Java Prog. Techniques for Games. Chapter 10. 3D Sprites Draft #1 (18th Feb 03)

Chapter 10. 3D Sprites

In this chapter, we develop a Sprite3D class, very similar in nature to the 2D sprite
class of chapter ??. Subclasses of Sprite3D are used to create different kinds of
sprites, which are placed in a world filled with scenery and obstacles.

The user’s sprite (the robot), and the chasing sprite (the hand) are shown in action in
Figure 1.

Figure 1. 3D Sprites in Action.

Other features illustrated by the Tour3D application:
e Sprite control using Behavior subclasses;

e A simple third person camera that adjusts the user’s viewpoint as the user’s sprite
moves;

e Obstacles which a sprite cannot pass through (represented by cylinders in Figure
1). A sprite is also prevented from moving off the checkered floor;

e A “tour” text file to load obstacle and scenery information. The scenery models
(e.g. the castle and the palm tree) are loaded with PropManager objects;

e The world’s background is drawn using a scaled JPEG;

e The application is configured to be full-screen.

1 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 10. 3D Sprites Draft #1 (18th Feb 03)

UML Diagrams for Tour3D

Figure 2 shows the UML diagrams for all the classes in the Tour3D application. Only
the class names are shown.

R Sprite3 D
—
— ef
T // gu
J [T S
N e
I[X >7,: f Qurl antrals
—_
[Frame | f <N~ T
)/ ~ " ——4 AlienSprite
A e T T
= S TimeBehavior]

h

1 CheckerFloor »——q CalouredTiles

Figure 2. UML Class Diagrams for Tour3D.

Tour3D is the top-level JFrame for the application.

WrapTour3D creates the 3D world, and is similar in many respects to the earlier
‘Wrap’ classes in that it creates the checkered floor, and sets up the lighting.
However, this version also loads the scenery, obstacles, and creates the sprites.

PropManager is unchanged from the code in the Loader3D application of chapter 10.
CheckerFloor and ColouredTiles are the same classes as in previous examples.
An Obstacles object stores information about the scene’s obstacles.

The sprites are subclasses of Sprite3D. The robot is an instance of TourSprite, while
the hand is an AlienSprite object. TourSprite is controlled by TouristControls, and
TimeBehavior updates AlienSprite. Both TouristControls and TimeBehavior are
subclasses of Java 3D’s Behavior class.

2 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 10. 3D Sprites Draft #1 (18th Feb 03)

WrapTour3D: Creating the World
Figure 3 shows the methods defined in WrapTour3D.

WirapTaural
-createScenaGraph

-lightScene
-addBackground
-makeSceneny
-add T ourist
-addAlien

Figure3. WrapTour3D Methods.

WrapTour3D sets up the checkered floor and lights as before. However,
addBackground() now uses a scaled image, and there are three new methods:
makeScenery(), addTourist(), and addAlien(). These methods are called by
createSceneGraph() to add scenery, obstacles, and the sprites to the scene.

3 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 10. 3D Sprites Draft #1 (18th Feb 03)

The scene graph for the world in Figure 1 is shown in Figure 4. Its details will be
explained in subsequent sections.

. (* irtual Unwerse I
T PR
— ‘“ ,»-""'f- (Cl‘['(.)llp) represerits the
Am.bient (Locale S, ,) \ obstacles
Light \ .\ /./ / \
’ f
— \ TG TG \ TG
/'\ TTre—— sceneBG i'»/"_“" \) \ K
/N ——
/ N -
Directional o "j’j
Light s,
g b ey
/f } S/
/ \\ . A , A
/
/. . \ 4 /
Directional -~ / / /

Light .~ a4
A - /

/N
/ moveTG moveTC
Background / . . ‘ Tourist
1otTC ot TS e
Controls
scaleTG scaleTd -
Floor Branch (Swi[.ch) k Switch)
doiBoundsTrf obiB oundsTe \I I -
moveTO moveT(
BG an
shape(s) totTG totTG
scaleTG scaleTG
castle.cob Palm.dxf quiBoundsT® obiBoundsTd

BG an BG an
chape(g) shape(s)

Coolrobo.3ds handl.obj

Figure 4. Scene Graph for the Figure 1 World.

4 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 10. 3D Sprites Draft #1 (18th Feb 03)

Two familiar methods have disappeared from WrapTour3D: initUserPosition() and
orbitControls(). The positioning (and adjustment) of the user’s viewpoint is now dealt
with by TouristControls.

A Background Image

As mentioned in chapter 8, a Background node can use a solid color, an image, or a
geometric shape (e.g. a sphere, a box) with an image rendered onto it. In Tour3D, we
utilise a picture of a hazy sky, 400*400 pixels in size, stored in bigSky.jpg.
TexturelLoader bgTexture =
new Textureloader ("models/bigSky.Jjpg", null);
Background back = new Background (bgTexture.getImage()):;
back.setImageScaleMode (Background.SCALE FIT MAX);

back.setApplicationBounds (bounds) ;
sceneBG.addChild(back);

The image is loaded as a texture, then converted to ImageComponent2D form for the
Background object. Java 3D v.1.3 added several scaling modes to Background; the
one we employ scales the image to fit the display window. This can cause significant
distortions to the original picture.

