
Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

1  Andrew Davison 2004

Chapter 6.4. An Isometric Tile Game

AlienTiles is a basic isometric tile game consisting of one player who must pick up a
cup, flower pot, and a watch before four nasty aliens catch and hit him three times
(see Figure 1).

Figure 1. AlienTiles in Action.

The player is represented by a little blue man with a red cap in the center of the
screen. Three of the four orange aliens are visible in Figure 1, although one of them is
mostly hidden behind the black and white column just to the right of the player.

1. Background
Isometric tiles are the basis of many real-time strategy (RTS) games, war games, and
simulations (e.g. Civilization II, Age of Empires, and SimCity variants), although the
tiling of the game surface is usually hidden.

Isometric tiles give an artificial sense of depth, as if the player’s viewpoint is
somewhere up in the sky, looking down over the playing area. It's artificial since no
perspective effects are applied: the tiles in the row ‘nearest’ the viewer are the same
size and shape as the tiles in the most ‘distant’ row at the top of the screen. This is
where the term ‘isometric’ comes from: an isometric projection is a 3D projection that
doesn’t correct for distance.

The illusion that each row of tiles is further back inside the game is supported by the
z-ordering of things (sprites, objects) drawn in the rows. An object on a row nearer
the front is drawn after those on rows further back, hiding anything behind it. This is
the case in Figure 1 with the black and white column hiding the alien standing two
rows behind it.

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

2  Andrew Davison 2004

There are various ways of labeling the x- and y- axes of a isometric tile map. We use
the fairly standard staggered map approach illustrated in Figure 2.

Figure 2. A Staggered Isometric Tile Map.

Odd and even rows are offset from each other, which means that the tile coordinates
can be a little tricky to work out as a sprite moves between rows.

AlienTiles uses tile coordinates to position sprites and other objects on the surface.
However, the surface itself isn’t made from tiles, instead it's a single medium size GIF
(216K), as shown in Figure 3.

Figure 3. The surface.gif Image.

Most isometric games construct the surface from individual tiles, which allows the
floor space to be incrementally rendered, and to dynamically change over time. The
drawback is the increased complexity (and time) in drawing the tiles to the screen. It
is necessary to draw them in back-to-front row order, with each diamond represented
by a rectangular GIF with transparent corners.

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

3  Andrew Davison 2004

Often the surface will be a composite of several layers of tile of different sizes. For
example, there may be several large green tiles for the terrain, layered over with
smaller grass, dirt, and sand tiles to create variety. Fringe tiles are employed to break
up the regularity of the edges between two large areas, such as the land and the sea.

1.1. Movement
AlienTiles offers four directions for a sprite to follow: north east, south east, south
west, and north west, as in Figure 4.

Figure 4. Directions of Movement for a Sprite.

The user interface maps these directions to the four corners of the numbers keypad: to
the keys ‘9’, ‘3’, ‘1’, and ‘7’. It’s also possible to not move at all by pressing ‘5’. An
obvious extension is to also offer north, east, south, and west movement.

The range of directions is dictated by the tile shape to a large extent, and diamonds
aren’t the only possibility. For instance, a number of strategy games use hexagons to
form a Hex map (Figure 5), which allows six compass directions out of a tile.

Figure 5. A Hex Map.

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

4  Andrew Davison 2004

Movement around an isometric tile surface is often based on single steps between
tiles. It's not possible for a sprite to move about inside a tile, only stand on a tile or
make a single step to an adjacent tile. In AlienTiles, a key press causes a single step;
the user must hold down the key to make the sprite sprint across several tiles.

Although we talk about a player moving around the surface, the truth is that the sprite
doesn’t move at all. Instead the surface moves in the opposite direction, together with
the other objects and sprites. For instance, when the player moves to the north east,
the sprite stays still but the ground underneath it shifts to the south west.

This non-movement is only true for the player sprite, the alien sprites do move from
one tile to another.

1.2. Placing a Sprite/Object
Care must be taken with object placement so the illusion that it's standing on the tile is
maintained. Figure 6 shows that the positioning of a sprite's top-left corner so that its
'feet' are planted on the tile's surface can be a little tricky:

Figure 6. Placing a Sprite onto a Tile.

The sprite can occupy screen space above the tile, but should not overlap the bottom
left and right edges of the diamond. If it does then the image will seem to be partly in
the next row, weakening the row ordering effect.

1.3. The Tile Map Surface

The AlienTiles surface contains no-go areas which the sprites cannot enter. These
include the ‘ocean’ around the edges of the tiled surface, a lake, a pond, and four red
squares (all visible in Figure 1). The no-go areas are defined in a configuration file
read in by AlienTiles at start-up.

The game surface has two kinds of objects resting on it: blocks and pickups. A block
fully occupies a tile, preventing a sprite from moving onto it. The block image can be
anything – we employ various columns and geometric shapes. A player can remove a
pickup from the surface when it's standing on the same tile; the user presses ‘2’ on the
numbers keypad.

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

5  Andrew Davison 2004

More sophisticated games have a much greater variety of surface objects. Two
common types are walls and portals (doors). A wall between two tiles prevents a
sprite from moving between the tiles. A portal is often used as a way of moving
between tile maps, for example when moving to the next game level or entering a
building with its own floor plan.

1.4. The Aliens
AlienTiles offers two types of aliens: those that actively chase after the player
(AlienAStarSprite objects) and those that congregate around the pickup that the player
is heading towards (AlienQuadSprite objects). The AlienAStarSprite class uses A*
(pronounced A star) pathfinding to chase the player, which will be explained later.

In general, alien design opens the door to ‘intelligent’ behaviour code, often based on
Artificial Intelligence (AI) techniques. Surprisingly though, quite believable sprite
behaviour can often be hacked together with the use of a few random numbers and
conventional loops and branches: AlienQuadSprite illustrates that point.

2. UML Diagrams for AlienTiles
Figure 7 shows a simplified set of UML class diagrams for AlienTiles. The audio and
image classes (e.g. MidisLoader, ClipsLoader, and ImagesLoader) have been edited
away, and the less important links between the remaining classes have been pruned
back.

Figure 7. AlienTiles Classes Diagram (Simplified).

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

6  Andrew Davison 2004

The AlienTiles JFrame and the AlienTilesPanel JPanel implement the windowed
animation framework introduced in chapters 1 and 2; BugRunner of chapter 6 and
JumpingJack of chapter 6.2 use the same technique.

Pausing, resuming. and quitting are controlled via AlienTiles’ window listener
methods.

The frame rate is set to 40 FPS, which is still too fast for the alien sprites; they are
slowed down further by code in AlienQuadSprite and AlienAStarSprite.

WorldDisplay displays the surface image and the blocks, pickups, and sprites resting
on the surface. The tile coordinates for the entities are stored in a WorldItems object,
using a TileOccupier object for each one. WorldDisplay also acts as a communication
layer between the player and the aliens.

