
Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

1  Andrew Davison 2003

Chapter 11.5. An Articulated, Moveable Figure

This chapter describes the implementation of an articulated figure, composed of
rotatable limbs, which can be moved around a checkboard floor in a similar manner to
the 3D sprites in chapters 10 and 11.

This work is based on the first part of Thana Konglikhit's student project
(s4310170@maliwan.psu.ac.th). He is expected to finish in February/March of
2004.

Figure 1 shows the figure in its initial stance, and figure 2 after the following
commands have been processed:

urLeg f 40, lrLeg f -40, ulArm f 20, llArm f 20, chest t 10, head t –10

 Figure 1. Initial Position. Figure 2. After Limb Movement.

The first four commands specify forward (f) rotations of the limbs representing the
upper part of the right leg (urLeg), the lower right leg (lrLeg), the upper left arm
(ulArm), and the lower part of the left arm (llArm). The chest and head are turned (t)
left and right respectively, so that the head stays facing forward.

All the operations are carried out as a group, causing a single re-orientation of the
figure.

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

2  Andrew Davison 2003

Pressing <enter> repeats the commands, although when a limb reaches its predefined
maximum or minimum rotation, operations which would rotate it beyond these limits
are ignored. Figure 3 shows the result of executing the commands several times.

Figure 3. Repeated Limb Movements.

Note that the right arm passes through the right leg; The Mover3D application does
not employ collision avoidance to prevent limbs intersecting.

The user can move the entire figure about the floor by typing commands into the text
field or by pressing arrow keys on the keyboard. Figure 4 displays the outcome of the
commands:

f, f, c, c, f, f

They cause the figure to move from its starting position at (0,0) on the floor: forward
0.6 units, 22.5 degrees to its right, and forward another 0.6 units. Figure 5 is a view of
the scene after repeating these commands three times. Sixteen repetitions will cause
the figure to return to its starting position at (0,0).

 Figure 4. Figure Movement. Figure 5. Repeated Figure Movement

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

3  Andrew Davison 2003

These commands are reminiscent of the turtle geometry constructs found in languages
like Logo.

As with the limb operations, all movements entered into the textfield update the figure
at once. The operations are carried out in the order specified by reading the input
sequence left-to-right.

A close look at the figure in Figures 4 and 5 shows that its limbs are unaffected by the
movement: the entire figure is moved and rotated as a single 'unit'.

Figure 6 illustrates the result of pressing the "reset" button in the GUI: the figure's
limbs are rotated back to their starting position, but the figure remains at its current
position and orientation on the floor.

Figure 6. Reset Limbs.

Other features:

• the articulated figure is created by connecting instances of our Limb class and its
subclasses. These classes are sufficiently general to build most kinds of articulated
shape;

• each limb can be given an initial orientation relative to its 'parent' limb, and can be
rotated around its x-, y-, and z-axes at run time. The rotation ranges can be pre-set;

• the shape of a limb is described using a LatheShape3D object (see chapter 9.5)
which allows a typical limb shape to be specified with just a few coordinates;

• a limb's cross-sectional shape can be modified by using subclasses of
LatheShape3D when defining the limb;

• the appearance of a limb is derived from a texture, and reflects light;

• a limb may be invisible, which enables it to be used as a connector between other
limbs without being rendered;

• the command language for limbs allows each limb to be individually rotated;

• the command language for the figure permits the figure to be moved around the
board, rotated around the y-axis, and lifted into the air. The figure cannot be

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

4  Andrew Davison 2003

lowered below the floor or rotated around its x- or z- axes. This means, for
example, that it is not possible to make the figure lie on its back on the floor.

1. Forward and Inverse Kinematics
Java 3D's scene graph imposes a parent-child relationship on (most of) its nodes. This
hierarchy is particularly important for sequences of TransformGroups.

Figure 7 shows a simple hierarchy made up of a parent and a child TransformGroup.
The parent holds a translation of (1,1,2), the child a translation of (2, 3, 1). However,
from the world's viewpoint, the child's translation will be (3, 4, 3), a combination of
the parent and child values.

Figure 7. A Hierarchy of TransformGroups.

In general, the world (or scene) view of a TransformGroup is a combination of its
translation, rotations, and scaling with those of its ancestors (parent, grandparent, and
so on).

This hierarchy is important when developing an articulated figure, since each limb
contains several TransformGroups, and the connection of limbs to make the complete
figure creates a large hierarchy of TransformGroups. The consequence is that when a
limb is moved (by affecting one of its TransformGroups), the limbs linked to it as
children will also move.

This top-down behaviour is at the heart of forward kinematics, one of the standard
approaches to animating articulated figures. For example, the rotation of a figure's
chest can cause its arms and head to turn, while the bottom and legs remain stationary.
From a programming point of view, this means much less explicit manipulation of
TransformGroups, but requires that the arms and head are connected as children to the
chest's TransformGroup.

Forward kinematics is especially useful for movements which originate at the top-
level of a figure and 'ripple down' to the lower-level components. An everyday
example is moving a figure: the translation is applied to the top-most
TransformGroup, and all the other nodes will move as well.

Forward kinematics is a lot less satisfactory for operations which start at lower-level
limbs and should then 'ripple up'. For instance, the natural way of having a figure
touch an object in the scene is to move the hand to the object's location. As the hand is
moved, the arm and torso should follow. Unfortunately, this would require that a child
TransformGroup be able to influence its ancestors, which is not possible in the parent-
child hierarchy used by Java 3D.

parent TG

child TG

local translation: (1,1,2)

local translation: (2, 3, 1)
world translation: (3, 4, 3)

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

5  Andrew Davison 2003

The 'ripple up' animation technique is called inverse kinematics, and is a staple of
professional animation packages such as Poser, Maya, and 3D Studio Max. Important
low-level nodes are designated as end-effectors, and these influence higher-level
nodes as they are manipulated. Typically end-effectors for an articulated human are
its hands, feet, and head.