Another scaling mode is Background.SCALE_REPEAT, which tiles the image over
the display area.

A drawback of using a background image is that it remains stationary in the
background, even when the viewpoint moves or rotates.

Full-Screen Display

There are two approaches to making a full-screen application in Java 3D,
corresponding to the two approaches for Java: either the display window’s dimensions
can be set to match those of the monitor, or Full Screen Exclusive Mode (FSEM) can
be deployed. Both of these techniques were explained in chapter ??, in the context of
2D Java games.

When writing a Java 3D application, which technique is to be preferred? In terms of
speed, there seems little difference between them, probably because Java 3D already
has fairly direct access to the graphics hardware through OpenGL or DirectX.

One advantage of using FSEM is control over screen resolution. A disadvantage is
that FSEM interacts poorly with Swing components, but these are unlikely to be
needed in most full-screen games. A limitation on FSEM is that
GraphicsDevice.isFullScreenSupported() must return true. It usually does with
Windows machines, but fails with many flavours of Unix. We will be using FSEM
with the Java 3D application in the next chapter.

In Tour3D, we resize the display window, which requires three pieces of code. In the
Tour3D class, the menu bars and other JFrame decoration must be turned off:

setUndecorated (true) ;

In WrapTour3D, the panel must be resized to fill the monitor:

setPreferredSize(Toolkit.getDefaultToolkit () .getScreenSize());

5 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 10. 3D Sprites Draft #1 (18th Feb 03)

A full screen application with no menu bar raises the question of how to terminate the
program. The usual approach is to add a KeyAdapter anonymous class to the window
that has keyboard focus, which is the Canvas3D object in this application:

canvas3D.setFocusable (true) ;
canvas3D.requestFocus () ;

canvas3D.addKeyListener (new KeyAdapter () {

// listen for esc, g, end, ctrl-c on the canvas to

// allow a convenient exit from the full screen configuration
public void keyPressed (KeyEvent e)
{ int keyCode = e.getKeyCode();

if ((keyCode == KeyEvent.VK ESCAPE) ||
(keyCode == KeyEvent.VK Q) ||
(keyCode == KeyEvent.VK END) ||
((keyCode == KeyEvent.VK C) && e.isControlDown())) {
win.dispose();
System.exit (0); // exit () isn't sufficient usually

}

)i

Catching KeyEvents in WrapTour3D does not preclude their use in other parts of the
application. As we will see, the TouristControls class also utilises KeyEvents to
govern the movement of the robot sprite and to adjust the user’s viewpoint.

The listener responds to the typical “kill” keys used in application. The unusual aspect
of the code is the dispose() call, applied to win, which is a reference to the top-level
JFrame created in Tour3D. I found that a call to exit() alone would kill the application
but often not clear the screen of the world image.

Adding Scenery and Obstacles

We make a distinction between scenery and obstacles in Tour3D: scenery comes from
external models (e.g. the castle, palm tree) and are loaded with PropManager objects.
A crucial attribute of scenery is it’s intangibility: the robot and hand sprites can move
right through it if they wish. In contrast, a sprite is disallowed from passing through
an obstacle.

Scenery and obstacle data is read from a text file whose name is supplied on the
command line when Tour3D is started. The format of a ‘tour’ file is simple: each line
contains the filename of a model or a —o sequence of coordinates.

The ctour.txt file used to decorate the world in Figure 1 is:

Castle.cob

-0 (4,4] [6,6]
Palm, dxt

-o (-2,3)

The —o sequences are integer coordinates on the XZ plane where obstacles will be
placed. There can be any number of coordinates in the sequence; we have two —o lines
in ctour.txt simply as an example; the 3 points could be listed on a single —o line.

6 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 10. 3D Sprites Draft #1 (18th Feb 03)

The obstacle coordinates are passed to an Obstacle object which creates the necessary
data structures, including the on-screen cylinders.

The model filenames are assumed to be located in the /models subdirectory, and to
come with “coord” data files for positioning them in the scene. The hard work of
actually loading a model is passed to a PropManager object.