Figure 7 includes a small sprite inheritance hierarchy, rooted at Sprite, which is
shown on its own in Figure 8.

Figure 8. The Sprite Hierarchy in AlienTiles.

The methods in Sprite are barely used, except when the sprite needs to be drawn at a
given pixel location on screen. Tile coordinates are utilized most of the time,
supported by methods in TiledSprite. The player is represented by a PlayerSprite
object.

AlienAStarSprite uses the A* pathfinding algorithm, which necessitates the
TilesPriQueue and TilesList data structure classes; they maintain sequences of
TileNode objects.

3. The AlienTilesPanel Class
AlienTilesPanel is similar to JackPanel in chapter 6.2: it uses an active rendering
animation loop driven by Java 3D's timer. It displays a simple introductory image
when the game starts, which doubles as a help screen during the course of play. While
the help is being shown, the game pauses.

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

7  Andrew Davison 2004

3.1. Managing the Game World
AlienTilesPanel creates the various game elements in createWorld():

 // globals game entities
 private WorldDisplay world;
 private PlayerSprite player;
 private AlienSprite aliens[];
 :

 private void createWorld(ImagesLoader imsLoader)
 // create the world display, the player, and aliens
 {
 world = new WorldDisplay(imsLoader, this);

 player = new PlayerSprite(7,12, PWIDTH, PHEIGHT,
 clipsLoader, imsLoader, world, this);
 // sprite starts on tile (7,12)

 aliens = new AlienSprite[4];
 aliens[0] = new AlienAStarSprite(10, 11, PWIDTH, PHEIGHT,
 imsLoader, world);
 aliens[1] = new AlienQuadSprite(6, 21, PWIDTH, PHEIGHT,
 imsLoader, world);
 aliens[2] = new AlienQuadSprite(14, 20, PWIDTH, PHEIGHT,
 imsLoader, world);
 aliens[3] = new AlienAStarSprite(34, 34, PWIDTH, PHEIGHT,
 imsLoader, world);
 // use 2 AStar and 2 quad alien sprites
 // the 4th alien is placed at an illegal tile location (34,34)

 world.addSprites(player, aliens);
 // tell the world about the sprites
 } // end of createWorld()

Tile coordinates are passed to the sprites rather than pixel locations in the JPanel.

The two AStar and two quad sprites are stored in an aliens[] array to make it easier to
send messages to all of them as a group.

The player and aliens do not communicate directly, instead they call methods in the
WorldDisplay object, world, which passes the messages on. This requires that sprite
references be passed to world via a call to addSprites().

3.2. Dealing with Input
The game is controlled from the keyboard only, no mouse events are caught. As in
previous applications, the key presses are handled by processKey(), which deals with
termination keys (e.g. ctrl-C), toggling the help screen, and player controls. The code
related to the player keys is shown in the fragment below:

 private void processKey(KeyEvent e)
 // handles termination, help, and game-play keys
 {
 int keyCode = e.getKeyCode();
 :

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

8  Andrew Davison 2004

 // game-play keys
 if (!isPaused && !gameOver) {
 // move the player based on the numpad key pressed
 if (keyCode == KeyEvent.VK_NUMPAD7)
 player.move(TiledSprite.NW); // move north west
 else if (keyCode == KeyEvent.VK_NUMPAD9)
 player.move(TiledSprite.NE); // north east
 else if (keyCode == KeyEvent.VK_NUMPAD3)
 player.move(TiledSprite.SE); // south east
 else if (keyCode == KeyEvent.VK_NUMPAD1)
 player.move(TiledSprite.SW); // south west
 else if (keyCode == KeyEvent.VK_NUMPAD5)
 player.standStill(); // stand still
 else if (keyCode == KeyEvent.VK_NUMPAD2)
 player.tryPickup(); // try to pick up from this tile
 }
 } // end of processKey()

Three PlayerSprite methods are called: move(), standStill(), and tryPickup().

3.3. The Animation Loop
The animation loop is located in run(), and unchanged from earlier examples. In
essence, it is:

 public void run()
 { ...
 while (running) {
 gameUpdate();
 gameRender();
 paintScreen();
 // timing correction code
 }
 System.exit(0);
 }

gameUpdate() updates the changing game entities: the four mobile aliens.

 private void gameUpdate()
 { if (!isPaused && !gameOver) {
 for(int i=0; i < aliens.length; i++)
 aliens[i].update();
 }
 }

gameRender() relies on the WorldDisplay object to draw the surface and its contents:

 private void gameRender()
 {
 :
 // a light blue background
 dbg.setColor(lightBlue);
 dbg.fillRect(0, 0, PWIDTH, PHEIGHT);

 // draw the game elements: order is important
 world.draw(dbg);

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

9  Andrew Davison 2004

 /* WorldDisplay draws the game world: the tile floor, blocks,
 pickups, and the sprites. */

 reportStats(dbg);
 // report time spent playing, number of hits, pickups left

 :
 } // end of gameRender()

3.4. Ending the Game
The game finishes (gameOver is set to true) either when the player has been hit
enough times, or when all the pickups (a cup, flower pot, and watch) have been
gathered. The first condition is detected by the PlayerSprite object, the second by the
WorldDisplay object; both of them call gameOver() to inform AlienTilesPanel.

 public void gameOver()
 { if (!gameOver) {
 gameOver = true;
 score = (int) ((J3DTimer.getValue() -
 gameStartTime)/1000000000L);
 clipsLoader.play("applause", false);
 }
 }

4. The WorldDisplay Class
WorldDisplay manages:

 the moving tile floor, represented by a single GIF;
 no-go areas on the floor;
 blocks occupying certain tiles;
 pickups occupying certain tiles;
 communication between the player and aliens sprites.

The communication layer permits WorldDisplay to monitor and control the
interactions between the sprites.

WorldDisplay utilizes three main data structures:

 an obstacles[][] boolean array specifying which tiles are no-gos or contain
blocks;

 a WorldItems objects which stores details on blocks, pickups, and sprites in
tile row order to make them easier to draw with the correct z-ordering;

 a numPickups counter to record how many pickups are still left to be picked
up.

 private boolean obstacles[][];
 private WorldItems wItems;
 private int numPickups;

WorldDisplay’s methods fall into five main groups:

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

10  Andrew Davison 2004

 the loading of floor information, which describes where the tiles rows and
columns are located on the floor;

 the loading of world entity information, which gives the tile coordinates of the
no-gos areas, blocks, and pickups;

 pickup-related methods;

 sprite-related methods;

 others, e.g. draw().

4.1. Loading Floor Information
The floor image is a single GIF, so additional information must state where the odd
and even tile rows are located, and give the dimensions for a tile (a diamond). These
details are shown in Figure 9.

Figure 9. Floor Information.

