond to user clicks and, at the same time, the explosion for the current beam will
be initiated from FireBeam. This improves the responsiveness of the application since
the explosion animation lasts 1-2 seconds.

However, there is a problem — what if the explosion animation for the beam (i.e. the
current call to showExplosion()) has not finished before the FireBeam thread for the
next beam calls showExplosion()?

The worst that happens is an interruption to the explosion animation, and the
truncation of the playing of the sound. However, in the vast majority of situations, the
travel time of the laser beam and the explosion animation speed means that the
explosion has finished before it is required again.

From a practical point of view, this may be sufficient, but in the next chapter we look
at a better coding approach that allows multiple beams and multiple explosions to co-
exist safely on screen at the same time.

11. More on Picking

The Java 3D tutorial has a long section on picking in chapter 4 “Interaction and
Animation”, and there are two picking examples: MousePickApp.java and
PickCallbackApp.java.

The former is explained in the tutorial and shows how to use the PickRotateBehavior
subclass of PickMouseBehavior to select and rotate shapes. The other predefined
subclasses are PickTranslateBehavior and PickZoomBehavior.

There is not much information on how to create your own subclasses of
MousePickBehavior, but it is possible to look at the source code for these utilities,
which is in java3d-utils-src.jar (if you downloaded it). A potential source of confusion
is that you will find two copies of each of these classes: the deprecated ones located in
com.sun.j3dutils.behaviors.picking, and the current ones in
com.sun.j3dutils.picking.behaviors.

21 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 14. Shooting Draft #1 (28th April 03)

The PickCallbackApp.java example shows how to attach a callback method to the
PickRotateBehavior object, which is called automatically when a pick operation takes
place. The code is derived from the MousePickApp.java example.

Another source of examples are the Java 3D demos, located in demo/java3d/ below
JAVA HOME. There are several relevant subdirectories: PickTest/, PickText3D/, and
TickTockPicking/.

The TickTockPicking example involves the picking of cubes and tetrahedrons to
change their appearance, and utilises a easy to understand subclass of
PickMouseBehavior called PickHighlightBehavior.

We return to picking in chapter 17 ?? when we use it to determine the position of
terrain below the viewer as he/she moves around a landscape. This is a common
approach to handling movement over irregular surfaces. The code utilises a PickTool
object to fire a ray straight down beneath the viewer to intersect with the shape
representing the ground.

22 © Andrew Davison. 2003