The loading of the ‘tour’ file is done by makeScenery() in WrapTour3D. A code
fragment from that method follows:

obs = new Obstacles(); // initialise Obstacle object
PropManager propMan;

BufferedReader br =
new BufferedReader (new FileReader (tourFile));
String line;

while((line = br.readLine()) != null) {
if (line.startsWith("-o")) // save obstacle info
obs.store(line.substring(2).trim());
else { // load scenery
propMan = new PropManager (line.trim(),true);
sceneBG.addChild(propMan.getTG()); // add to world
}
}
br.close();
sceneBG.addChild(obs.getObsGroup()); // add obs to scene

A PropManager object creates a scene graph branch containing a chain of
TransformGroups. In Figure 4, the chains above the BranchGroups for the castle and
palm tree are drawn as rectangles. A chain of TransformGroups may be considered
too much of an overhead for loading a model, but it can be removed fairly easily:
PropManager must be extended with a method which switches off the capability bits
in the TransformGroups. For example:

moveTG.clearCapability (TransformGroup.ALLOW TRANSFORM READ) ;
moveTG.clearCapability (TransformGroup.ALLOW TRANSFORM WRITE) ;

This should be done before the branch is added to the main scene and compiled.
Compilation will optimise the chain away to a single TransformGroup, since Java 3D
will notice that none of the chain’s nodes can be transformed at run time.

Obstacles
The Obstacle object created by makeScenery() maintain three types of information:

e a 2D array of booleans called obs, which indicates if a particular (x,z) location is
occupied by an obstacle;

e a 2D array of BoundingSphere objects called obsBounds, which specifies the
influence of an obstacle at a given (x,z) location;

e a Group node called obsGroup, which holds the cylinders representing the
obstacles.

7 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 10. 3D Sprites Draft #1 (18th Feb 03)

The full UML class diagram for Obstacles is given in Figure 5.

Obstacles
-RADIUE
-HEIZHT
-FLOOR_LEM
-black
-specular

-red

-obs
-obsBounds
-absGroup

+print

+store
+nearObstacle
+getObsGroup
-markObstacle
-makeObs

Figure 5. UML Class Diagram for Obstacles.

The coding of the class is simplified by restricting the obstacles to integer positions on
the checkboard, which permits array-based data structures and algorithms to be
employed.

A given (x,z) coordinate is checked for obstacles with nearObstacle() (called by the
sprites from the Sprite3D class). It returns false if the supplied position is outside the
floor area, or too near an obstacle. Nearness testing is done by determining if a
bounding sphere centered at the coordinate intersects with any of the bounding
spheres in obsBounds:

BoundingSphere bs = new BoundingSphere(pos, radius);

for (int z=0; z <= FLOOR_LEN; z++)

for (int x=0; x <= FLOOR LEN; x++)
if (obs[z] [x]) { // does (x,z) have an obstacle?
if (obsBounds[z] [x].intersect (bs))
return true;

}

return false;

The algorithm is exhaustive in that it tests every obstacle against the supplied position
(pos); a more efficient approach would use the pos value to limit the number of
obstacles considered.

Each obstacle is displayed as a cylinder, placed below a TransformGroup to orient it
on screen, as shown in the scene graph in Figure 4. The position uses the (x,z)
coordinate of the obstacle, and moves the cylinder upwards by HEIGHT/2 so that it’s
base is resting on the floor.

Sprite3D

Sprite3D is the main class for creating 3D sprites; the TourSprite subclass is used to
create the user’s robot sprite, and AlienSprite is a subclass of TourSprite for the alien
hand.

8 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 10. 3D Sprites Draft #1 (18th Feb 03)

TourSprite is controlled by the TouristControls Behavior class, which monitors user
key presses and can adjust the sprite’s position or the user’s viewpoint. AlienSprite
chases the user’s robot, and is periodically updated by the TimeBehavior class.

Figure 6 shows the visible methods of the sprite and Behavior classes, and the
relationships between them.

M’Lﬁ TimeBehavior
+update v
| *+up " tinitialize
+processStimulus
ho ol
T TouristControls

+initialize
+moweF onvard

a. .
el ah L processStimulus

+moveRight —
+moveBachuard
+rotClock

+rotCounterClock

SpritezD
+isActive
+zetF osition
+zetActive

+getCurloc
+doRotate”
+miowre By
+etTe
#printTuple

Figure 6. Sprite and Behavior Classes.

Sprite3D bears many similarities with our first 2D sprite class, ImageSprite, discussed
in chapter ??. It represents a single model which can move about the XZ plane, rotate
only about the y-axis, and can detect obstacles and floor boundaries. The sprite can be
made inactive, which will cause it to disappear from the scene.

The constructor for Sprite3D utilises PropManager to load the model representing the
sprite. It then adds a Switch node and TransformGroup above the model’s graph; the
result can be seen in the branches for the robot (Coolrobo.3ds) and alien hand
(hand1.obj) in Figure 4. The relevant code:

PropManager propMan = new PropManager (fnm, true);

visSwitch = new Switch(); // for sprite visibility
visSwitch.setCapability (Switch.ALLOW SWITCH WRITE);
visSwitch.addChild(propMan.getTG()); // add obj to switch
visSwitch.setWhichChild(Switch.CHILD ALL); // make visible

objectTG = new TransformGroup(); // for sprite moves
objectTG.setCapability (TransformGroup.ALLOW TRANSFORM READ) ;
objectTG.setCapability (TransformGroup.ALLOW TRANSFORM WRITE);
objectTG.addChild(visSwitch); // add switch to TG

9 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 10. 3D Sprites Draft #1 (18th Feb 03)

The objectTG node is made available to the application’s scene via getTG(), which is
called by WrapLoader3D.