The relevant information is stored in worldInfo.txt in the World/ subdirectory, and
read in by loadWorldInfo(). The file contains:

// name of the GIF (surface.gif) holding the floor image
image surface

// number of tiles (x,y)
numTiles 16 23

// pixel dimensions of a single tile (width, height)
dimTile 56 29

// 'start of first even row' (x,y) coordinate
evenRow 12 8

// 'start of first odd row' (x,y) coordinate
oddRow 40 23

Lines beginning with "//" are comments.

The image used is surface.gif, which should be in the Images/ subdirectory below the
AlienTiles directory.

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

11  Andrew Davison 2004

There are 16 columns of tiles, and 23 rows. Each tile is 56 pixels wide at its widest
point, and 29 pixels high. The first even row (row 0) starts at pixel coordinate (12,8),
the first odd row (row 1) at (40,23). The starting point is taken to be the top-left
corner of the rectangle that surrounds the diamond.

With this information it is possible to translate any tile coordinate into a pixel location
in the floor image.

The data read in by loadFloorInfo() and its secondary methods is stored in a series of
globals in WorldDisplay:

 // world size in number of tiles
 private int numXTiles, numYTiles;

 // max pixel width/height of a tile
 private int tileWidth, tileHeight;

 // 'start of first even row' coordinate
 private int evenRowX, evenRowY;

 // 'start of first odd row' coordinate
 private int oddRowX, oddRowY;

Most of them are used only to initialize the WorldItems object:

 WorldItems wItems = new WorldItems(tileWidth, tileHeight,
 evenRowX, evenRowY, oddRowX, oddRowY);

The WorldItems object organizes details about the surface entities (blocks, pickups,
and sprites) by tile row so they are drawn to the JPanel with the correct z-ordering.
This requires the floor information so that an entity’s tile coordinates can be translated
to pixel locations.

The number of tiles on the surface is used to initialize the obstacles[][] array:

 private void initObstacles()
 // initially there are no obstacles in the world
 {
 obstacles = new boolean[numXTiles][numYTiles];
 for(int i=0; i < numXTiles; i++)
 for(int j=0; j < numYTiles; j++)
 obstacles[i][j] = false;
 }

Obstacles are registered (i.e. particular cells are set to true) as WorldDisplay loads
entity information (see below).

Sprites utilizes validTileLoc() to check if a particular tile (x,y) can be entered.

 public boolean validTileLoc(int x, int y)
 // Is tile coord (x,y) on the tile map and not contain an obstacle?

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

12  Andrew Davison 2004

 {
 if ((x < 0) || (x >= numXTiles) || (y < 0) || (y >= numYTiles))
 return false;
 if (obstacles[x][y])
 return false;
 return true;
 }

4.2. Loading World Entity Information
Rather than hardwire entity positions into the code, the information is read in by
loadWorldObjects() from the file worldObjs.txt in the subdirectory World/.

The data come in three flavours: no-go areas, blocks, and pickups, placed at a given
tile coordinate, and unable to move. Sprites aren’t included since their position can
change during game play.

Consequently, worldObjs.txt supports three data formats:

 // no-go coordinates
 n <x1>-<y1> <x2>-<y2>
 #

 // block coordinates for blockName
 b <blockName>
 <x1>-<y1> <x2>-<y2>
 #

 // pickup coordinate for pickupName
 p <pickupName> <x>-<y>

A 'n' is for no-go, followed by multiple lines of (x,y) coordinates defining which tiles
are inaccessible. The sequence of coordinates is terminated with a '#'.

A 'b' line starts with a block name, which corresponds to the name of the GIF file for
the block, then a sequence of tile coordinates where the block appears.

The name on a 'p' line is also mapped to a GIF file name, but is followed only by a
single coordinate. A pickup is assumed to only appear once on the floor.

The GIFs should be in the subdirectory Images/ below the AlienTiles directory.

A fragment of worldObjs.txt:

 // bottom right danger zone (red in the GIF)
 n 12-13 12-14 13-14 12-15 #

 // blocks
 b column1
 9-3 7-7 7-18 #

 b pyramid
 1-12 5-16 #

 b statue
 14-13 #

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

13  Andrew Davison 2004

 // pickups
 p cup 1-8

A quick examination of the Images/ subdirectory will show the presence of
column1.gif, pyramid.gif, statue.gif, and cup.gif.

As the information is parsed by loadWorldObjects() and its helper methods, the
obstacles[][] array and the worldItems object are passed the entity details. For
instance, in getsBlocksLine() the following code fragment is executed when a (x,y)
coordinate for a block has been found:

 wItems.addItem(blockName+blocksCounter, BLOCK,
 coord.x, coord.y, im);
 obstacles[coord.x][coord.y] = true;

addItem() adds information about the block to the WorldItems object. The relevant
obstacles[][] cell is also set to true.

Similar code is executed for a pickup in getPickup():

 wItems.addItem(pickupName, PICKUP, coord.x, coord.y, pickupIm);
 numPickups++;

The obstacles[][] array is not modified since a sprite can move to a tile occupied by a
pickup (it must do so before the item can be picked up).

BLOCK, PICKUP, and SPRITE are constants used by WorldItems to distinguish
between tile entities.

4.3. Pickup Methods
WorldDisplay offers a range of pickup-related methods used by the sprites. For
example, the PlayerSprite object calls removePickup() to pick up a named item.

 public void removePickup(String name)
 { if (wItems.removePickup(name)) { // try to remove it
 numPickups--;
 if (numPickups == 0) // player has picked up everything
 atPanel.gameOver();
 }
 else
 System.out.println("Cannot delete unknown pickup: " + name);
 }

WorldDisplay communicates with its WorldItems object to attempt the removal, and
decrements its numPickups counter. If the counter reaches 0, then the player has
collected all the pickups, and AlienTilesPanel (atPanel) can be told that the game is
over.

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

14  Andrew Davison 2004

4.4. Player Methods
The player sprite and the aliens don’t communicate directly, instead their interaction
is mediated by WorldDisplay. One of the more complicated player methods is
playerHasMoved(), called by the PlayerSprite object when it moves to a new tile.

 public void playerHasMoved(Point newPt, int moveQuad)
 {
 for(int i=0; i < aliens.length; i++)
 aliens[i].playerHasMoved(newPt); // tell the aliens
 updateOffsets(moveQuad); // update world's offset
 }

The player passes in a Point object holding its new tile coordinate, and the quadrant
direction which brought the sprite to the tile. The moveQuad value can be the constant
NE, SE, SW, NW, or STILL, which correspond to the four possible compass
directions that a sprite can use (plus no movement).

The new tile location is passed to the aliens, which can use it to modify their intended
destination. The quadrant direction is passed to updateOffsets() to change the surface
image’s offset from the enclosing JPanel.

As mentioned earlier, the player sprite doesn't move at all. A careful examination of
AlienTiles during execution shows that the sprite always stays at the center of the
game's JPanel. The floor image, and its contents (blocks, pickups, aliens), move
instead. For instance, when the player sprite is instructed to move north west (the
quadrant direction NW), the sprite does nothing but the floor and its contents shifts to
the south east.

