
Java Prog. Techniques for Games. Chapter 7. Java 3D Intro. Draft #1 (22nd July '04)

1 Andrew Davison 2004

Chapter 7. Introducing Java 3D

The next fifteen or so chapters will be about 3D games programming using Java 3D,
Java's scene graph API which can run on top of OpenGL or DirectX.

I'll summarise the main elements of Java 3D, leaving program examples aside for the
moment. Then, as in chapter 00, I'll examine Java 3D's suitability for games
programming by considering the main criticisms leveled against it.

There's been an explosion in alternative ways of programming in 3D with Java. I'll list
the main ones under the headings of Java bindings for OpenGL, scene graph APIs,
and game engine bindings.

1. Java 3D
The Java 3D API provides a collection of high-level constructs for creating,
rendering, and manipulating a 3D scene graph composed of geometry, materials
lights, sounds, and more. Java 3D was developed by Sun Microsystems, and the most
recent stable release is version 1.3.1. (There is a version 1.3.2, but it's a bug fix
release which is still under review as I write this in July 2004.) In June 2004, Java 3D
became a Sun community project, which allows external developers to submit
modifications and new features.

There are two Java 3D variants: one implemented on top of OpenGL, the other above
DirectX Graphics. The low-level API handles the native rendering at the vertex and
pixel levels, while the 3D scene, application logic, and scene interactions are carried
out by Java code. This dual approach encourages application portability, hardware
independence, and high-speed rendering. Intended application areas include
visualization, CAD/CAM, virtual reality, simulation, and gaming.

Java 3D 1.3.1. can be downloaded from http://java.sun.com/products/java-media/3D/,
together with ample documentation and a long tutorial.

1.1. The Scene Graph

Java 3D’s scene graph is a directed acyclic graph (a DAG), so there's a parent-child
relationship between most of its nodes, and the graph doesn't contain loops. It is
possible for nodes to be shared in a graph, for example to duplicate geometry details.

Java Prog. Techniques for Games. Chapter 7. Java 3D Intro. Draft #1 (22nd July '04)

2 Andrew Davison 2004

A simplified scene graph for an office is shown in Figure 1. The office group contains
nodes for a desk and two chairs. Each node utilizes shape and colour node
components, and the chair shape information is shared.

Figure 1. Scene Graph for an Office.

The choice of symbols in Figure 1 comes from Figure 2.

Figure 2. Scene Graph Symbols.

A shape node employs Shape3D (or its subclasses) as a container for Geometry and
Appearance node components. The main geometry class is GeometryArray, used for
drawing points, lines, and polygons. There are many Appearance subclasses,
including ones for colour, texture, and transparency.

Environment nodes handle environmental concerns, such as lighting, sound, and
behaviours that change the virtual world.

Group nodes are containers for other groups or leaf nodes. Leaf nodes are usually
shape or environmental nodes. The Group class supports node positioning and
orientation for its children, and is subclassed in various ways. For instance,

Java Prog. Techniques for Games. Chapter 7. Java 3D Intro. Draft #1 (22nd July '04)

3 Andrew Davison 2004

BranchGroup allows children to be added or removed from the graph at run time,
while TransformGroup permits the position and orientation of its children to be
changed.

The standard first example for Java 3D programmers is HelloUniverse (it appears in
chapter 1 of the tutorial). It displays a rotating coloured cube, as in Figure 3.

Figure 3. A Rotating Coloured Cube.

The scene graph for this application is given in Figure 4.

Figure 4. Scene Graph for HelloUniverse.

VirtualUniverse is the top node in every scene graph, and represents the virtual world
space and its coordinate system.

Locale acts as the scene graph's location in the virtual world.

Java Prog. Techniques for Games. Chapter 7. Java 3D Intro. Draft #1 (22nd July '04)

4 Andrew Davison 2004

Below the Locale node there are always two subgraphs – the left branch is the content
branch graph, holding program-specific content such as geometry, lighting, textures,
and the background. The content branch graph differs significantly from one
application to another.

The ColorCube is composed from a Shape3D node and associated geometry and
appearance components. Its rotation is carried out by a Behavior node which affects
the TransformGroup parent of the ColorCube's shape.