Visibility
The Switch node is used to control the image branch’s visibility. This is done in the
setActive() method of Sprite3D:

public void setActive (boolean b)
{ isActive = b;

if (!isActive)

visSwitch.setWhichChild(Switch.CHILD NONE); //make invisible
else if (isActive)

visSwitch.setWhichChild(Switch.CHILD ALL); // make visible

} // end of setActive ()

In Java 3D, there are at least three ways of controlling the visibility of a model:
e use setWhichChild() on a Switch above the model (as here);
e use setVisible() on the model’s rendering attributes;

e use TransparencyAttributes, as detailed in the LoaderInfo3D application of
chapter 9.

In older versions of Java 3D, there were some problems with using
TransparencyAttributes, especially with multiple models in a scene, but these bugs
have been addressed in recent versions.

The overhead of manipulating rendering or transparency attributes can be quite high,
and will continue producing an overhead during rendering. A Switch node is above
the model in the scene graph, which means that rendering does not need to visit the
model at all when the Switch node is set to CHILD NONE — a clear gain in
efficiency.

Another advantage of Switch is that it can be placed above Group nodes to control the
visibility of subgraphs in the scene. Attribute approaches only apply to individual
Shape3D nodes.

Movement and Rotation

The addition of yet another TransformGroup to the model’s scene branch is for
coding simplicity. It means that Sprite3D does not need to know about the graph
structure returned by PropManager’s getTG().

A sprite can be moved with setPosition() and moveBy(), and rotated with doRotateY
(). The reader may think this means adding two TransformGroup’s to the branch —
one to handle movement, one for the rotation, which is the approach taken in
PropManager. The answer is ‘no’, because of the movement behaviour we want for
the sprite.

In PropManager, the use of a separate moveTG node above rotTG has the effect that
rotations do not affect the move directions. For instance, the model can be rotated 90
degrees around the y-axis, changing its local coordinate system so that the positive x-
axis is pointing away from the viewer (along the old —z axis). But moveTG is above

10 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 10. 3D Sprites Draft #1 (18th Feb 03)

the rotTG node, so it will be unaffected by the change to the coordinate system: a
move of 2 units along the positive x-axis will still move the model 2 units to the right
from the user’s viewpoint.

This kind of behaviour is suitable for the Loader3D application, where the user wants
to position a model on-screen in an intuitive way, without requiring a mental model of
rotated coordinate spaces.

The required behaviour for a sprite moving around the world is quite different. When
a sprite moves ‘forward’, it should move forward according to the direction it is
currently facing. In other words, we do want rotation to affect movement. This is
achieved by not separating the movement and rotational transforms into two nodes;
instead they are all applied to the same objectTG TransformGroup.

doMove() makes the sprite move by the distance specified in a vector:

private void doMove (Vector3d theMove)
// move the sprite by the amount in theMove
{
objectTG.getTransform(t3d);
toMove.setTranslation (theMove) ; // overwrite previous trans
t3d.mul (toMove) ;
objectTG.setTransform (t3d) ;

The coding is straightforward, but where are the Transform3D objects t3d and
toMove created? They are declared globally, and created in the constructor of
Sprite3D, for reasons of speed. The alternative would be to create new Transform3D
objects each time that doMove() was called, which is quite inefficient, due to the
overheads of object creation and garbage collection. Reusing ‘temporary’ objects is a
good way of improving Java’s speed.

doRotateY() is very similar, and uses another global ‘temporary’ Transform3D object
called toRot:

public void doRotateY (double radians)
// rotate the sprite by radians around its y-axis
{
objectTG.getTransform(t3d);
toRot.rotY (radians) ; // overwrite previous rotation
t3d.mul (toRot) ;
objectTG.setTransform(t3d) ;

Obstacle and Boundary Detection

The sprite should not pass through obstacles or move off the floor. This behaviour is
obtained by utilising the Obstacles object. A reference is passed into the sprite at
creation time, and then used in moveBy(). moveBy() is the public movement method
for the sprite, and accepts an (x,z) step:

public boolean moveBy (double x, double z)

// Move the sprite by offsets x and z, but only if within

// the floor and there is no obstacle nearby.

{

11 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 10. 3D Sprites Draft #1 (18th Feb 03)

if (isActive()) {
Point3d nextLoc = tryMove (new Vector3d(x, 0, z));
if (obs.nearObstacle (nextLoc, radius*OBS FACTOR))
return false;
else {
doMove (new Vector3d(x,0,z));
return true;
}
}
else // not active
return false;
} // end of moveBy ()

moveBy() calculates its next position by calling tryMove(), which is almost the same
as doMove() except that it does not adjust the position of objectTG. The possible new
location, nextLoc, is passed to nearObstacle() of the Obstacles object for testing. If the
new location is acceptable, the step is actually made, by calling doMove().