The floor offset is maintained in two globals:

 private int xOffset = 0;
 private int yOffset = 0;

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

15  Andrew Davison 2004

xOffset and yOffset hold the pixel offsets for drawing the top-left corner of the floor
image (and its contents) relative to the top-left corner (0,0) of the JPanel, as shown in
Figure 10. The offsets may have negative values.

Figure 10. The Floor Offset from the JPanel.

The offsets are the final part of the mapping required to translate a tile coordinate into
an on-screen pixel location.

This approach means that a stationary block or pickup, always positioned on the same
tile, will be drawn at different places inside the JPanel as the xOffset and yOffset
values change.

The offsets are adjusted by updateOffsets():

 private void updateOffsets(int moveQuad)
 {
 if (moveQuad == TiledSprite.SW) { // offset to NE
 xOffset += tileWidth/2;
 yOffset -= tileHeight/2;
 }
 else if (moveQuad == TiledSprite.NW) { // offset to SE
 xOffset += tileWidth/2;
 yOffset += tileHeight/2;
 }
 else if (moveQuad == TiledSprite.NE) { // offset to SW
 xOffset -= tileWidth/2;
 yOffset += tileHeight/2;
 }
 else if (moveQuad == TiledSprite.SE) { // offset to NW
 xOffset -= tileWidth/2;
 yOffset -= tileHeight/2;
 }
 else if (moveQuad == TiledSprite.STILL) { // do nothing
 }
 else
 System.out.println("moveQuad error detected");
 }

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

16  Andrew Davison 2004

4.5. Drawing the World
AlienTilesPanel delegates the world drawing task to draw() in WorldDisplay:

 public void draw(Graphics g)
 {
 g.drawImage(floorIm, xOffset, yOffset, null); // draw floor image
 wItems.positionSprites(player, aliens); // add the sprites
 wItems.draw(g, xOffset, yOffset); // draw entities
 wItems.removeSprites(); // remove sprites
 }

WorldDisplay draws the floor GIF, suitably offset, but the entities resting on the floor
(the blocks, pickups, and sprites) are left to WorldItems to render.

During WorldDisplay’s loading phase, the WorldItems object is initialized with the
locations of the blocks and pickups, but not sprites. The reason is that sprites move
about at run time, so would have to be repeatedly reordered in WorldItem's internal
data structures.

Instead, whenever the game surface needs to be drawn, the sprites’ current positions
are recorded temporarily in WorldItems by calling positionSprites(). After the
drawing is completed, the sprite data is deleted with removeSprites().

This approach greatly simplifies the house-keeping carried out by WorldItems, as we
will see. The drawback is the need for repeated insertions and deletions of sprite
information. However, they are only five sprites in AlienTiles, so the overhead isn’t
excessive.

5. The WorldItems Class
WorldItems maintains an ArrayList of TileOccupier objects (called items) ordered by
increasing tile row. Figure 10 shows that row 0 is the row ‘furthest’ back in the game,
while the last row is nearest the front. When the ArrayList objects are drawn, the ones
in the rows further back will be drawn first, matching the intended z-ordering of the
rows.

A TileOccupier object can represent a block, pickup, or sprite.

The ArrayList changes over time. The most frequent change is to temporarily add
sprites, so they can be drawn in their correct positions relative to the blocks and
pickups. Also, pickups are deleted as they are collected by the player.

The WorldItems constructor stores floor information. This is used to translate the tile
coordinates of the TileOccupiers into pixel locations on the floor.

 // max pixel width/height of a tile
 private int tileWidth, tileHeight;

 // 'start of first even row' coordinate
 private int evenRowX, evenRowY;

 // 'start of first odd row' coordinate

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

17  Andrew Davison 2004

 private int oddRowX, oddRowY;

 private ArrayList items;
 // a row-ordered list of TileOccupier objects

 public WorldItems(int w, int h, int erX, int erY,
 int orX, int orY)
 { tileWidth = w; tileHeight = h;
 evenRowX = erX; evenRowY = erY;
 oddRowX = orX; oddRowY = orY;
 items = new ArrayList();
 }

5.1. Adding an Entity
Adding an entity (either a pickup or a block) requires the creation of a TileOccupier
object, and its placement in the items ArrayList sorted by its row/column position.

 public void addItem(String name, int type, int x, int y,
 BufferedImage im)
 { TileOccupier toc;
 if (y%2 == 0) // even row
 toc = new TileOccupier(name, type, x, y, im,
 evenRowX, evenRowY,
 tileWidth, tileHeight);
 else
 toc = new TileOccupier(name, type, x, y, im,
 oddRowX, oddRowY,
 tileWidth, tileHeight);
 rowInsert(toc, x, y);
 }

Each TileOccupier object must calculate its pixel location on the floor, which requires
the tile coordinate of the occupier (x,y), the dimensions of a tile (tileWidth and
tileHeight), and the start coordinate of the first even or odd row. If the TileOccupier is
positioned on an even row (i.e. y%2 == 0) then it is passed the even row coordinate,
otherwise the odd coordinate.

addItem() only deals with blocks or pickups, and so the type argument will be
BLOCK or PICKUP. The creation of a SPRITE entity is handled by a separate
method, posnSprite(), which is similar to addItem(). posnSprite() adds a sprite
reference to the information in the TileOccupier object.

rowInsert() inserts the TileOccupier object into the ArrayList in increasing row order.
Within a row, the objects are ordered by increasing column position.

5.2. Drawing Entities
WorldDisplay’s draw() displays all the entities using a z-ordering that draws the rows
further back first. Since the TileOccupier objects are stored in the ArrayList in
increasing row order, this is achieved by cycling through them from start to finish.

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

18  Andrew Davison 2004

 public void draw(Graphics g, int xOffset, int yOffset)
 {
 TileOccupier item;
 for(int i = 0; i < items.size(); i++) {
 item = (TileOccupier) items.get(i);
 item.draw(g, xOffset, yOffset); // draw the item
 }
 }

The TileOccupier draw() call is passed the x- and y- offsets of the floor image from
the JPanel’s top-left corner. They are used to draw the entity offset by the same
amount as the floor.

5.3. Pickup Methods
WorldItems contains several pickup-related methods. They all have a similar
structure, involving a loop through the items list looking for a specified pickup. Then
a method is called in the found TileOccupier object.

One of the more involved methods is nearestPickup(). It is supplied with a tile
coordinate, and returns the coordinate of the nearest pickup.

 public Point nearestPickup(Point pt)
 {
 double minDist = 1000000; // dummy large value (a hack)
 Point minPoint = null;
 double dist;
 TileOccupier item;
 for(int i=0; i < items.size(); i++) {
 item = (TileOccupier) items.get(i);
 if (item.getType() == WorldDisplay.PICKUP) {
 dist = pt.distanceSq(item.getTileLoc());
 // get squared dist. to pickup
 if (dist < minDist) {
 minDist = dist; // store smallest dist
 minPoint = item.getTileLoc(); // store associated pt
 }
 }
 }
 return minPoint;
 } // end of nearestPickup()

The pickups are found by searching for the PICKUP type. The square of the distance
between the input point and a pickup is calculated, thereby avoiding negative lengths,
and the current minimum distance and the associated pickup point is stored.