The right hand branch below Locale is the view branch graph, and specifies the user’s
position, orientation, and perspective as they look into the virtual world from the
physical world (e.g. from in front of a monitor). The ViewPlatform node holds the
viewer’s position in the virtual world; the View node states how to turn what the
viewer sees into a physical world image (e.g. a 2D picture on the monitor). The
Canvas3D node is a Java GUI component that allows the 2D image to be placed
inside a Java application or applet.

The VirtualUniverse, Locale, and view branch graph often have the same structure
across different applications, since most programs use a single Locale and view the
virtual world through a 2D image on a monitor. For these applications, the relevant
nodes can be created with Java 3D's SimpleUniverse utility class, relieving the
programmer of a lot of graph construction work.

2. Java 3D Strengths
The Scene Graph. Java 3D’s scene graph makes programming much easier for
novices (and even for experienced programmers) because it emphasizes scene design
rather than rendering, by hiding the underlying graphics pipeline. A scene graph
naturally supports complex graphical elements such as 3D geometries, behaviours,
lighting modes, picking, and collision detection. At the Java 3D implementation level,
the scene graph can be used to group shapes with common properties, carry out view
culling, occlusion culling, level of detail selection, execution culling, and behaviour
pruning – all optimizations which must be coded directly by the programmer in
lower-level APIs. Java 3D utilizes Java’s multithreading to carry out parallel graph
traversal and rendering, both very useful optimizations.

Performance. Java 3D is designed with performance in mind, which it achieves at the
high-level by scene graph optimizations, and at the low-level by being built on top of
OpenGL or DirectX.

Some programmer-specified scene graph optimizations are available through
capability bits, which state what operations can/cannot be carried out at run time (e.g.
prohibiting a shape from moving). Java 3D also permits the programmer to bypass the
scene graph, either totally by means of an immediate mode, or partially by using a
combination of immediate and retained modes (called mixed mode). Immediate mode
gives the programmer greater control over rendering and scene management.

Novel Features. Java 3D’s view model separates the virtual and physical worlds
(through the ViewPlatform and View nodes). This makes it straightforward to

Java Prog. Techniques for Games. Chapter 7. Java 3D Intro. Draft #1 (22nd July '04)

5 Andrew Davison 2004

reconfigure an application to utilize a range of output device, from a monitor, to
stereo glasses, to CAVES.

Virtual world behaviour is coded with Behaviour nodes in the scene graph, and
triggered by events. Among other things, this offers a different style of animation
based on responding to events, instead of the usual update-redraw cycle.

The core Java 3D API package, javax.media.j3d, supports basic polygons and
triangles within a scene graph, while the com.sun.j3d packages add a range of utility
classes including ColorCube and SimpleUniverse, mouse and keyboard navigation
behaviours, audio device handling, and loaders for several 3D file formats.

Geometry compression is possible, often reducing size by an order of magnitude.
When this is combined with Java’s NIO and networking, it facilitates the ready
transfer of large quantities of data between applications such as multiplayer games.

Java 3D allows 2D and 3D audio output, ambient and spatialized sound.
Unfortunately, there are bugs in the sound system. In the long term, it will probably
be replaced by JOAL, a Java binding for a 3D audio API called OpenAL which is
supported in hardware on many sound cards.

Java Integration. Java 3D is Java, so offers object orientation (classes, inheritance,
polymorphism), threads, exception handling, and more. Java 3D can easily make use
of other Java APIs, such as JMF and JAI.

Portability. Java 3D’s implementation in Java and OpenGL or DirectX gives it a high
degree of portability, with related advantages such as reduced development time and
cost.

Documentation and Examples. The Java 3D distribution comes with about 40 small-
to-medium examples. They are a great help, but somewhat lacking in documentation.
Some of them need rewriting to use more recent features of Java 3D and the utility
classes.

The Java 3D tutorial is available online at http://java.sun.com/products/java-
media/3D/collateral/. The tutorial is a good introduction to Java 3D but sometimes
rather confusing for beginners.

I recommend two Java 3D textbooks:

• Java 3D API Jump-Start
Aaron E. Walsh, Doug Gehringer
Prentice Hall, 2001
ISBN: 0-1303-4076-6
http://vig.prenhall.com:8081/catalog/academic/product/0,1144,0130340766,00.ht
ml

• Java 3D Programming
Daniel Selman
Manning Pub, 2002
ISBN: 1-9301-1035-9
http://www.manning.com/selman/

Java Prog. Techniques for Games. Chapter 7. Java 3D Intro. Draft #1 (22nd July '04)

6 Andrew Davison 2004

The Walsh and Gehringer text is an excellent overview, using code snippets rather
than page after page of listings. It complements the Java 3D tutorial.