This approach nicely separates the issues of obstacle and boundary detection from the
sprite, placing them in the Obstacles class. The other design aim was to implement
this form of collision detection without utilising features in Java 3D.

Java 3D can be employed for collision detection in two main ways:

1. Java 3D can generate an event when one shape intersects with another, which is
then processed by a Behavior object. The drawback is that such events only occur
once the shapes have intersected. What is really required is an event just before
the shapes intersect.

2. Java 3D picking can query whether moving the user’s viewpoint will result in a
collision with an object in the scene. This approach is suitable for first person
games where the viewpoint represents the player. Tour3D is the beginnings of a
third person game, where the viewer is distinct from the player (the robot). We
return to this picky question when we look at first person games in chapter ??.

Updating the Sprite

A comparison of ImageSprite (the 2D sprite class) and Sprite3D highlights an
important difference between our 2D and 3D games programming styles. The 2D
games all use an update-redraw cycle, with a Timer object to control the cycle’s
frequency. Sprite3D has no redraw method, and there is no Timer object controlling
its redraw rate.

The difference is due to the high level nature of Java 3D’s scene graph. Java 3D
controls graph rendering, so it handles redraws, and their frequency. At the
programming level, we only have to change the scene (e.g. by adjusting the objectTG
node), and sit back. Of course, if we want direct control we can switch from the
default retained mode to immediate mode, as explained in chapter 8.

TourSprite

TourSprite is a simple class which subclasses Sprite3D in order to fix the movement
step and rotation amounts of the sprite. A code fragment:

12 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 10. 3D Sprites Draft #1 (18th Feb 03)

public class TourSprite extends Sprite3D
{ private final static double MOVERATE = 0.3;
private final static double ROTATE AMT = Math.PI / 16.0;

public TourSprite(String fnm, Obstacles obs)
{ super (fnm, obs); }

public boolean moveForward ()
{ return moveBy (0.0, MOVERATE); }

public void rotClock ()
{ doRotateY (-ROTATE AMT); } // clockwise

The reason for TourSprite’s simplicity is that it does not contain any ‘behaviour’ code
to specify when the move and rotation methods should be called. Java 3D encourages
this kind of programming to be placed in a separate Behavior class (TouristControls
for TourSprite). Behavior classes are explained below.

AlienSprite

The chasing behaviour of the alien makes the coding of AlienSprite more interesting.
The alien is driven by a TimeBehavior object, which calls its update() method
periodically.

update() uses the alien’s and robot’s current positions to calculate a rotation which
makes the alien turn to face the robot. Then the alien moves towards the robot. A
complication is dealing with any obstacles between the alien and the robot. Once the
alien is sufficiently close to the robot, an exciting message is printed to standard
output (this is, after all, just a demo ©).

In many ways, the behavior in AlienSprite is akin to the ?? sprite in the Tiles game of
chapter ??.

update()’s definition:

public void update ()
// called by TimeBehaviour to update the alien
{ if (isActive()) {
headTowardsTourist () ;
if (closeTogether (getCurrLoc (), ts.getCurrLoc()))
System.out.println("Alien and Tourist are close together");

headTowardsTourist() rotates the sprite then attempts to move it forward:

private void headTowardsTourist ()
{
double rotAngle = calcTurn(getCurrLoc (), ts.getCurrLoc());
double angleChg = rotAngle-currAngle;
doRotateY (angleChg) ; // rotate to face tourist
currAngle = rotAngle; // store new angle for next time
if (moveForward())
else if (moveLeft ())

else if (moveRight ())

13 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 10. 3D Sprites Draft #1 (18th Feb 03)

else 1f (moveBackward())
else
System.out.println("Alien stuck!");

AlienSprite extends TourSprite, so can use the movement and rotation methods
defined there.

The obstacles problem is dealt with by simply trying to move in every direction until
one succeeds. This may lead to the sprite moving in a rather inefficient manner (and
even into livelock), due to the lack of any path planning, but it is quite satisfactory
(and fast) in a world with few obstacles.

calcTurn() deals with seven possible positional relationships between the alien and the
robot, which can be understood by referring to Figure 7.

-z
@' @
x‘ 'ahenLDcl i
L L 1 zDiff
-~ rotépsle i
(4 L ¥Diff touristloc
+z (1

Figure 7. Possible Angles Between the Alien and Robot.

The alien begins by facing along the positive z-axis, towards the user’s viewpoint.
The rotation (rotAngle) is calculated relative to that starting angle so that the rotation
change from the previous orientation can be obtained by subtraction (see the start of
headTowardsTourist() for the code which does this).

14 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 10. 3D Sprites Draft #1 (18th Feb 03)

The tourist may be in any of the four different quadrants marked in figure 7, or on the
positive or negative x-axes (i.e. with a zero z value), or at the same spot as the alien;
altogether seven possibilities. Note that a positive rotation around the y-axis is
counter-clockwise.