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

19  Andrew Davison 2004

6. The TileOccupier Class
A tile occupier has a unique name, a type value (BLOCK, PICKUP, or SPRITE), a
tile coordinate (xTile, yTile), and a coordinate relative to the top-left corner of the
floor image (xDraw, yDraw) where the occupier’s image should be drawn. The
relationship between these coordinates is shown in Figure 11.

Figure 11. Positioning a Tile Occupier in a Tile.

xDraw and yDraw are relative to the floor image, and so floor offsets must be added
to them before the image is drawn into the JPanel.

The constructor initializes the coordinate details, and calls calcPosition() to calculate
xDraw and yDraw.

 // globals
 private String name;
 private int type; // BLOCK, PICKUP, or SPRITE
 private BufferedImage image;
 private int xTile, yTile; // tile coordinate
 private int xDraw, yDraw;
 // coordinate relative to the floor image where the tile
 // occupier should be drawn

 private TiledSprite sprite = null;
 // used when the TileOccupier is a sprite

 public TileOccupier(String nm, int ty, int x, int y,
 BufferedImage im, int xRowStart, int yRowStart,
 int xTileWidth, int yTileHeight)
 { name = nm;
 type = ty;
 xTile = x; yTile = y;
 image = im;
 calcPosition(xRowStart, yRowStart, xTileWidth, yTileHeight);
 }

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

20  Andrew Davison 2004

If this object is in an even row, then xRowStart and yRowStart will hold the pixel
location of the first even row, otherwise the location of the first odd row. The (x,y)
arguments give the tile's location.

calcPosition() calculates the (xDraw,yDraw) coordinate relative to the floor image.

 private void calcPosition(int xRowStart, int yRowStart,
 int xTileWidth, int yTileHeight)
 {
 // top-left corner of image relative to its tile
 int xImOffset = xTileWidth/2 - image.getWidth()/2; // in middle
 int yImOffset = yTileHeight - image.getHeight() - yTileHeight/5;
 // up a little from bottom point of the diamond

 // top-left corner of image relative to floor image
 xDraw = xRowStart + (xTile * xTileWidth) + xImOffset;
 if (yTile%2 == 0) // on an even row
 yDraw = yRowStart + (yTile/2 * yTileHeight) + yImOffset;
 else // on an odd row
 yDraw = yRowStart + ((yTile-1)/2 * yTileHeight) + yImOffset;
 }

The (xDraw,yDraw) coordinate will cause the TileOccupier's image to be rendered so
that its base appears to be resting on the tile, centered in the x-direction, and a little
forward of the middle in the y-direction.

6.1. Additional Sprite Information
When a TileOccupier object is created for a sprite, the addSpriteRef() method is
called to store a reference to the sprite. This is used by the draw() method, as
explained below.

 public void addSpriteRef(TiledSprite s)
 { if (type == WorldDisplay.SPRITE)
 sprite = s;
 }

6.2. Drawing a Tile Occupier

When the draw() method is called, the (xDraw, yDraw) coordinate relative to the floor
image is already known. Now the x- and y- offsets of the floor image relative to the
JPanel must be added to get the image’s position in the JPanel.

There is one complication: drawing a sprite. A sprite may be animated, and will
almost certainly be represented by several images, so which one should be drawn?
This task is delegated to the sprite, by calling its draw() method. Prior to the draw, the
sprite’s pixel position must be set.

 public void draw(Graphics g, int xOffset, int yOffset)
 {
 if (type == WorldDisplay.SPRITE) {
 sprite.setPosition(xDraw+xOffset, yDraw+yOffset);
 // set its position in the JPanel

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

21  Andrew Davison 2004

 sprite.drawSprite(g); // let the sprite do the drawing
 }
 else // the entity is a PICKUP or BLOCK
 g.drawImage(image, xDraw+xOffset, yDraw+yOffset, null);
 }

draw() in TileOccupier is the only place where the pixel coordinates maintained by
the Sprite class are manipulated. Tile coordinates, held in the TiledSprite subclass, are
utilized in the rest of AlienTiles.

7. The TiledSprite Class
A TiledSprite represents a sprite’s position using tile coordinates (xTile, yTile); its
most important method allows a sprite to move from its current tile to an adjacent one
using a compass direction (quadrant): NE, SE, SW, NW.

An implicit assumption of TiledSprite is that a sprite cannot move around inside a tile,
only step from one tile to another.

The constructor initializes a sprite’s tile position, but only after checking its validity
with WorldDisplay.

 protected int xTile, yTile; // tile coordinate for the sprite
 protected WorldDisplay world;

 public TiledSprite(int x, int y, int w, int h,
 ImagesLoader imsLd, String name,
 WorldDisplay wd)
 { super(0, 0, w, h, imsLd, name);
 setStep(0, 0); // no movement
 world = wd;

 if (!world.validTileLoc(x, y)) { // is tile (x,y) valid
 System.out.println("Alien tile location (" + x + "," + y +
 ") not valid; using (0,0)");
 x = 0; y = 0;
 }
 xTile = x; yTile = y;
 } // end of TiledSprite()

7.1. Moving to Another Tile
AlienTiles' staggered tiles layout means that the coordinates of the four tiles adjacent
to the current one are calculated in a slightly different way depending on if the current
tile is on an even or odd row.

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

22  Andrew Davison 2004

The current tile in Figure 12 is in row 3 (odd), the one in Figure 13 on row 2 (even).
The coordinates of the adjacent tiles are calculated slightly differently in the two
cases.

Figure 12. Moving from Tile (1,3).

Figure 13. Moving from Tile (1,2).

tryMove() calculates a new tile coordinate based on the current location and the
supplied quadrant. A four-way branch deals with the four possible directions, and
each branch considers whether the starting point is on an even or odd row.

 public Point tryMove(int quad)
 {
 Point nextPt;
 if (quad == NE)
 nextPt = (yTile%2 == 0)? new Point(xTile,yTile-1) :
 new Point(xTile+1,yTile-1);
 else if (quad == SE)
 nextPt = (yTile%2 == 0)? new Point(xTile,yTile+1) :
 new Point(xTile+1,yTile+1);
 else if (quad == SW)
 nextPt = (yTile%2 == 0)? new Point(xTile-1,yTile+1) :
 new Point(xTile,yTile+1);
 else if (quad == NW)
 nextPt = (yTile%2 == 0)? new Point(xTile-1,yTile-1) :
 new Point(xTile,yTile-1);
 else
 return null;

 if (world.validTileLoc(nextPt.x, nextPt.y))
 // ask WorldDisplay if proposed tile is valid
 return nextPt;
 else

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

23  Andrew Davison 2004

 return null;
 } // end of tryMove()

The method is called tryMove() since there is a possibility that the desired quadrant
direction is invalid, either because the new tile is a no-go area, it is occupied by a
block, or the coordinate lies off the surface. These cases are checked by called
validTileLoc() in WorldDisplay.