The Selman book is more advanced. For the games enthusiast, Selman describes a
Doom-like world, utilizing first-person perspective keyboard navigation, and scene
creation from a 2D map. The world contains bookcases, pools of water, flaming
torches, and animated guards.

3. Criticisms of Java 3D for Games Programming
The misconceptions and complaints about Java 3D closely match those used against
Java, which I discussed back in chapter 00:

• Java 3D is too slow for games programming;
• Java 3D is too high-level;
• Java 3D isn't supported on games consoles, so why bother using it;
• No one uses Java 3D to write real games;
• Sun Microsystems isn't interested in supporting Java 3D.

As in chapter 00, I'll address each of these statements in detail.

3.1. Java 3D is Too Slow for Games
There is virtually no evidence for this claim. The only serious test was done by Jacob
Marner back in 2002. Marner carried out comparative performance tests on OpenGL
and Java 3D versions of the same 3D non-interactive space of randomly positioned,
scaled and rotated boxes. He used the C++ and GL4Java bindings for OpenGL, and
version 1.3.0 beta 1 of Java 3D. His Masters thesis, "Evaluating Java for Game
Development" can be obtained from http://www.rolemaker.dk/articles/evaljava/.

The C++ version was fastest, the GL4Java implementation a little slower, and Java
3D about 2.5 times slower. However, the slowdown was due to a performance bug in
that version of Java 3D, and a poorly optimized scene graph. Unfortunately, the
timings have not been repeated with the latest version of Java 3D, or with more recent
Java bindings to OpenGL such as JOGL or LWJGL.

Marner’s code highlights some striking differences between Java 3D and OpenGL.
The C++ and GL4Java programs are of comparable sizes (about 10 classes; 30 pages
of code with documentation), while the Java 3D application is much smaller (5 classes
and 11 pages). Marner comments on the complexity of the OpenGL code, which
requires a kd-tree data structure, a culling algorithm around the view frustum, and
preprocessing vertex operations. All of these capabilities are built into Java 3D, so
don't need to be implemented in the Java 3D application. In the GL4Java source, the
optimized view frustum algorithm is very hard to understand, but is responsible for an
order of magnitude speedup over the simpler version.

The OpenGL applications could have been considerable faster if extensions available
on the graphics card were employed.

Another outcome of Marner’s work is that it shows a negligible overhead for JNI:
GL4Java uses JNI to interface Java to OpenGL, and its performance is only slightly
less than the C++ binding.

Java Prog. Techniques for Games. Chapter 7. Java 3D Intro. Draft #1 (22nd July '04)

7 Andrew Davison 2004

3.1.1. Java 3D is Slow Because Java is Slow
Java 3D performance is often equated with Java performance: the myth of Java's
slowness somehow demonstrating the slowness of Java 3D. In fact, since Java 3D
relies on OpenGL or DirectX for rendering, much of the graphics processing speed of
Java 3D is independent of Java.

History suggests that performance will become a less important consideration as the
base speed of hardware keeps increasing. Many successful games rely less on special
effects, more on gaming characterization and story. Of course, games will always
need performance, but the real bottleneck will not be the platform but the network, as
multiplayer games begin to dominate.

Performance should be considered alongside issues such as code complexity,
productivity, maintainability, and portability. These criteria strongly influence a move
towards higher-level API, as typified by Java 3D.

3.2. Java 3D is Too High-Level
Java 3D’s scene graph is often considered an unreasonable overhead, especially by
programmers with experience of OpenGL or DirectX. Although it does introduce
overheads, they should be judged against the optimizations which the scene graph
brings. These can be implemented in a low-level API by an experienced programmer,
but at what cost in time and maintainability?

Most large OpenGL and DirectX applications need a data structure like a scene graph,
in order to manage code complexity, so the scene graph versus no scene graph
argument is often invalid.

A powerful, high-level, and flexible 3D graphics API will need a scene graph and a
way to efficiently access the graphics pipeline. These mechanisms are aimed at
different levels in 3D graphics programming, called the entity level and the rendering
level. An application's entity level requires a data structure for organizing the scene
objects, while the rendering level handles light mapping, shadows, radiosity, vertex
shading, and so on. Great games are designed at the entity level, in terms of game
play, characters, scenarios, and story elements. The look and feel of a great game, the
light and dark, the atmosphere, is created at the rendering level.