The possibilities for rotAngle are shown in Table 1.

Quadrant x loc z loc rotAngle

(1) +ve +ve arctan Xx/z

(2) +ve -ve pi + arctan x/-z
3) -ve -ve pi + arctan —x/-z
4) -ve +ve arctan —x/z

On the +x axis +ve 0 pi/2

On the —x axis -ve 0 -pi/2

Same spot 0 0 0

Table 1. Positions for the Robot Relative to the Alien.

These choices are encoded in calcTurn() as a series of if-tests after calculating xDiff
and zDiff (the x-axis and z-axis distances between the two sprites).

In fact, the calculations for quadrants (1) and (4) and quadrants (2) and (3) could be
combined since the signs of x and z are implicit in the values for xDiff and zDiff.

Behaviours in Java 3D

A Behavior object is used to monitor events occurring in the application, such as key
presses, the rendering of frames, the passage of time, the movement of the user’s
viewpoint, Transform3D changes, and collisions. These events, called wakeup
criteria, activate the Behavior object so it can carry out specified tasks.

A typical Behavior subclass has the following format:

public class FooBehavior extends Behavior
{ private WakeupCondition wc; // what will wake the object

public FooBehavior (..)
{ // initialise globals
wc = new // create the wakeup criteria

}

public void initialize()
// register interest in the wakeup criteria
{ wakeupOn (wc); }

public void processStimulus (Enumeration criteria)
{ WakeupCriterion wakeup;
while (criteria.hasMoreElements ()) {
wakeup = (WakeupCriterion) criteria.nextElement () ;
// determine the type of criterion assigned to wakeup
// carry out the relevant task
}

wakeupOn (wc); // re-register interest

15 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 10. 3D Sprites Draft #1 (18th Feb 03)

} // end of processStimulus ()
} // end of FooBehavior class

A subclass of Behavior must implement initialize() and processStimulus().

initialize() should register the behaviour’s wakeup criteria, but other initialization
code can be placed in the constructor for the class.

processStimulus() is called by Java 3D when an event (or events) of interest to the
behaviour is received. Often, the simple matter of processStimulus() being called is
enough to decide what task should be carried out (e.g. as in TimeBehavior). In more
complex classes, the events passed to the object must be analyzed.

A common error when implementing processStimulus() is to forget to re-register the
wakeup criteria at the end of the method. If this is not done, the behaviour will not be
triggered again.

A WakeupCondition object can be a combination of one or more WakeupCriterion.
There are many subclasses of WakeupCriterion, including:

o WakeupOnAWTEvent — for AWT events such as key presses and mouse
movements. WakeupOnAWTEvent is used in TouristControls.

e WakeupOnElapsedFrames — an event can be generated after a specified number of
renderings. This criterion should be used with care since it may result in the object
being triggered many times per second.

e WakeupOnElapsedTime — an event can be generated after a specified time
interval. WakeupOnElapsedTime is used in TimeBehavior.

Another common mistake when using Behaviors is to forget to specify a scheduling
volume with setSchedulingBounds(), in a similar way to lights and other
environmental nodes. If no volume is set then the Behavior will never be triggered.

TouristControls

The TouristControl object responds to key presses, either by moving the robot sprite,
or by changing the user’s viewpoint. As the sprite moves, the viewpoint is
automatically adjusted so they stay a fixed distance apart. This is a simple form of
third person camera.

The TourSprite and TouristControls are created and linked inside addTourist() in
WrapTour3D:

private void addTourist ()

{ bob = new TourSprite ("Coolrobo.3ds", obs); // sprite
bob.setPosition (2.0, 1.0);
sceneBG.addChild(bob.getTG());

ViewingPlatform vp = su.getViewingPlatform() ;
TransformGroup viewerTG = vp.getViewPlatformTransform() ;

// TransformGroup for the user’s viewpoint

TouristControls tcs = new TouristControls (bob, viewerTG);
// sprite's controls

16 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 10. 3D Sprites Draft #1 (18th Feb 03)

tcs.setSchedulingBounds (bounds) ;
sceneBG.addChild(tcs);
}

The TouristControls objects requires a reference to the TourSprite in order to monitor
and change its position, and a reference to the user’s viewpoint TransformGroup, to
move the viewpoint in line with the TourSprite’s position. Inside the TouristControl
object, these arguments are stored as the globals bob and viewerTG.