8. The PlayerSprite Class
PlayerSprite represents the player, and is a subclass of TiledSprite.

The player's aim is to move over the surface to collect the pickups before being beaten
to death by the aliens.

The statechart for PlayerSprite in Figure 14 shows that the sprite has three main
concurrent activities.

Figure 14. PlayerSprite Statechart.

The move() and tryPickup() transitions are triggered by the user from the keyboard.
The hitByAlien() transition is initiated by the WorldDisplay object when an alien tells
it that it has hit the player.

During various activities, the player must communicate with the WorldDisplay object
(called world) and the AlienTilePanel game panel (called atPanel).

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

24  Andrew Davison 2004

PlayerSprite attaches sound effects to different tasks, including: picking something
up, failing to pick something up, being hit by an alien, and failing to move onto a no-
go tile or a tile holding a block.

8.1. Moving (and Standing Still)
A PlayerSprite tries to move when the user presses one of the quadrant keys ('9', '3',
'1', or '7').

 public void move(int quad)
 {
 Point newPt = tryMove(quad);
 if (newPt == null) { // move not possible
 clipsLoader.play("slap", false);
 standStill();
 }
 else { // move is possible
 setTileLoc(newPt); // update the sprite's tile location
 if (quad == NE)
 setImage("ne");
 else if (quad == SE)
 setImage("se");
 else if (quad == SW)
 setImage("sw");
 else // quad == NW
 setImage("nw");
 world.playerHasMoved(newPt, quad);
 }
 } // end of move()

The attempt is handled by TiledSprite's inherited tryMove(), and the sprite's tile
location is updated if it's successful.

The move is dressed up with an image change for the sprite, and the playing of a
sound effect if the move is blocked.

A special (lazy) case of moving is 'standing still', which only requires an image
change. This is triggered by the user pressing '5' on the numbers keypad.

 public void standStill()
 { setImage("still"); }

8.2. Drawing the Player
The statechart includes a draw state, triggered by a draw() transition. The draw
activity is implemented by using the setPosition() and draw() methods inherited from
Sprite. However, the drawing is not initiated by code in PlayerSprite, but by
WorldDisplay's draw() method:

 public void draw(Graphics g)
 // in WorldDisplay
 { g.drawImage(floorIm, xOffset, yOffset, null); // draw floor image
 wItems.positionSprites(player, aliens); // add sprites
 wItems.draw(g, xOffset, yOffset); // draw things

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

25  Andrew Davison 2004

 wItems.removeSprites(); // remove sprites
 }

As explained earlier, all the sprites, including the player, are added to WorldItems
temporarily so they can be drawn in the correct order. Each sprite is stored as a
TileOccupier object, and setPosition() and draw() are called from there.

8.3. Being Hit by an Alien
PlayerSprite maintains a hit counter, which is incremented by a call to hitByAlien()
from the WorldDisplay object.

 public void hitByAlien()
 { clipsLoader.play("hit", false);
 hitCount++;
 if (hitCount == MAX_HITS) // player is dead
 atPanel.gameOver();
 }

When hitCount reaches a certain value (MAX_HITS), it's all over. The sprite doesn't
actually terminate at this point, it only notifies AlienTilePanel.

8.4. Trying to Pick up a Pickup
The user tries to pick up an item by pressing '2' on the numbers keypad. The hard
work is to determine if the sprite's current tile location contains a pickup, and then to
remove that item from the scene. The two operations are handled by WorldDisplay
methods.

 public boolean tryPickup()
 {
 String pickupName;
 if ((pickupName = world.overPickup(getTileLoc())) == null) {
 clipsLoader.play("noPickup", false); // nothing to pickup
 return false;
 }
 else { // found a pickup
 clipsLoader.play("gotPickup", false);
 world.removePickup(pickupName); // tell WorldDisplay
 return true;
 }
 }

The name of the pickup on the current tile is obtained (it may be null if they isn't a
pickup there), then the name is used in the deletion request.

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

26  Andrew Davison 2004

9. The AlienSprite Class
AlienSprite implements the basic behaviour of an alien sprite, and is subclassed to
create the AlienAStarSprite and AlenQuadSprite classes. AlienSprite is a subclass of
TiledSprite.

Alien behaviour can be understood by considering the statechart in Figure 15.

Figure 15. Alien Statechart.

The 'plan move' state is entered by the WorldDisplay object notifying the alien that
the player has moved. This will probably cause it to recalculate its current direction or
destination.

The other activity is the usual update/draw cycle driven by the animation loop in
AlienTilesPanel. The alien tries to hit the player while in the 'attack' state . A
successful hit is reported to the WorldDisplay object, and the alien stays where it is.
Otherwise, the alien updates its position, in the hope of getting closer to the player. In
the draw state, the sprite's tile coordinates are mapped to a pixel location and the
sprite's image is rendered.

Responding to a player's movement is very sprite-specific, so playerHasMoved() is
empty in AlienSprite:

 public void playerHasMoved(Point playerLoc)
 { }

PlayerLoc contains the current tile coordinates for the PlayerSprite object.

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

27  Andrew Davison 2004

9.1. Updating the AlienSprite
The 'attack', 'stationary', and 'move' states are encapsulated in update().

 // globals
 private final static int UPDATE_FREQ = 30;
 private int updateCounter = 0;
 :

 public void update()
 {
 updateCounter = (updateCounter+1)%UPDATE_FREQ;
 if (updateCounter == 0) { // reduced update frequency
 if (!hitPlayer())
 move();
 }
 }

update() is called from AlienTilesPanel's animation loop, which executes at 40 FPS.
Although this is a slow-ish frame rate, it still makes the aliens respond too quickly.
Our solution is to use a counter to further reduce the update frequency.

hitPlayer() checks if the alien is on the same tile as the player. If it is then the
WorldDisplay object is informed of a hit.

 private boolean hitPlayer()
 {
 Point playerLoc = world.getPlayerLoc();
 if (playerLoc.equals(getTileLoc())) {
 world.hitByAlien(); // whack!
 return true;
 }
 return false;
 }

The details of the 'move' state will vary from one alien to another, which translates to
the alien subclasses overriding the move() method.