Although Java 3D has highly developed tools for entity level programming, it is
deficit at the rendering level. For example, Java 3D cannot carry out vertex and pixel
shading. Part of this is due to the desire to support Java 3D portability across OpenGL
and DirectX, preventing it from making assumptions about which low-level features
are present. Nevertheless, it is possible to achieve some striking rendering effects in
Java 3D by employing multi-textures.

The high-level nature of the scene graph makes Java 3D code harder to tune for speed,
unlike programs using OpenGL or DirectX directly. However, a programmer does
have the option of moving to Java 3D's mixed or immediate modes.

The hiding of the low-level graphics API makes it harder for a programmer to code
around bugs in the APIs or the drivers.

Java Prog. Techniques for Games. Chapter 7. Java 3D Intro. Draft #1 (22nd July '04)

8 Andrew Davison 2004

3.3. The Lack of Console Support
The lack of a console implementation for Java 3D is a serious problem, but if Java
and OpenGL are available on a game machine, then Java 3D should be readily
portable. The Game Cube already uses OpenGL.

Linux for the PlayStation 2 includes OpenGL support (http://playstation2-
linux.com/projects/openglstuff/). There is an old alpha version of an OpenGL for the
PlayStation 2, implemented by DataPlus
(http://www.dataplus.co.jp/OpenGL4ps2.html). However, the future for OpenGL on
consoles, and other small devices, is OpenGL ES, a subset of OpenGL
(http://www.khronos.org/opengles/).

A Java binding is being developed for OpenGL ES, managed by JSR 239
(http://www.jcp.org/en/jsr/detail?id=239). (A JSR is a Sun-sanctioned process for
defining a new Java API.) Much of the work is derived from JSR 231, which will be
based around JOGL and/or LWJGL (both explained below). JSR 239 is scheduled to
be finished early in 2005.

3.4. No Real Java 3D Games
Java 3D has been employed in relatively few games, but they include bestsellers and
award winners. I mentioned the commercial games back in chapter 00.

• Law and Order II, by Legacy Interactive.
(http://www.lawandordergame.com/index2.htm)

• Pernica by Starfire Research
(http://www.starfireresearch.com/pernica/pernica.html)

• Cosm from Navtools, Inc. (http://www.cosm-game.com/)

• Roboforge by Liquid Edge Games (http://www.roboforge.com).

• FlyingGuns (http://www.flyingguns.com/),.

• CazaPool3D (http://membres.lycos.fr/franckcalzada/Billard3D/Pool.html).

• Out Of Space (http://www.geocities.com/Psionic1981)
An arcade game by Chris Forrester -- fly around your opponents and kill them.

• At QuakeCon 2001, Fullsail Real World Entertainment showed a Quake clone
called Jamid and a motor racing simulator called Java Gran Prix.

• The Virtual Fishtank (http://www.virtualfishtank.com/main.html)
A distributed simulation of a 24,000 gallon aquarium, rendered to 13 large
projection screens, and running on 15 networked machines. The fish migrate from
server to server as they swim from screen to screen. It was shown at the Boston
Museum of Science, and the St. Louis Science Center, to teach children about
emergent self-organizing behaviour in decentralized rule-based systems.

• DALiWorld (http://www.dalilab.com/)
Another distributed aquatic virtual world, inhabited by autonomous artificial life.

Java Prog. Techniques for Games. Chapter 7. Java 3D Intro. Draft #1 (22nd July '04)

9 Andrew Davison 2004

The "Other Sites" page at j3d.org (http://www.j3d.org/sites.html) is a good source for
Java 3D examples, and includes games and demos sections with many links.

The Java Games Factory (JGF), http://grexengine.com/sections/externalgames/,
places its games into 2D and 3D categories, further subdivided by the 3D API being
used, such as Java 3D, JOGL, and LWJGL.

A good strategy for finding Java 3D games and source code is to visit SourceForge
(http://sourceforge.net/search/) and FreshMeat.com (http://freshmeat.net/) and search
for keywords such as "Java", "3d", and "game".

Two very exciting Java 3D projects, which aren't really games:

• Project Looking Glass (https://lg3d.dev.java.net/). A prototype 3D desktop
offering rotating, transparent windows, multiple desktop workspaces, and an API
for developing applications. It received a great deal of attention at JavaOne in
2004.