Inverse kinematics has problems specifying top-down effects, and so is often
combined with constraints which link end-effectors to other nodes. For instance,
when the body moves, the end-effectors can be constrained to always stay within a
certain distance of the torso.

Our Mover3D application utilizes Java 3D's scene graph, with its parent-child
relationship, and so specifies movement in terms of forward kinematics.

A good non-technical introduction to forward and inverse kinematics is:

Character Animation: Skeletons and Inverse Kinematics
Steve Pizel, Intel Developer Service
http://www.intel.com/cd/ids/developer/asmo-na/eng/segments/
 games/resources/modeling/20433.htm

2. UML Diagrams for Mover3D
Figure 8 shows the UML diagrams for all the classes in the Mover3D application. The
class names and public/protected methods and data are shown.

Figure 8. UML Class Diagrams for Mover3D.

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

6  Andrew Davison 2003

Mover3D is the top-level JFrame for the application, containing two JPanels. The 3D
scene is created in WrapMover3D and displayed in its panel, while the commands
textfield and reset button are managed by CommandsPanel. The LocationBeh
behavior deals with user input via the keyboard, and enables the figure to be moved
and rotated.

WrapMover3D creates the usual checkboard scene, using the CheckerFloor and
ColouredTiles classes (first described in chapter 9) to create the floor.

The scene contains a single Figure object which represents the figure as a series of
connected shapes created from the Limb class and its subclasses (MoveableLimb,
MoveableEllipticLimb, and EllipticLimb).

The shape of a limb is specified using a LatheShape3D or EllipseShape3D object,
which were described in chapter 9.5.

3. The WrapMover3D Class
WrapMover3D is just like previous 'wrap' classes: it creates a 3D scene inside a
JPanel, made up of a checkboard floor, blue sky, lighting, and an OrbitBehavior node
to allow the user to adjust the viewpoint. Much of this is done in the
createSceneGraph() method:

 private void createSceneGraph()
 {
 sceneBG = new BranchGroup();
 bounds = new BoundingSphere(new Point3d(0,0,0), BOUNDSIZE);

 lightScene(); // add the lights
 addBackground(); // add the sky
 sceneBG.addChild(new CheckerFloor().getBG()); // add the floor
 addFigure();
 sceneBG.compile(); // fix the scene
 }

The code which distinguishes WrapMover3D from earlier 'wrap' classes is mostly
contained in addFigure():

 // global var: the multi-limbed figure
 private Figure figure;
 :

 private void addFigure()
 // add the figure and its behaviour to the scene
 {
 figure = new Figure();
 sceneBG.addChild(figure.getFigureTG()); // add figure's TG

 // add behavior
 LocationBeh locBeh = new LocationBeh(figure);
 locBeh.setSchedulingBounds(bounds);
 sceneBG.addChild(locBeh);
 }

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

7  Andrew Davison 2003

The Figure object constructs the articulated figure, and its top-level TransformGroup
is added to the scene. The LocationBeh object converts user key presses into figure
commands.

Mover3D uses the getFigure() method to obtain a reference to the Figure object,
which it passes to the CommandsPanel.
 public Figure getFigure()
 { return figure; }

4. The LocationBeh Class
The figure can be moved forward, back, left, right, up, or down, and turned clockwise
or anti-clockwise around the y-axis via the arrow keys. The code is very similar to
that in the TourControls class in Tour3D (chapter 10), but simpler in many cases since
there is no viewpoint manipulation.

The figure reference is passed in through the constructor:

 private Figure figure; // global
 :

 public LocationBeh(Figure fig)
 { figure = fig;
 :
 }

If a key is pressed along with <alt> then altMove() is called, otherwise
standardMove(). Both methods are quite similar in style; for instance, the
standardMove() method:

 private void standardMove(int keycode)
 // moves figure forwards, backwards, rotates left or right
 {
 if(keycode == forwardKey)
 figure.doMove(FWD);
 else if(keycode == backKey)
 figure.doMove(BACK);
 else if(keycode == leftKey)
 figure.doRotateY(CLOCK); // clockwise
 else if(keycode == rightKey)
 figure.doRotateY(CCLOCK); // counter-clockwise
 } // end of standardMove()

The constants (FWD, BACK, etc.) are integers.

The keys are processed by calling doMove() and doRotateY() in the Figure object.

5. The CommandsPanel Class
CommandsPanel creates the panel at the bottom of the GUI containing the textfield
and reset button. Much of the code deals with the parsing of the input from the
textfield, which takes two forms. A limb command has the format:

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

8  Andrew Davison 2003

(<limbName> | <limbNo>) (fwd | f | turn | t | side | s) [angleChg]

A figure command has the form:

(fwd | f | back | b | left | l | right | r | up | u | down | d | clock | c | cclock | cc)

Each moveable limb is assigned a name and number, and either ID can be used to
refer to it. As a convenience, the name/number mappings are printed to standard
output when Mover3D is started.

The rotation operations refer to the three axes:

• fwd (or f) = positive rotation around x-axis
• turn (or t) = positive rotation around y-axis
• side (or s) = positive rotation around z-axis

If an angleChg value is not included, a default angle of 5 degrees is used. angleChg
can be negative. A angle which would take a limb outside of its specified range is
ignored (and an error message printed).

The figure commands all have keyboard equivalents, processed by LocationBeh.

An advantage of textfield input is the ability to group several limb and/or figure
commands together, separated by ','s. These are all processed before the figure is
redrawn. By pressing <enter>, a complex sequence of commands is easily repeated.

The string entered in the textfield is pulled apart in processComms() which separates
out the individual commands and extracts the 2 or 3 argument limb action or single
argument figure operation.
private void processComms(String input)
 { if (input == null)
 return;

 String[] commands = input.split(","); // split into commands
 StringTokenizer toks;
 for (int i=0; i < commands.length; i++) {
 toks = new StringTokenizer(commands[i].trim());
 if (toks.countTokens() == 3) // 3-arg limb command
 limbCommand(toks.nextToken(), toks.nextToken(),
 toks.nextToken());
 else if (toks.countTokens() == 2) // 2-arg limb command
 limbCommand(toks.nextToken(), toks.nextToken(), "5");
 else if (toks.countTokens() == 1) // 1-arg figure command
 figCommand(toks.nextToken());
 else
 System.out.println("Illegal command: " + commands[i]);
 }
 }

limbCommand() must extract the limb number, the axis of rotation, and the rotation
angle from the command string. If a limb name has been entered, then the
corresponding number is obtained by querying the Figure object.