AlienSprite's move() carries out a random walk. getRandDirection() (a method
inherited from TiledSprite) returns a quadrant, and this is tried out with TiledSprite's
tryMove().

 protected void move()
 {
 int quad = getRandDirection();
 Point newPt;
 while ((newPt = tryMove(quad)) == null)
 quad = getRandDirection();
 // the loop could repeat for a while,
 // but it should eventually find a direction
 setMove(newPt, quad);
 }

The new tile coordinate is use to update the sprite's position in setMove():

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

28  Andrew Davison 2004

 protected void setMove(Point newPt, int quad)
 {
 if (world.validTileLoc(newPt.x, newPt.y)) { // should be ok
 setTileLoc(newPt);
 if ((quad == NE) || (quad == SE))
 setImage("baddieRight");
 else if ((quad == SW) || (quad == NW))
 setImage("baddieLeft");
 else
 System.out.println("Unknown alien quadrant: " + quad);
 }
 else
 System.out.println("Cannot move alien to (" + newPt.x +
 ", " + newPt.y + ")");
 } // end of doMove()

setMove() double-checks the validity of the new tile, and also changes the sprite's
appearance. The method is protected since only subclasses of AlienSprite will use it,
as part of their versions of move().

As mentioned at the start of this section, update() handles the 'attack', 'stationary', and
'move' states of the alien statechart. Where is the 'draw' state processed? As with the
PlayerSprite class, this task is part of the drawing operation carried out by
WorldDisplay through its WorldItems object.

10. The AlienQuadSprite Class
AlienQuadSprite is a subclass of AlienSprite, so overrides that superclass'
playerHasMoved() and move() methods. Another way of thinking about the
specialization is that the 'plan move' and 'move' states in Figure 15 are being
modified.

In the 'plan move' state, the alien calculates a quadrant direction (i.e. one of NE, SE,
SW, or NW). The direction is chosen by finding the nearest pickup point to the player,
then calculating that pickup's quadrant direction relative to the alien. This gives the
alien a 'pickup guarding' behaviour, since the alien moves towards the pickup that the
player (probably) wants to collect.

10.1. Planning a Move
playerHasMoved() calculates a quadrant direction for the sprite.

 // global
 private int currentQuad;
 :

 public void playerHasMoved(Point playerLoc)
 {
 if (world.hasPickupsLeft()) {
 Point nearPickup = world.nearestPickup(playerLoc);
 // return coord of nearest pickup to the player

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

29  Andrew Davison 2004

 currentQuad = calcQuadrant(nearPickup);
 }
 }

 private int calcQuadrant(Point pickupPt)
 /* Roughly calculate a quadrant by comparing the
 pickup's point with the alien's position. */
 {
 if ((pickupPt.x > xTile) && (pickupPt.y > yTile))
 return SE;
 else if ((pickupPt.x > xTile) && (pickupPt.y < yTile))
 return NE;
 else if ((pickupPt.x < xTile) && (pickupPt.y > yTile))
 return SW;
 else
 return NW;
 } // end of calcQuadrant()

calcQuadrant() could be more complex, but the emphasis is on speed.
playerHasMoved() and calcQuadrant() will be called frequently, whenever the player
moves, so there is no need to spend a large amount of time processing a single move.

10.2. Moving the AlienQuadSprite
The sprite tries to move in the currentQuad direction. If that way is blocked then it
randomly tries another direction. This approach may lead to the sprite getting stuck
for a while.

 protected void move()
 { int quad = currentQuad;
 Point newPt;
 while ((newPt = tryMove(quad)) == null)
 quad = getRandDirection();
 // the loop could repeat for a while,
 // but it should eventually find a way
 setMove(newPt, quad);
 }

11. The AlienAStarSprite Class
In a similar manner to AlienQuadSprite, AlienAStarSprite is a subclass of
AlienSprite, so overrides that superclass' playerHasMoved() and move() methods.

The alien calculates a path to the player using the A* pathfinding algorithm. The path
is stored as a sequence of tile coordinates that need to be visited in order to reach the
player. In each call to move(), the sprite moves to the next coordinate in the sequence,
giving it a 'player chasing' behaviour.

11.1. Planning a Move
The player keeps moving, which is reflected in the repeated calls to playerHasMoved
(). We don't want to recalculate a path after every player move, since the change will

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

30  Andrew Davison 2004

be minimal but still expensive to generate. Instead, the path is generated only when
the player has moved MAX_MOVES steps. This saves on computation, and makes
things a bit easier for the player.

 // globals
 private final static int MAX_MOVES = 5;

 private int numPlayerMoves = 0;
 private ArrayList path; // tile coords going to the player
 private int pathIndex = 0;
 :

 public void playerHasMoved(Point playerLoc)
 { if (numPlayerMoves == 0)
 calcNewPath(playerLoc);
 else
 numPlayerMoves = (numPlayerMoves+1)%MAX_MOVES;
 }

 private void calcNewPath(Point playerLoc)
 { path = aStarSearch(getTileLoc(), playerLoc);
 pathIndex = 0; // reset the index for the new path
 }

11.2. The A* Algorithm
A* search finds a path from a start node to a goal node; in AlienTiles the starting
point is the alien’s current tile position, and the goal is the player’s tile.

The algorithm repeatedly examines the most promising (highest scoring) tile position
it has seen. When a tile is considered, the search is finished if that tile is the player's
location, otherwise it stores the locations of the adjacent tiles for future exploration.

It scores a tile (let's call it node) by estimating the cost of the best path that starts at
the alien’s position, goes through node, and finishes at the player’s tile.

The scoring formula is expressed using two functions, often called g() and h(); we'll
break with tradition and call them getCostFromStart() and costToGoal():

score(node) = node.getCostFromStart() + node.costToGoal()

getCostFromStart() is the smallest cost of arriving at node from the starting tile (the
alien's current position). costToGoal() is a heuristic estimate (an educated guess) of
the cost of reaching the goal tile (the player's location) from node.

A* search is popular because it's guaranteed to find the shortest path from the start to
the goal, as long as the heuristic estimate, costToGoal(), is admissible. Admissibility
means that the node.costToGoal() value is always less than (or equal to) the actual
cost of getting to the goal from node.

The A* algorithm has been proven to make the most efficient use of costToGoal(), in
the sense that other search techniques cannot find an optimal path by checking fewer
nodes.

If costToGoal() is inaccurate, returning too large a value, then the search will become
unfocussed, examining nodes which will not contribute to the final path. Also, the

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

31  Andrew Davison 2004

generated path may not be the shortest possible. However, a less accurate costToGoal
() function may be easier (and faster) to calculate, so path generation may be quicker.
Speed might be preferable, as long as the resulting path is not excessively
meandering.

Both scoring functions, getCostFromStart() and costToGoal(), rely on being able to
calculate a 'cost' of moving from one tile to another. Various costing approaches are
possible, including the distance between the tiles, the cost in time, the cost of 'fuel', or
weights based on the terrain type.

A* employs two list data structures, usually called open and closed. Open is a list of
tiles which have not yet been examined (i.e. their adjacent tiles have not been scored).
Closed contains the tiles which have been examined. The tiles in open are sorted by
decreasing score, so the most promising tile is always the first one.