• The Mars Rover Mission
(http://www.sun.com/aboutsun/media/features/mars.html). Java 3D and JAI are
being used to render and interpret the real-time images captured by the rover.
There's also a rover simulator implemented in Java 3D, which is a sort of game.

3.4.1. Java 3D Loaders for Games
A loader is an essential tool for quickly populating a game with people, artifacts, and
scenery. All the model loaders listed below are for popular games formats, and all
support animation.

• Quake Loaders (http://www.newdawnsoftware.com/)
The loaders support Id Software's Quake 2 MD2 and BSP, and Quake 3 MD3
formats. A morphing animation example using the MD3 loader can be found at
http://www.la-cfd.com/cassos/test/md3/index.html

• JAVA is DOOMED (http://javaisdoomed.sourceforge.net/)
This is a complete 3D engine, including loaders for Quake 2 MD2 and 3D Studio
Max .3ds files.

• The Java XTools (http://www.3dchat.org/dev.php)
This package offers a range of Java 3D extras, including loaders for Renderware,
Caligari TrueSpace, Alias/Wavefront Maya .obj and .mtl files. Other elements
include a lens flare mechanism, a text-to-texture converter, and a sky box class.

• NWN Java 3D utilities (http://nwn-j3d.sourceforge.net/)
It handles Neverwinter Night models, including animation and emitters.

• Java 3D 3DS Loader (http://sourceforge.net/projects/java3dsloader/)
The loader supports 3D Studio Max models, including cameras, point and
directional lights, animation, and hierarchy textures.

• Anim8or Loader (http://anim8orloader.sourceforge.net/)
It can load 3D models and scenes saved in the Anim8or file format. Anim8or is a
3D modeling and character animation program
(http://www.anim8or.com/main/index.html).

Java Prog. Techniques for Games. Chapter 7. Java 3D Intro. Draft #1 (22nd July '04)

10 Andrew Davison 2004

• Xj3D (http://www.xj3d.org/)
The loader implements the X3D standard, a successor to VRML 97, and provides
for keyframe animation. Xj3D also contains it own OpenGL renderer, which is
reportedly much faster than the one inside Java 3D.

3.4.2. Add-ons for Gaming

• Yaarq (http://www.sbox.tugraz.at/home/w/wkien/)
Yaarq, by Wolfgang Kienreich, offers APIs for several gaming-related features,
including texturing, bump maps, reflection maps, overlays, and particle systems. It
also demonstrates how to achieve stable frame rates.

• Alessandro Borges' Examples
(http://planeta.terra.com.br/educacao/alessandroborges/java3d.html).
Java 3D is often criticized for lacking sophisticated lighting effects. Alessandro
has developed several examples showing how to utilize bump maps to generate
irregular surface lighting and cube map textures for reflection effects.

• Toon Shaders (http://www.antiflash.net/java3d/comicshader.html).
This demonstrates how simple cartoon-style shading can be added to shapes.

• A CSG (geometry boolean operators) API by Danilo Balby Silva Castanheira is
available at http://www.geocities.com/danbalby/.

• A skeletal animation and skinning system by Mark McKay can be found at
http://www.kitfox.com/salamander/3d/skinAndBones.html

• Java 3D Game SDK (https://java3dgamesdk.dev.java.net/)
The extra functionality includes a menu to let the user choose between full screen
and window mode, a game mouse, and a collision box for the precise steering of
objects.

• The j3d.org Code Repository (http://code.j3d.org/) includes code (or partial code)
for ROAM terrain rendering, particle systems, and 2D overlays.

3.5. Sun isn't Supporting Java 3D
Perhaps this statement was true in 2003, but Java 3D is now a community project
managed by the Advanced Software Development Group at Sun. If 'support' means a
pool of knowledgeable people ready to offer advice, and large archives of technical
information, then Java 3D has an abundance of support.

In the middle of 2003, Doug Twilleager issued the now infamous message "Java 3D
1.4 is currently in a holding pattern" (read it in full at http://www.javagaming.org/cgi-
bin/JGNetForums/YaBB.cgi?board=3D;action=display;num=1054567731). Doug
Twilleager is the chief architect of the Game Technologies Group at Sun, and one of
the designers of Java 3D.

His message appeared just before JavaOne 2003, a conference which emphasized the
JOGL, JOAL, and JInput APIs. Many people interpreted this as meaning that Java 3D
was heading for the dustbin (the trash can) of history.