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

9  Andrew Davison 2003

 private void limbCommand(String limbName, String opStr,
 String angleStr)
 { // get the limb number
 int limbNo = -1;
 try {
 limbNo = figure.checkLimbNo(Integer.parseInt(limbName));
 }
 catch(NumberFormatException e)
 { limbNo = figure.findLimbNo(limbName); } // map name to num
 if (limbNo == -1) {
 System.out.println("Illegal Limb name/no: " + limbName);
 return;
 }

 // get the angle change
 double angleChg = 0;
 try {
 angleChg = Double.parseDouble(angleStr);
 }
 catch(NumberFormatException e)
 { System.out.println("Illegal angle change: " + angleStr); }
 if (angleChg == 0) {
 System.out.println("Angle change is 0, so doing nothing");
 return;
 }

 // extract the axis of rotation from the limb operation
 int axis;
 if (opStr.equals("fwd") || opStr.equals("f"))
 axis = X_AXIS;
 else if (opStr.equals("turn") || opStr.equals("t"))
 axis = Y_AXIS;
 else if (opStr.equals("side") || opStr.equals("s"))
 axis = Z_AXIS;
 else {
 System.out.println("Unknown limb operation: " + opStr);
 return;
 }

 // apply the command to the limb
 figure.updateLimb(limbNo, axis, angleChg);

 } // end of limbCommand()

The handling of possible parsing errors lengthens the code. The limb number is
checked via a call to checkLimbNo() in Figure, which scans the Limbs to determine if
the specified number is used by one of them. The mapping of a limb name to number
is carried out by Figure's findLimbNo(), which returns –1 if the name is not found
amongst the limbs.

Once the correct input has been gathered, it is passed to updateLimb() in the Figure
object.

A figure command is processed by figCommand() which uses a multi-way branch to
convert the command into a correctly parameterized call to Figure's doMove() or
doRotateY() method.

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

10  Andrew Davison 2003

 private void figCommand(String opStr)
 { if (opStr.equals("fwd") || opStr.equals("f"))
 figure.doMove(FWD);
 else if (opStr.equals("back") || opStr.equals("b"))
 figure.doMove(BACK);
 else if (opStr.equals("left") || opStr.equals("l"))
 figure.doMove(LEFT);
 else if (opStr.equals("right") || opStr.equals("r"))
 figure.doMove(RIGHT);
 else if (opStr.equals("up") || opStr.equals("u"))
 figure.doMove(UP);
 else if (opStr.equals("down") || opStr.equals("d"))
 figure.doMove(DOWN);
 else if (opStr.equals("clock") || opStr.equals("c"))
 figure.doRotateY(CLOCK);
 else if (opStr.equals("cclock") || opStr.equals("cc"))
 figure.doRotateY(CCLOCK);
 else {
 System.out.println("Unknown figure operation: " + opStr);
 return;
 }
 } // end of figCommand()

6. The Figure Class
The Figure class carries out three main tasks:

1) it builds the figure by connecting Limb objects. The resulting figure is then
translated into a Java 3D subgraph;

2) it processes limb-related operations, such as updateLimb() calls;

3) it processes figure movement operations, such as doRotateY().

6.1. Building the Figure

Task (1) is started in the Figure constructor:

 //global vars
 private ArrayList limbs;
 // Arraylist of Limb objects, indexed by limb number
 private HashMap limbNames;
 // holds (limb name, limb number) pairs

 private TransformGroup figureTG;
 // the top-level TG for the entire figure
 :

 public Figure()
 {
 yCount = 0; // the figure is on the floor initially
 t3d = new Transform3D(); // used for repeated calcs
 toMove = new Transform3D();
 toRot = new Transform3D();

 limbs = new ArrayList();
 limbNames = new HashMap();

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

11  Andrew Davison 2003

 // construct the figure from connected Limb objects
 buildTorso();
 buildHead();

 buildRightArm();
 buildLeftArm();

 buildRightLeg();
 buildLeftLeg();

 printLimbsInfo();

 buildFigureGraph(); // convert figure into a Java 3D subgraph
 } // end of Figure()

The figure's component limb objects are stored in the limbs ArrayList. A limb object
is stored in the ArrayList at the index position specified by its limb number.

A limbNames HashMap stores (limb name, limb number) pairs. It is used to
determine a limb's number when a limb name is supplied in a limb command.

The various 'build' methods could be combined into a single large function, with a
corresponding loss of clarity.

Figure 9 shows the limbs that comprise the figure, labeled with their names and
numbers.

Figure 9. The Figure's Limbs, Named and Numbered.

Only moveable limbs have names, which excludes the neck and bottom. Invisible
limbs are also nameless, and are marked as dotted lines in the figure. There are two
very short invisible limbs linking the legs to their feet (labeled as 16 and 21 in Figure
9).

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

12  Andrew Davison 2003

The small green (grey) circles in Figure 9 are the joints – the points where limbs
connect to each other; they are positioned to make the limbs overlap.

Figure 10 shows the articulated figure again but with emphasis given to the joints.
Each arrow shows the positive y-axis in the limb's local coordinate space. A limb's
shape extends from the joint, following the arrow's direction.

Figure 10. The Figure's Joints.

The first joint in the figure is "j0", which is the starting location of the bottom. The
chest limb begins at joint "j1", the neck at "j2", the upper left arm at "j9", the lower
left arm at "j10", and so on. The side view of the lower left leg shows the invisible
joint which begins at j20 extending downwards. The foot is attached to it via "j21".