The WakeupCondition for TouristControls is a AWT key press, which is specified in
the constructor:

keyPress = new WakeupOnAWTEvent (KeyEvent.KEY PRESSED);
It is registered in initialize():
wakeupOn (keyPress);

processStimulus() contains code to check that the criterion is indeed a AWT event, to
deal with multiple AWT events, and to respond only to key presses:
public void processStimulus (Enumeration criteria)

{ WakeupCriterion wakeup;
AWTEvent[] event;

while(criteria.hasMoreElements ()) {
wakeup = (WakeupCriterion) criteria.nextElement () ;
if (wakeup instanceof WakeupOnAWTEvent) { // is it AWT?
event = ((WakeupOnAWTEvent)wakeup) .getAWTEvent () ;
for(int i = 0; 1 < event.length; i++) { // many events
if(event[i].getID() == KeyEvent.KEY PRESSED)
processKeyEvent ((KeyEvent)event[i]) ;
}
}
}
wakeupOn (keyPress); // re-register
} // end of processStimulus ()

All the testing and iteration through the event[] array leads to a call to
processKeyEvent() which actually does something in response to the key press.

Keys Understood by TouristControls

Our sprite can move in four directions: forwards, backwards, left, and right, and can
rotate left or right around the y-axis. The down, up, left, and right arrow keys cover
forwards, backwards, rotate left, and rotate right. The <alt> key combined with the
left and right arrows support left and right movement.

The viewpoint can be ‘zoomed’ in and out along the z-axis; those two operations are
represented by the ‘1’ and ‘o’ keys.

One subtlety here is the choice of keys to denote direction. The ‘down’ arrow key is
most natural for representing ‘forward’ when the sprite is facing out of the world,
along the +z axis, but is less appealing when the sprite has been rotated by 180
degrees and is facing into the scene. For this reason, it may be better to use letter keys
such as ‘f°, ‘b’, ‘I’, and ‘r’.

processKeyEvent() ‘s definition:

17 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 10. 3D Sprites Draft #1 (18th Feb 03)

private void processKeyEvent (KeyEvent eventKey)

{ int keyCode = eventKey.getKeyCode () ;
if(eventKey.isAltDown ())
altMove (keyCode) ;
else
standardMove (keyCode) ;

viewerMove () ;

Every key has a unique key code constant -- they are listed at length in the
documentation for the KeyEvent class. Checking for modifier keys, such as <alt> and
<shift> can be done by testing the KeyEvent object.

standardMove() calls the relevant methods in the TourSprite (bob) depending on the
key pressed. For instance:

if (keycode == forwardKey)
bob.moveForward () ;
else if (keycode == backKey)

bob.moveBackward() ;

forwardKey and backKey (and others) are constants defined in TouristControls:

private final static int forwardKey = KeyEvent.VK DOWN;
private final static int backKey = KeyEvent.VK UP;

A Third Person Camera

A third person camera is a viewpoint which (semi-)automatically tracks the user’s
sprite as it moves through a game. This is fairly difficult to automate since the best
vantage point for a camera depends not only on the sprite’s position and orientation,
but also on the location of nearby scenery and other sprites, as well as the focal point
for the current action. A common solution is to offer the player a selection of several
cameras, which can be switched between as necessary.

Tour3D is considerably simpler: the camera stays at a certain distance from the sprite,
offset along the positive z-axis. This distance is maintained as the sprite moves
forwards, backwards, left, and right. The only permitted adjustment to the camera is a
‘zoom’ capability which reduces or increases the offset.

Although this approach is simple, it is quite effective. Also the coding can be readily
extended to support more complex changes in the camera’ position and orientation.

By coding our own camera, we no longer need the OrbitBehavior class.

Viewpoint Initialisation

The initial positioning of the user’s viewpoint is done in TouristControls in the
setViewer() method:

private void setViewer ()
{ bobPosn = bob.getCurrLoc() ; // start location for bob
viewerTG.getTransform(t3d);
t3d.lookAt (new Point3d (bobPosn.x, HEIGHT, bobPosn.z + ZOFFSET),
new Point3d (bobPosn.x, HEIGHT, bobPosn.z),
new Vector3d(0,1,0));

18 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 10. 3D Sprites Draft #1 (18th Feb 03)

t3d.invert () ;
viewerTG.setTransform (t3d) ;

}

lookAt() specifies the viewer’s position, the point being looked at, and the up
direction. The coordinates are obtained from the TourSprite’s original position. The
viewpoint is raised HEIGHT units up the y-axis, and ZOFFSET units away down the
positive z-axis, to give an overview of the robot.

It is important that the vector between the user’s viewpoint and the sprite is at right
angles to the XY plane. This means that a translation applied to the sprite will have
the same effect when applied to the viewpoint.

This issue is a consequence of both the translation and rotation components of the
viewer being applied to a single TransformGroup. We will talk about this more in the
“Rotating the Camera” section below.

Moving the Camera

The camera is moved by viewerMove(), which is called at the end of
processKeyEvent(), after the sprite’s position or orientation have been altered.

viewerMove() obtains the new position of the sprite, and calculates the translation
compared to the previous position. This translation is applied to the viewer.

private void viewerMove ()

{ Point3d newLoc = bob.getCurrLoc();
Vector3d trans = new Vector3d(newlLoc.x - bobPosn.x,

0, newLoc.z - bobPosn.z);

viewerTG.getTransform(t3d);
toMove.setTranslation (trans) ;
t3d.mul (toMove) ;
viewerTG.setTransform (t3d) ;
bobPosn = newLoc; // save for next time

19 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 10. 3D Sprites Draft #1 (18th Feb 03)

Figure 8 shows two screenshots of Tour3D with the sprite in different locations and
orientations, but the viewpoint is in the same relative position in both pictures.