Java Prog. Techniques for Games. Chapter 7. Java 3D Intro. Draft #1 (22nd July '04)

11 Andrew Davison 2004

A possible reason for the "holding pattern" was Java 3D's development origins in the
3D Graphics Hardware Group at Sun. As graphics cards from companies such as ATI
and nVidia caught up and surpassed Sun's hardware, the group started to become less
profitable. Layoffs occurred, and unprofitable group projects, such as Java 3D, were
given low priority.

In March 2004, Doug Twilleager was back, this time announcing that Sun was
making Java 3D available through a public source license at
https://java3d.dev.java.net/.

The reemergence of Java 3D is due to the work of a few key people, including Doug
Twilleager, and high profile uses in Sun projects such as Mars Rover and Looking
Glass. Java 3D has moved to the Advanced Software Development Group, a unit
within Sun that is actively supported by upper management.

The new Java 3D project site (https://java3d.dev.java.net/) hosts the source code for
Java 3D 1.3.2, a bug fix release. The current stable version is 1.3.1, which is used in
this book.

Java 3D's license allows developers to download the source code, and to contribute
bug fixes and utilities. Modification are allowed for research purposes, and there is a
no-fee commercial license.

An expert group is being formed to define and implement future versions of the Java
3D API. An important point is that much of the implementation work is expected to
come from the community, a strategy successfully employed to develop the JOGL,
JOAL, and JInput APIs.

There are four new Java 3D mailing lists:

interest@java3d.dev.java.net
announce@java3d.dev.java.net
issues@java3d.dev.java.net
cvs@java3d.dev.java.net

There is a new Java Desktop 3D Forum:

http://www.javadesktop.org/forums/forum.jspa?forumID=55

Older Java 3D information sources are still around.

The Java 3D Product Page: http://java.sun.com/products/java-media/3D/, with links
to demos, a basic FAQ, and several application sites such as the Virtual Fishtank.

The Java 3D Gaming Forum: http://www.javagaming.org/cgi-
bin/JGNetForums/YaBB.cgi?board=3D.

The Java 3D Interest Mailing list. It can be searched from
http://archives.java.sun.com/archives/java3d-interest.html; subscription is also
possible from that site. A searchable-only interface can be found at
http://www.mail-archive.com/java3d-interest@java.sun.com/

The Java Technology Forum for Java 3D, http://forum.java.sun.com/forum.jsp?
forum=21

The best independent Java 3D site is j3d.org (http://www.j3d.org); it has a great FAQ,
and a large collection of tutorials, utilities, and a code repository.

Java Prog. Techniques for Games. Chapter 7. Java 3D Intro. Draft #1 (22nd July '04)

12 Andrew Davison 2004

The USENET newsgroup comp.lang.java.3d can be searched and mailed to from
Google’s Groups page http://groups.google.com/groups?group=comp.lang.java.3d

3.5.1. Roadmaps for the Future
It's hoped that Java 3D 1.4 will be released in the next 6-9 months (I'm writing this in
July 2004), and may include programmable shaders and other features that can be
quickly added. There have been discussions about using JOAL to replace Java 3D's
buggy sound, and adding in character animation, terrain utilities, improved collision
detection and avoidance, NURBs, CSG (geometry boolean operators), and more
loaders. As the earlier "Loaders" and "Add-ons for Gaming" subsections indicate,
many of these extensions already exist.

Whether these plans for version 1.4 actually bear fruit depends on the Java 3D
developer community; Sun is involved mainly as a manager and adjudicator.

It's interesting to look at the future plans list for Project Looking Glass
(https://lg3d.dev.java.net/), which is built on top of Java 3D. It includes some of the
Java 3D wish list, and also a physics engine (perhaps using odejava,
https://odejava.dev.java.net/) and a particle system.

Java 3D 1.5 (or perhaps 2.0) will take longer to arrive, since major changes are
planned, such as pluggable renderers and extensibility. Athomas Goldberg, the head
of the Game Technologies Group, has remarked that JOGL and JOAL may come into
the picture at this stage.

The eventual release dates for Java 3D will probably be closely linked to those for
Java. J2SE 1.5, now renamed to J2SE 5, will be available in the third quarter of 2004.
J2SE 5.1 (code named "dragon fly") in early 2005 (6 to 9 months from now), version
6 in early 2006, version 7 in late 2007.