The arrows on the joints show that the local y-axis for a limb can be rotated quite
significantly when viewed in world coordinates. For example, the 'base' of the upper
left arm is at "j9", and the limb's positive y-axis is pointing almost straight down.

It is possible for several limbs to be attached to one joint. For instance, "j0" is the
starting point for the 'bottom' limb and two invisible limbs which extend up and to the
left and right respectively.

Each limb utilizes two joints. In the joint's local coordinate system, the start joint
begins at (0,0) on its XZ plane. The limb's shape is placed at the start joint location,
and oriented along the positive y-axis. The end joint is positioned along the limb's y-
axis, 90% of the way towards the end of the limb's shape. For example, the upper left
arm's start joint is "j9", its end joint "j10". The lower left arm's start joint is "j10",
thereby linking the lower arm to the upper.

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

13  Andrew Davison 2003

A limb's joints are encoded in Java 3D as TransformGroups. The start joint
TransformGroup of a child limb is the end joint TransformGroup of its parent, so
linking the child to the parent.

Figure 11 shows the articulated figure again, but in terms of the TransformGroups
which encode the joints.

Figure 11. The Figure's TransformGroups.

The thick green (grey) lines denote the limbs, and hide several TransformGroups and
other Java 3D nodes which will be discussed below. The visible TransformGroups are
for the joints, and are labeled with their joint name and "TG".

For instance, the limb for the upper left arm (ulArm), starts at joint "j9", and its end
joint is "j10". The limb for the lower left arm (llArm) is attached to the
TransformGroup for "j10" and so becomes its child.

The green lines labeled with "link" are invisible limbs, which have no names.

Figure 11 also shows the top-level TransformGroups for the figure: figureTG and
offsetTG. figureTG represents the origin for the entire figure and is located on the
floor, initially at (0,0). figureTG is affected by figure commands. offsetTG is a
vertical offset, up off the floor, which corresponds to the "j0" start joint.

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

14  Andrew Davison 2003

The details of Limb creation in the Figure object depend on the type of Limb being
created. Figure 12 shows the hierarchy for Limb and its subclasses.

Figure 12. The Limb Class Hierarchy.

Limb defines the appearance of a limb (using a lathe shape), and how it is connected
to a parent limb via a joint (TransformGroup). The limb's initial orientation is set.
Limb and EllipticLimb cannot be moved, and do not use limb names.

The MoveableLimb and MoveableEllipticLimb classes are moveable. They have limb
names, and x-, y-, z- axis rotation ranges. If a range is not specified, then it is assumed
to be 0 (i.e. rotation is not possible around that axis).

The lathe shape used in a Limb or MoveableLimb object has a circular cross-section,
but is elliptical in EllipticLimb and MoveableEllipticLimb. Lathe shapes were
described in chapter 9.5.

buildTorso() from the Figure class shows the use of EllipticLimb and
MoveableEllipticLimb to create the bottom and chest for the figure. The bottom is not
moveable, the chest is.

 private void buildTorso()
 {
 // the figure's bottom
 double xsIn1[] = {0, -0.1, 0.22, -0.2, 0.001};
 double ysIn1[] = {0, 0.03, 0.08, 0.25, 0.25};
 EllipticLimb limb1 = new EllipticLimb(
 1, "j0", "j1", Z_AXIS, 0, xsIn1, ysIn1, "denim.jpg");
 // no movement, so no name or ranges

 // the figure's chest: moveable so has a name ("chest")
 // and rotation ranges
 double xsIn2[] = {-0.001, -0.2, 0.36, 0.001};
 double ysIn2[] = {0, 0, 0.50, 0.68};
 MoveableEllipticLimb limb2 = new MoveableEllipticLimb("chest",
 2, "j1", "j2", Z_AXIS, 0, xsIn2, ysIn2, "camoflage.jpg");
 limb2.setRanges(0, 120, -60, 60, -40, 40);
 // x range: 0 to 120; y range: -60 to 60; z range: -40 to 40

 limbs.add(limb1);
 limbs.add(limb2);

 limbNames.put("chest", new Integer(2)); // store (name,number)
 } // end of buildTorso()

Limb

MoveableLimb

MoveableEllipticLimb

EllipticLimb

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

15  Andrew Davison 2003

The arrays of coordinates passed to the limb1 and limb2 objects define the lathe
curves for the bottom and chest. Figure 13 shows the graph of points making up the
curve for the bottom (limb1).

Figure 13. The Lathe Curve for the Figure's Bottom.

A limb requires a limb number, its start and end joint names, an axis of orientation
and angle to that axis, and lathe shape coordinates and texture. The lathe shape and
texture can be left out, to signal that the limb should be invisible, but a limb length
must be supplied instead.

If the limb is moveable (i.e. a MoveableLimb or MoveableEllipticLimb object), then
it also requires a name and x-, y-, z- ranges to restrict its movements.

The bottom limb is defined as:
 EllipticLimb limb1 = new EllipticLimb(
 1, "j0", "j1", Z_AXIS, 0, xsIn1, ysIn1, "denim.jpg");

This is a non-moveable limb, so has no name. Its limb number is 1, it starts at joint
"j0", and its end joint is called "j1". It is rotated around the z- axis by 0 degrees (i.e.
not rotated at all), and has a lathe shape covered in denim. These details can be
checked against the information in Figures 9 and 10.

The chest limb is:

 MoveableEllipticLimb limb2 = new MoveableEllipticLimb("chest",
 2, "j1", "j2", Z_AXIS, 0, xsIn2, ysIn2, "camoflage.jpg");
 limb2.setRanges(0, 120, -60, 60, -40, 40);
 // x range: 0 to 120; y range: -60 to 60; z range: -40 to 40

This moveable limb is called "chest", limb number 2. Its start joint is "j1", and so will
become a child of the bottom limb. Its end joint is called "j2". It is rotated around the
z- axis by 0 degrees (i.e. not rotated at all), and has a lathe shape covered in a
camouflage pattern. The permitted ranges for rotation around the x-, y-, and z- axes
are set with a call to setRanges().