Figure 8. Sprite Moves Leave the Viewpoint Unchanged.

Zooming the Camera

Camera zooming is achieved by adjusting the z-axis distance between the viewpoint

and the sprite. When the user types ‘i’ or ‘0’, eventually shiftViewer() is called inside
standardMove():

else if (keycode == inKey) // letter ‘i’

shiftViewer (-ZSTEP) ;
else if (keycode == outKey) // letter ’o’

shiftViewer (ZSTEP) ;

ZSTERP is set to be 1.0. shiftViewer() moves the TransformGroup by the required
amount along the z-axis:

private void shiftViewer (double zDist)

{ Vector3d trans = new Vector3d(0,0,zDist);
viewerTG.getTransform(t3d);
toMove.setTranslation (trans);
t3d.mul (toMove) ;
viewerTG.setTransform (t3d) ;

20 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 10. 3D Sprites Draft #1 (18th Feb 03)

Figure 9 shows the result of pressing ‘i’ 5 times. Compare the viewpoint’s position
with the images in Figure 8.

||
Figure 9. A Closer Viewpoint.

Rotating the Camera

The TouristControls class does not support viewpoint rotation, but it is still interesting
to discuss the various issues involved in implementing it.

The first problem is to make sure that the rotations and translations applied to the
sprite are echoed by the same rotations and translations of the viewpoint. If the
viewpoint rotates by a different amount, then the sprite’s translations will have a
different effect on the viewpoint since it will be facing in a different direction.

This echoing is best implemented by duplicating the Sprite3D methods for translation
and rotation inside TouristControls. The coding will require some modifications since
the viewpoint is facing towards the sprite, so its notions of forwards, backwards, left,
and right are different.

Even if the rotations of the sprite and viewpoint are always aligned, there are still
problems. For instance, a 180 degree rotation of the sprite will cause a 180 degree
rotation of the viewpoint, and the viewpoint will now be facing away from the sprite!

This is caused by rotating both the sprite and the viewpoint around their own centers.
In fact, the rotation of the viewpoint must not use its own coordinate system, but be
relative to the sprite. In other words, a viewpoint rotation must use the sprite’s
position as its center of rotation.

21 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 10. 3D Sprites Draft #1 (18th Feb 03)

Figure 10 shows the desired viewpoint rotation after the sprite has just rotated 30
degrees.

- /r
J‘f;fffff d‘.spﬁu

P R,
SASE
=l [=- =l =
¥ ¥
iew point

Figure 10. Viewpoint Rotation.

In coding terms, this requires the viewpoint TransformGroup to be translated to the
sprite’s position, rotated, and then translated back. The translation back will be the
negative of the first translation since the viewpoint’s coordinate system will have been
changed by the rotation.

A more fundamental question still remains — does rotation give the user a better view
of the sprite? Unfortunately, the answer is only ‘maybe’. The problem is that the
rotation may move the viewpoint inside a piece of scenery, which will block the view.

One solution is to offer the user several viewpoints at the same time, in the hope that
at least one of them will be useful. We will be implementing multiple viewpoints in
the Maze3D application of chapter ??.

TimeBehavior

TimeBehavior acts as a Timer-like object for calling the update() method in
AlienSprite every 500 milliseconds. The two are linked together by WrapTour3D in
its addAlien() method:

private void addAlien ()
{ AlienSprite al =
new AlienSprite ("handl.obj", obs, bob); // alien
al.setPosition(-6.0, -6.0);
sceneBG.addChild(al.getTG());
TimeBehavior alienTimer =
new TimeBehavior (500, al); // alien's controls
alienTimer.setSchedulingBounds (bounds);
sceneBG.addChild(alienTimer);

The TimeBehavior class is significantly simpler than TouristControls since the mere
fact of it’s processStimulus() method being called is enough to trigger the call to
update().

public class TimeBehavior extends Behavior

{ private WakeupCondition timeOut;
private AlienSprite alien;

public TimeBehavior (int timeDelay, AlienSprite as)
{ alien = as;

22 © Andrew Davison. 2003

Java Prog. Techniques for Games. Chapter 10. 3D Sprites Draft #1 (18th Feb 03)

timeOut = new WakeupOnElapsedTime (timeDelay) ;

}

public void initialize()
{ wakeupOn (timeOut) ; }

public void processStimulus(Enumeration criteria)
{ alien.update () ; // ignore criteria

wakeupOn (timeOut); // re-register

}

The wakeup criterion is an instance of WakeupOnElapsedTime.

23 © Andrew Davison. 2003