4. Alternatives to Java 3D
There are a large number of ways of programming in 3D with Java without employing
Java 3D. I've divided them into three categories: Java bindings to OpenGL, scene
graph APIs, and game engine bindings.

4.1. Java Bindings to OpenGL
Several Java OpenGL bindings have been released over the years, but they tend to be
incomplete, contain bugs, lack support and documentation, and often disappear
suddenly. A (slightly out of date) list of Java bindings is maintained at the OpenGL
site, http://www.opengl.org/resources/java/. It includes links to JOGL, LWJGL, Java
3D, GL4Java, and a few older projects. I'll only describe the active ones here.

• GL4Java (http://gl4java.sourceforge.net/docs/overview/benefits.html)
GL4Java, also known as "OpenGL for Java Technology", was one of the most
popular OpenGL bindings until the arrival of JOGL. It can be used with AWT and
Swing, and links to OpenGL 1.3 and vendor extensions.

Java Prog. Techniques for Games. Chapter 7. Java 3D Intro. Draft #1 (22nd July '04)

13 Andrew Davison 2004

• Lightweight Java Game Library (LWJGL) (http://www.lwjgl.org/)
LWJGL utilizes OpenGL 1.5 with vendor extensions. It works with the latest
versions of Java, so can use the NIO and full screen capabilities of J2SE 1.4.
However, it doesn't support AWT or Swing. LWJGL is quite small, as the name
suggests, so is suitable for devices with limited resources.

The documentation for LWJGL is a little scanty, although ports of the Nehe
OpenGL tutorials have started to appear; they're at the end of the original Nehe
tutorials (http://nehe.gamedev.net).

• JOGL (https://jogl.dev.java.net/)
JOGL is the most recent of the Java bindings for OpenGL, and promoted by the
Game Technologies Group at Sun. In common with LWJGL, it supports the latest
versions of Java, OpenGL and extensions. It differs in being integrated with AWT
and Swing, and is considerably larger.

JOGL and LWJGL are the main contenders for the Java OpenGL reference
binding being developed as part of Sun's JSR 231 specification process
(http://www.jcp.org/en/jsr/detail?id=231). JSR 231 will become the official Java
binding for OpenGL. It should be finished by the start of 2005.

There is a growing amount of tutorial material on JOGL.

The JOGL Forum at javagaming.org is a rich information source
(http://www.javagaming.org/cgi-bin/JGNetForums/YaBB.cgi?board=jogl). One
very good JOGL introduction, by Gregory Pierce, can be found at
http://www.javagaming.org/cgi-
bin/JGNetForums/YaBB.cgi?board=jogl;action=display;num=1058027992

Another introductory article, "Jumping into JOGL" by Chris Adamson, is at
http://today.java.net/pub/a/today/2003/09/11/jogl2d.html

The eBook "Learning Java Bindings for OpenGL (JOGL)" by Gene Davis is
available from http://www.genedavissoftware.com/books/jogl/. It starts with basic
JOGL examples, suitable for beginners. Several chapters and appendices are
online for free.

All the Nehe OpenGL tutorials have been ported to JOGL; they can be
downloaded from http://nehe.gamedev.net or http://pepijn.fab4.be/nehe/.

JOGL's access to OpenGL and its extensions means that it can utilize shading
languages for special effects like fish eyes and spherization, and can generate
various types of shadow using textures. Java 3D can mimic a few of these (see the
add-ons mentioned in section 3.4.2). Crucially, JOGL can employ program code
to dynamically affect the graphics pipeline, whereas Java 3D mostly uses
capability bits and simple get/set methods.

A recent posting to the Java Desktop 3D forum
(http://www.javadesktop.org/forums/thread.jspa?threadID=3222) describes the
use of JOGL's GLCanvas class to create a HUD (heads up display) within a Java
3D application. The canvas can be manipulated in the pre- or post- rendering
phases of Java 3D's immediate mode.

Java Prog. Techniques for Games. Chapter 7. Java 3D Intro. Draft #1 (22nd July '04)

14 Andrew Davison 2004

4.2. Scene Graph APIs
The creation of scene graph APIs for Java is something of a growth area, greatly aided
by the existence of lower-level OpenGL bindings. Most of the systems are open
source.

• Xith3D (http://xith.org)
Xith3D uses the same basic scene graph structure as Java 3D, but can also directly
call OpenGL operations. This means it supports functionality like shadow
volumes and vertex and fragment programs.