The end of buildTorso() shows the two limbs being added to the limbs ArrayList. A
limb numbered as X can be found in the list by looking up entry X-1.

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

16  Andrew Davison 2003

The names of named limbs (in this case only "chest") are added to a limbNames
HashMap together with their limb numbers. This data structure is used when a limb is
referred to by its name, and its corresponding number must be found.

Orientating Limbs
The construction of the left arm illustrates how the initial orientation of a limb can be
adjusted. Figure 14 shows the construction of the left arm, including the angles
between the limbs.

Figure 14. The Left Arm in Detail.

The relevant code is in buildLeftArm():

 private void buildLeftArm()
 {
 // invisible limb connecting the neck and upper left arm
 Limb limb9 = new Limb(9, "j2", "j9", Z_AXIS, -95, 0.35);
 // upper left arm
 double xsIn10[] = {0, 0.1, 0.08, 0};
 double ysIn10[] = {0, 0.08, 0.45, 0.55};
 MoveableLimb limb10 = new MoveableLimb("ulArm",
 10, "j9", "j10", Z_AXIS, -80, xsIn10, ysIn10, "leftarm.jpg");
 limb10.setRanges(-60, 180, -90, 90, -30, 90);

 // lower left arm
 double xsIn11[] = {0, 0.08, 0.055, 0};
 double ysIn11[] = {0, 0.08, 0.38, 0.43};
 MoveableLimb limb11 = new MoveableLimb("llArm",
 11, "j10", "j11", Z_AXIS, -5, xsIn11, ysIn11, "skin.jpg");
 limb11.setRanges(0, 150, -90, 90, -90, 90);

 // left hand
 double xsIn12[] = {0, 0.06, 0.04, 0};
 double ysIn12[] = {0, 0.07, 0.16, 0.2};
 MoveableEllipticLimb limb12 = new MoveableEllipticLimb("lHand",
 12, "j11", "j12", Z_AXIS, 0, xsIn12, ysIn12, "skin.jpg");

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

17  Andrew Davison 2003

 limb12.setRanges(-50, 50, -90, 40, -40, 40);

 limbs.add(limb9);
 limbs.add(limb10);
 limbs.add(limb11);
 limbs.add(limb12);

 limbNames.put("ulArm", new Integer(10));
 limbNames.put("llArm", new Integer(11));
 limbNames.put("lHand", new Integer(12));
 } // end of buildLeftArm()

The invisible limb, limb9, is made 0.35 units long., and rotated around the z-axis by
95 degrees:
 Limb limb9 = new Limb(9, "j2", "j9", Z_AXIS, -95, 0.35);

The rotation turns the y-axis of limb9 clockwise by 95 degrees. However, the actual
orientation of the limb in world coordinate space depends on the overall orientation of
the y-axis specified by its ancestors. In this case, none of its ancestors (the bottom and
chest) have been rotated, and so its world orientation is the same as its local value.

The limb for the upper left arm is defined as:

 MoveableLimb limb10 = new MoveableLimb("ulArm",
 10, "j9", "j10", Z_AXIS, -80, xsIn10, ysIn10, "leftarm.jpg");

This rotates the y-axis of limb10 clockwise by 80 degrees, which when added to the
ancestor rotations (bottom, chest, limb9) means that the shape is almost pointing
downwards, with a total rotation of 175 degrees.

The lower arm (limb11; llArm) is rotated another 5 degrees to point straight down.
The left hand (limb12; lHand) has no rotation of its own, and so also points
downwards.

Creating the Scene Graph

The ‘build’ methods (e.g. buildTorso(), buildLeftArm()) create the limb objects, and
specify how they are linked in terms of joint names. The creation of the scene graph
outlined in Figure 11 is initiated by buildFigureGraph() after all the limbs have been
initialized.

 private void buildFigureGraph()
 {
 HashMap joints = new HashMap();
 /* joints will contain (jointName, TG) pairs. Each TG is the
 position of the joint in the scene.
 A limb connected to a joint is placed in the scene by
 using the TG associated with that joint.
 */
 figureTG = new TransformGroup();
 figureTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 figureTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

18  Andrew Davison 2003

 TransformGroup offsetTG = new TransformGroup();
 Transform3D trans = new Transform3D();
 trans.setTranslation(new Vector3d(0, 1.24, 0));
 // an offset from the ground to the first joint
 offsetTG.setTransform(trans);

 joints.put("j0", offsetTG); // store starting joint j0

 /* Grow the subgraph for each limb object, attaching it
 to the figure's subgraph below offsetTG. */
 Limb li;
 for (int i = 0; i < limbs.size(); i++) {
 li = (Limb)limbs.get(i);
 li.growLimb(joints);
 }

 figureTG.addChild(offsetTG);
 } // end of buildFigureGraph()

buildFigureGraph() initializes figureTG and offsetTG. offsetTG will be the
TransformGroup for the first joint, “j0”, and its name/TransformGroup pair is stored
in a HashMap called joints.

A for-loop iterates through the Limb objects stored in the limbs ArrayList, and calls
each limb's growLimb() method, passing in the HashMap. growLimb() creates a Java
3D subbranch for the limb and attaches it to the TransformGroup corresponding to the
limb’s start joint. This joint/TransformGroup correspondence is found by searching
the joints HashMap.

A subtle assumption of this coding is that a ‘child’ limb is never attached to a joint
before the joint has been converted into a TransformGroup. Another way of
understanding this is that a parent limb must be converted to a Java 3D subbranch
before any of its children.

6.2. Processing Limb-related Operations
The Figure class uses the limbNames HashMap, which contains limb name / limb
number pairs to check if a user-supplied limb number is actually used by the figure,
and also to convert limb names into numbers. These operations are done by
checkLimbNo() and findLimbNo().

updateLimb() is called with a legal limb number, an axis of rotation, and a rotation
angle, and passes the request on to the limb in question:

 public void updateLimb(int limbNo, int axis, double angle)
 { Limb li = (Limb) limbs.get(limbNo-1);
 li.updateLimb(axis, angle); // pass on axis and angle
 }

reset() is called by CommandsPanel when the user presses the reset button. The reset
request is sent on to every limb.

 public void reset()
 // restore each limb to its original position in space

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

19  Andrew Davison 2003

 { Limb li;
 for (int i = 0; i < limbs.size(); i++) {
 li = (Limb)limbs.get(i);
 li.reset();
 }
 }

6.3. Figure Movement
Figure commands, such as “forward” and “clock”, are converted into transforms
applied to the figureTG TransformGroup at the root of the figure’s subgraph.

doMove() converts a move request into a translation vector, which is applied in
doMove1():

 private void doMove1(Vector3d theMove)
 // Move the figure by the amount in theMove
 {
 figureTG.getTransform(t3d);
 toMove.setTranslation(theMove); // overwrite previous trans
 t3d.mul(toMove);
 figureTG.setTransform(t3d);
 }

toMove and t3d are global Transform3D variables which are reused by doMove1() in
order to avoid the overhead of object creation and garbage collection.

doRotateY() converts a rotation request into a rotation around the y-axis, which is
carried out by doRotateY1():

 private void doRotateY1(double radians)
 // Rotate the figure by radians amount around its y-axis
 {
 figureTG.getTransform(t3d);
 toRot.rotY(radians); // overwrite previous rotation
 t3d.mul(toRot);
 figureTG.setTransform(t3d);
 }

toRot is a global Transorm3D variable.

A drawback of this implementation is the lack of x- and z- axis rotations which makes
it impossible to position the figure in certain ways. For instance, we cannot make the
figure stand on its hands, which would involve a rotation around the x-axis.

Adding this functionality would not be difficult. We would add two extra
TransformGroups below figureTG so that the three rotation axes could be cleanly
separated, and be easily ‘reset’. This coding strategy is used for limb rotation, as seen
below.

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

20  Andrew Davison 2003

7. The Limb Class
The main job of the Limb class is to convert limb information into a Java 3D
subgraph, like the one in Figure 15.

Figure 15. The Subgraph Representing a Limb.

The start and end joints are represented by TransformGroups. startLimbTG is not
created by the limb, but obtained from the parent limb. It is the parent’s endLimbTG,
and in this way are children attached to parents.

The limb creates endLimbTG, which is positioned along the y-axis, 90% of the way
along the length of the limb’s shape. Child limbs can be attached to endLimbTG,
meaning that they will slightly overlap the parent limb shape. This enhances the effect
that the limbs are connected, especially when a limb is rotated.

In between the joint TransformGroups are four more TransformGroups and a
LatheShape3D node representing the limb shape and its position. These are the details
hidden by the thick green (grey) lines between the TransformGroups in Figure 11.
Each of those lines should be expanded into the five nodes surrounded by the green
(grey) dotted box in Figure 15.

orientTG is used to orientate the shape initially. The other TransformGroups are
located below it as its children, so they view the new orientation as pointing along the
positive y-axis. The xAxisTG, yAxisTG, and zAxisTG TransformGroups are
employed to rotate the limb around the x-, y-, and z- axes at run time. The separation
of these rotations into three parts makes it much easier to undo them if the limb is
reset.

The LatheShape3D object is the lathe shape, whose base is positioned where the
startLimbTG is located, and points up the local y-axis.

Although the Limb class creates the Figure 15 subgraph, it does not allow the
xAxisTG, yAxisTG, or zAxisTGs to be affected. The MoveableLimb class offers
implementations of the methods which adjust these TransformGroups.

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

21  Andrew Davison 2003

Limb contains a variety of limb data, supplied by its constructor:

 private int limbNo;
 private String startJoint, endJoint;
 private int orientAxis; // limb's axis of initial orientation
 private double orientAngle = 0; // angle to orientation axis

 private double limbLen;
 private boolean visibleLimb = false;

 protected double xsIn[], ysIn[]; // coordinates of lathe shape
 protected String texPath; // shape's texture filename

The Limb class does not have a limb name; only moveable limbs utilize names.

The length of a limb is usually obtained from the lathe shape coordinates. We assume
that the final value in the lathe shape’s y-coordinates is the maximum y-value for the
entire shape (i.e. its height). If the limb is to be invisible, then the constructor includes
a limb length, which is directly assigned to limbLen.

The visibleLimb boolean is used to distinguish between visible and invisible limbs.

The lathe shape coordinates and texture are set to be protected, since they need to be
accessible by Limb subclasses which override the lathe shape creation method,
makeShape().

growLimb() starts the process of subgraph creation for the limb:

 public void growLimb(HashMap joints)
 {
 TransformGroup startLimbTG =
 (TransformGroup) joints.get(startJoint);
 if (startLimbTG == null)
 System.out.println("No transform group for " + startJoint);
 else {
 setOrientation(startLimbTG);
 makeLimb(joints);
 }
 }

The start joint name is used to find the startLimbTG TransformGroup in the joints
HashMap. This should have already been created by the parent of this limb.

setOrientation() creates the four rotational TransformGroups (orientTG, xAxisTg,
yAxisTG, and zAxisTG) below startLimbTG.

 private void setOrientation(TransformGroup tg)
 {
 TransformGroup orientTG = new TransformGroup();
 if (orientAngle != 0) {
 Transform3D trans = new Transform3D();
 if (orientAxis == X_AXIS)

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

22  Andrew Davison 2003

 trans.rotX(Math.toRadians(orientAngle));
 else if (orientAxis == Y_AXIS)
 trans.rotY(Math.toRadians(orientAngle));
 else // must be z-axis
 trans.rotZ(Math.toRadians(orientAngle));
 orientTG.setTransform(trans);
 }

 xAxisTG = new TransformGroup();
 xAxisTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 xAxisTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 yAxisTG = new TransformGroup();
 yAxisTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 yAxisTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 zAxisTG = new TransformGroup();
 zAxisTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 zAxisTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 // scene graph's sequence of TG's
 tg.addChild(orientTG);
 orientTG.addChild(xAxisTG);
 xAxisTG.addChild(yAxisTG);
 yAxisTG.addChild(zAxisTG);
 } // end of setOrientation()