This is the ideal situation for a 3D graphics API in my opinion, making Xith3D a
strong contender as an alternative to Java 3D.

Since the high-level APIs of Xith3D and Java 3D are so similar, porting Java 3D
code over to Xith3D is fairly straightforward. There are versions of Xith3D that
run on top of JOGL or LWJGL.

A good tutorial for Xith3D beginners can be found at http://xith.org/tiki-
index.php?page=Docs

There is a Xith3D forum at javagaming.org:
 http://www.javagaming.org/cgi-bin/JGNetForums/YaBB.cgi

Two problems with Xith3D are its restriction to OpenGL (there is no DirectX
version), and the lack of scene graph thread safety.

• OpenMind (http://sourceforge.net/projects/open-mind/)
The OpenMind API contains the expected elements, including hierarchical scene
management and object transforms, dynamic cameras, lights and fog. OpenMind
is implemented on top of JOGL (it formerly used GL4Java).

• jME Graphics Engine (http://www.mojomonkeycoding.com/)
jME (jMonkey Engine) was inspired by the scene graph engine described in "3D
Game Engine Design" by David H. Eberly (http://www.magic-
software.com/Books.html). Currently, jME is built on top of LWJGL, with plans
for JOGL support in the near future.

• Jist3D (http://www.jist3d.com/)
The alpha version of this engine will be released at the end of 2004. Many of its
features are described in "Practical Java Game Programming" by Clingman et al.
(see chapter 00 for publication details).

A key element of Jist3D is its utilization of JOGL, JOAL, and JInput. The
rendering engine uses JOGL to support the scene graph, and includes utilities for
working with Java 3D graphs, a collision system, and 2D overlays.

• JAVA is DOOMED (http://javaisdoomed.sourceforge.net)
It includes loaders for Quake 2 MD2 and 3D Studio Max 3DS files. The
implementation uses JOGL. The distribution includes Escape, a homage to Doom.

• Aviatrix3D (http://aviatrix3d.j3d.org/index.html)
Aviatrix3D is a retained-mode Java scene graph API above JOGL. Its toolset is

Java Prog. Techniques for Games. Chapter 7. Java 3D Intro. Draft #1 (22nd July '04)

15 Andrew Davison 2004

aimed at data visualization rather than gaming, and supports CAVEs, domes, and
HMDs.

• Kahlua (http://www.igd.fhg.de/CP/kahlua/)
Kahlua is a Java wrapper for Open Inventor
(http://www.sgi.com/software/inventor/) a scene graph API available on the
UNIX/Linux and Windows platforms.

• jFree-D2 (http://sourceforge.net/projects/jfreed2/)
jFree-D2 is a reincarnation of the open source Java 3D implementation JFree-D,
developed by Jean-Christophe Taveau back in 1999. It provides a workable (but
incomplete) implementation of Java 3D on top of GL4Java. Support for JOGL is
planned in the future.

4.3. Game Engine Bindings
The following APIs emulate well-known game engines (e.g. Quake) or are Java
wrappers around existing engines.

• Auriga3D (http://www.auriga3d.org/)
Auriga3D works with Quake3 maps. There are versions on top of JOGL and
LWJGL.

• Jake 2 (http://www.bytonic.de/html/jake2.html)
Jake2 is a port of the GPL’d Quake2 game engine. It uses JOGL for the graphics
and JOAL for the 3D sound. In tests, it achieves better than 85% of the speed of
the original C ─ 210 fps compared to 245 fps.

• Ogre4J (http://www.sourceforge.net/projects/ogre/)
Ogre4J is a binding for the OGRE 3D Engine (http://www.ogre3d.org/) using JNI.
OGRE 3D supports both Direct3D and OpenGL, and runs on all the main desktop
platforms.

• Jirr (http://sourceforge.net/projects/jirr/)
Jirr is a binding of the open source Irrlicht game engine
(http://irrlicht.sourceforge.net/), which is written in C++. Jirr is still at an early
stage in development.

• Odejava (https://odejava.dev.java.net/)
Odejava is a binding around ODE, the Open Dynamics Engine, an industrial
quality library for simulating articulated rigid body dynamics. Typical
applications include ground vehicles, legged creatures, and moving objects in VR
environments. ODE is coded in C. The project contains tools for linking Odejava
into Xith3D, OpenMind, and jME.