The capability bits are set to allow the axis TransformGroups to change during
execution, but orientTG remains fixed after being positioned at build time.

makeLimb() creates the endLimbTG TransformGroup and may create a lathe shape if
the limb is set to be visible.

 private void makeLimb(HashMap joints)
 {
 if (visibleLimb)
 makeShape(); // create the lathe shape

 TransformGroup endLimbTG = new TransformGroup();
 Transform3D trans = new Transform3D();
 trans.setTranslation(
 new Vector3d(0.0, limbLen*(1.0-OVERLAP), 0.0));
 /* The end position is just short of the actual length of the
 limb so that any child limbs will be placed so they overlap
 with this one. */
 endLimbTG.setTransform(trans);
 zAxisTG.addChild(endLimbTG);

 joints.put(endJoint, endLimbTG); // store (jointName, TG) pair
 }

The endLimbTG TransformGroup is stored in the joints HashMap at the end of the
method, so is available for use by this limb's children.

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

23  Andrew Davison 2003

makeShape() creates a LatheShape3D object and attaches it to the zAxisTG node.

 protected void makeShape()
 {
 LatheShape3D ls;
 if (texPath != null) {
 TextureLoader texLd =
 new TextureLoader("textures/"+texPath, null);
 Texture tex = texLd.getTexture();
 ls = new LatheShape3D(xsIn, ysIn, tex);
 }
 else
 ls = new LatheShape3D(xsIn, ysIn, null);
 zAxisTG.addChild(ls); // add the shape to the limb's graph
 } // end of makeShape()

makeShape() is a protected method, since it may be overridden by Limb’s subclasses.
For example, EllipticLimb replaces the call to LatheShape3D by EllipseShape3D.
This causes the limb to have an elliptical cross-section.

Limb() contains empty updateLimb() and reset() methods:

 public void updateLimb(int axis, double angleStep) {}

 public void reset() {}

updateLimb() and reset() affect the position of the limb, and so are not used in Limb.
They are overridden by the MoveableLimb subclass.

7.1. The MoveableLimb Class
MoveableLimb allows a limb to be moved around the x-, y-, and z-axes. This is
achieved by affecting the xAxisTG, yAxisTG, and zAxisTG TransformGroups in the
limb’s subgraph.

MoveableLimb maintains range information for the three axes, and ignores rotations
which would move the limb outside of those ranges. If a range is not specified, then it
is assumed to be 0 (i.e. rotation is not possible around that axis). The programmer
calls setRanges() or setRange() to initialize the range details for different axes:

 // global vars: the axis ranges
 private double xMin, xMax, yMin, yMax, zMin, zMax;
 :

 public void setRanges(double x1, double x2, double y1, double y2,
 double z1, double z2)
 { setRange(X_AXIS, x1, x2);
 setRange(Y_AXIS, y1, y2);
 setRange(Z_AXIS, z1, z2);
 }

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

24  Andrew Davison 2003

 public void setRange(int axis, double angle1, double angle2)
 // set the range for axis only
 {
 if (angle1 > angle2) {
 System.out.println(limbName + ": wrong order... swapping");
 double temp = angle1;
 angle1 = angle2;
 angle2 = temp;
 }
 if (axis == X_AXIS) {
 xMin = angle1; xMax = angle2;
 }
 else if (axis == Y_AXIS) {
 yMin = angle1; yMax = angle2;
 }
 else { // Z_AXIS
 zMin = angle1; zMax = angle2;
 }
 } // end of setRange()

The methods initialize the xMin, xMax, yMin, yMax, zMin, and zMax globals, and
ensure that the ranges are given in the right order.

Rotations are processed by updateLimb() which is called from the Figure object with
axis and angle arguments.

 public void updateLimb(int axis, double angleStep)
 // Attempt to rotate this limb by angleStep around axis
 {
 if (axis == X_AXIS)
 applyAngleStep(angleStep, xCurrAng, axis, xMax, xMin);
 else if (axis == Y_AXIS)
 applyAngleStep(angleStep, yCurrAng, axis, yMax, yMin);
 else // Z_AXIS
 applyAngleStep(angleStep, zCurrAng, axis, zMax, zMin);
 }

 private void applyAngleStep(double angleStep, double currAngle,
 int axis, double max, double min)
 /* Before any rotation, check that the angle step moves the
 limb within the ranges for this axis.
 If not then rotate to the range limit, and no further. */
 {
 if ((currAngle >= max) && (angleStep > 0)) { // will exceed max
 System.out.println(limbName + ": no rot; already at max");
 return;
 }
 if (currAngle <= min && (angleStep < 0)) { // will drop below min
 System.out.println(limbName + ": no rot; already at min");
 return;
 }

 double newAngle = currAngle + angleStep;
 if (newAngle > max) {
 System.out.println(limbName + ": reached max angle");
 angleStep = max - currAngle; // rotate to max angle only

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

25  Andrew Davison 2003

 }
 else if (newAngle < min) {
 System.out.println(limbName + ": reached min angle");
 angleStep = min - currAngle; // rotate to min angle only
 }

 makeUpdate(axis, angleStep); // do the rotation
 } // end of applyAngleStep()

updateLimb() uses the supplied axis value to pass the correct axis range to
applyAngleStep(). Its purpose is to check that the requested rotation stays within the
range. This may mean ignoring the rotation (if the max or min has already been
reached), or reducing the rotation so that the limb stops at the max or min value. Once
the actual rotation angle has been calculated (and stored in angleStep), then
makeUpdate() is called.

 // global vars: the current angle in 3 axes
 private double xCurrAng, yCurrAng, zCurrAng;
 :

 private void makeUpdate(int axis, double angleStep)
 // rotate the limb by angleStep around the given axis
 {
 if (axis == X_AXIS) {
 rotTrans.rotX(Math.toRadians(angleStep));
 xAxisTG.getTransform(currTrans);
 currTrans.mul(rotTrans);
 xAxisTG.setTransform(currTrans);
 xCurrAng += angleStep;
 }
 else if (axis == Y_AXIS) {
 rotTrans.rotY(Math.toRadians(angleStep));
 yAxisTG.getTransform(currTrans);
 currTrans.mul(rotTrans);
 yAxisTG.setTransform(currTrans);
 yCurrAng += angleStep;
 }
 else { // z-axis
 rotTrans.rotZ(Math.toRadians(angleStep));
 zAxisTG.getTransform(currTrans);
 currTrans.mul(rotTrans);
 zAxisTG.setTransform(currTrans);
 zCurrAng += angleStep;
 }
 }

makeUpdate() applies a rotation to one of xAxisTG, yAxisTG, or zAxisTG depending
on the axis value supplied by the user. The rotational transform is multiplied to the
current value held in the relevant TransformGroup, which is equivalent to 'adding' the
rotation to the current angle.

rotTrans and currTrans are global Transform3D variables to save on the cost of object
creation and deletion.

The new limb angle is stored in xCurrAng, yCurrAng, or zCurrAng.

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

26  Andrew Davison 2003

The limb can be reset to its initial orientation, via a call to reset() by the Figure object.

 public void reset()
 {
 rotTrans.rotX(Math.toRadians(-xCurrAng)); // reset x angle
 xAxisTG.getTransform(currTrans);
 currTrans.mul(rotTrans);
 xAxisTG.setTransform(currTrans);
 xCurrAng = 0;

 rotTrans.rotY(Math.toRadians(-yCurrAng)); // reset y angle
 yAxisTG.getTransform(currTrans);
 currTrans.mul(rotTrans);
 yAxisTG.setTransform(currTrans);
 yCurrAng = 0;

 rotTrans.rotZ(Math.toRadians(-zCurrAng)); // reset z angle
 zAxisTG.getTransform(currTrans);
 currTrans.mul(rotTrans);
 zAxisTG.setTransform(currTrans);
 zCurrAng = 0;
 } // end of reset()

The rotations maintained by xAxisTG, yAxisTG, and zAxisTG are undone by rotating
each one by the negative of their current angle, as stored in xCurrAng, yCurrAng, and
zCurrAng.

The simplicity of this operation is due to the separation of the three degrees of
freedom into three TransformGroups.

7.2. The MoveableEllipticLimb Class
MoveableEllipticLimb shows how little code is required in order to adjust the limb's
shape. Only makeShape() must be overridden to use EllipseShape3D instead of the
version in the Limb class which utilizes LatheShape3D.

 protected void makeShape()
 {
 EllipseShape3D es;
 if (texPath != null) {
 TextureLoader texLd =
 new TextureLoader("textures/"+texPath, null);
 Texture tex = texLd.getTexture();
 es = new EllipseShape3D(xsIn, ysIn, tex);
 }
 else
 es = new EllipseShape3D(xsIn, ysIn, null);
 zAxisTG.addChild(es); // add the shape to the limb's graph
 }

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

27  Andrew Davison 2003

8. Other Articulated Figure Approaches
The H-Anim (Humanoid Animation) Working Group (http://www.h-anim.org/) has
developed a VRML97 specification for representing figures.

There is a Joint node for defining limb position, orientation, and other attributes such
as skin properties. Joints are linked together to form a hierarchy, and so Joint is
somewhat similar to the Limb class developed here.

The Segment node is concerned with the shape of the body part, including its mass,
and allows the shape's geometry to be adjusted. Segment could be equated with the
LatheShape3D class, but has greater functionality.

Site nodes are used to attach items to Segments, such as clothing and jewelry. Site
nodes may also be employed to fix a camera so it stays in a certain position relative to
the figure.

The Displacer node permits groups of vertices in a Segment to be associated with a
higher-level feature of the figure. For example, the location of the nose, eyes, and
mouth on a face can be identified with Displacer nodes.

The H-anim specification focuses on humanoids, not on arbitrary articulated figures.
Our Limb class may be used to create a variety of figures. Also, the specification says
little about animation scripting.

Yuan Cheng has written a robot control simulation environment using Java 3D
(http://icmit.mit.edu/robot/simulation.html). The robots are built using a hierarchy of
TransformGroups, and there is a rich GUI for controlling them. The code is available
for download.

Seungwoo Oh has released a VRML loader which can handle motion data (rotations
and translations), and supports geometry skinning
(http://vr.kaist.ac.kr/~redmong/research.htm). He has utilized this for clothing human
figures, with very convincing results. His site includes Java 3D loaders, and articles
explaining the concepts behind his software.

j3d.org has a small demo by Leyland Needham showing how a cylinder can flex like a
human arm as it bends in half (http://www.j3d.org/utilities/bones.html). The code
gradually updates the cylinder mesh to achieve its effect. This approach can be
employed to distort limb shapes as the figure moves, creating the effect of rippling
biceps, etc.

Alessandro Borges has created human models using Poser, stored them in the
VRML97 format, and loaded them into Java 3D. His demo showing simple
movements of the figure is currently unavailable, but was at
http://geocities.yahoo.com.br/alessandroborges/ana. Screen shots of the application
can still be found there.

There are no Java 3D example using inverse kinematics (as far as I know). The FAQ
at j3d.org contains a few links to discussions of how to implement inverse kinematics
in procedural languages (http://www.j3d.org/faq/techniques.html#ik).

Java Prog. Techniques for Games. Chapter 11.5.Articulated Figure Draft #1 (3rd Nov. 03)

28  Andrew Davison 2003

9. Future Work
As mentioned at the start of this chapter, this work is based on Thana Konglikhit's
final year student project. He still has several months left to go, and we are planning
the next stage. Currently we hope to concentrate on developing a simple scripting
language, that will allow commands such as "walk fast" and "jump high" to be built
from the simpler commands described here.

If you have any suggestions about how to develop this work, we would be happy to
hear from you. Please send e-mail to dandrew@ratree.psu.ac.th. The final
outcome of this project will become another chapter sometime in March or April
2004.