The following pseudo-code shows how the A* search progresses.

add the start tile to open;
create an empty closed list;

while (open isn’t empty) {
 get the highest scoring tile x from open;
 if (x is the goal tile)
 return a path to x; // we're done
 else {
 for (each adjacent tile y to x) {
 calculate the costFromStart() value for y;
 if ((y is already in open or closed) and
 (value is no improvement))
 continue; // ignore y
 else {
 delete old y from open or close (if present);
 calculate costToGoal() and the total score for y;
 store y in open;
 }
 }
 }
 put x into closed; // since we're finished with it
}
report no path found;

The pseudo-code is based on code in the article:

“The Basics of A* for Path Planning”, Bryan Stout
In Game Programming Gems, Mike DeLoura (ed.)
Charles River Media, 2000, part 3.3, pp. 254-263

The translation of the pseudo-code to the aStarSearch() method is quite direct:

 private ArrayList aStarSearch(Point startLoc, Point goalLoc)
 {
 double newCost;
 TileNode bestNode, newNode;

 TileNode startNode = new TileNode(startLoc); // set start node

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

32  Andrew Davison 2004

 startNode.costToGoal(goalLoc);

 // create the open queue and closed list
 TilesPriQueue open = new TilesPriQueue(startNode);
 TilesList closed = new TilesList();

 while (open.size() != 0) { // while some node still left
 bestNode = open.removeFirst();
 if (goalLoc.equals(bestNode.getPoint())) // reached goal
 return bestNode.buildPath(); // return a path to that goal
 else {
 for (int i=0; i < NUM_DIRS; i++) { // try every direction
 if ((newNode = bestNode.makeNeighbour(i, world)) != null) {
 newCost = newNode.getCostFromStart();
 TileNode oldVer;
 // if this tile already has a cheaper open or closed node
 // then ignore the new node
 if (((oldVer=open.findNode(newNode.getPoint())) !=null)&&
 (oldVer.getCostFromStart() <= newCost))
 continue;
 else if (((oldVer = closed.findNode(newNode.getPoint()))
 != null) &&
 (oldVer.getCostFromStart() <= newCost))
 continue;
 else { // store new/improved node, removing old one
 newNode.costToGoal(goalLoc);
 // delete the old details (if they exist)
 closed.delete(newNode.getPoint()); // may do nothing
 open.delete(newNode.getPoint()); // may do nothing
 open.add(newNode);
 }
 }
 } // end of for block
 } // end of if-else
 closed.add(bestNode);
 }
 return null; // no path found
 } // end of aStarSearch()

The code is simplified by being able to rely on the TilesList and TilesPriQueue
classes to represent the closed and open lists. They store tile information as TileNode
objects.

TilesList is essentially a wrapper for an ArrayList of TileNode objects, with
additional methods for finding and deleting a node based on a supplied coordinate.

TilesPriQueue is a subclass of TilesList which stores TileNodes sorted by decreasing
node score (i.e. the highest scoring node comes first).

The TileNode class has some interesting properties, which will be explained shortly.

11.3. Moving the AlienAStarSprite
AlienAStarSprite overrides AlienSprite's move() method, so that the next move is to
the next tile in the path calculated by the A* algorithm.

 protected void move()
 {

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

33  Andrew Davison 2004

 if (pathIndex == path.size()) // current path is used up
 calcNewPath(world.getPlayerLoc());
 Point nextPt = (Point) path.get(pathIndex);
 pathIndex++;
 int quad = whichQuadrant(nextPt);
 setMove(nextPt, quad);
 }

If move() finds that the current path has been all used, then it initiates the calculation
of a new one by calling calcNewPath().

12. The TileNode Class
A TileNode object stores tile details used by the A* algorithm. The most important
are values for the costFromStart() and costToGoal() functions so that the overall score
for the node can be worked out.

The costFromStart() function is the cost of the path that leads to this node from the
starting tile. We use the simplest measure, the length of the path, with the step
between adjacent tiles assigned a value of 1.

costToGoal() estimates the cost of going from the current node to the goal. This is a
little harder to calculate in AlienTiles due to the staggered layout of the tiles.

Each TileNode also stores a reference to its parent, the node that was visited before it.
The sequence of nodes back to the starting tile defines the path to this node (when
reversed).

12.1. Calculating costToGoal()
costToGoal() calculates the floor of the straight line distance from the current tile to
the goal.

 public void costToGoal(Point goal)
 { double dist = coord.distance(goal.x, goal.y);
 costToGoal = Math.floor(dist);
 }

This value is not always less than or equal to the actual cheapest path, so the path
found by A* may not be optimal. However, the calculation is simple and fast, and the
path is sufficient for AlienTiles.

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

34  Andrew Davison 2004

The reason for using Math.floor() can be justified by considering an example. Figure
16 shows the four adjacent tiles to tile (1,3).

Figure 16. Tiles Adjacent to (1,3).

Figure 17 maps the five tile points to a rectangular grid, and shows the straight line
distances between them.

Figure 17. Straight Line Distances Between the Tiles in Figure 16.

The actual cost of moving to a neighbour is 1 in all cases. However, the straight line
distances to two of the tiles (the north east and south east ones) are root(2).
Fortunately, the floor of all the distances is 1 (1.414 is rounded down to 1), which
makes the cost function optimal.

The Math.floor() solution works for adjacent tiles, but is less successful when the
straight lines distances span multiple tiles.

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

35  Andrew Davison 2004

13. More Information
The Isometrix Project (http://www.isometrix.org/) concentrates on isometric tile
games. The articles section covers topics such as map formats, tile layout, placing
objects, and lighting. The engines section lists code sources, tools, and demos.

We mentioned GameDev.net’s Isometric and Tile-based Games section at the end of
the last chapter (http://www.gamedev.net/reference/list.asp?categoryid=44). It
currently lists over 30 articles.

An introductory book:

Isometric Game Programming with DirectX 7.0
Ernest Pazera, Premier Press, March, 2001

The first 230 or so pages are about MS Windows programming, and the examples use
C. However, there's good stuff on the basics of rectangular and isometric games tile
plotting, drawing, world and map coordinate systems, and moving about a map.

Some modern Java isometric or tile games examples, which come with source code:

• Javagaming.org: Scroller (http://sourceforge.net/projects/jgo-scroller/)
A full-screen isometric scrolling game intended to illustrate how to write high-
performance 2D games in J2SE 1.4.

• haphazard (http://haphazard.sourceforge.net/)
A role-playing game set in an isometric world.

• CivQuest (http://civquest.sourceforge.net/)
A strategy game inspired by Civilization, including game play against AI
opponents. The coding is at an earlier stage.

• IsometricEngine (http://sourceforge.net/projects/jisoman/)
An isometric game engine, with support for line-of-sight calculations, entity and
terrain objects, a tile map and wall map. It also has a graphically mode for
designing maps.

• JTBRPG (http://jtbrpg.sourceforge.net/)
JTBRPG includes tools for creating role-playing isometric game content, and an
engine for making it playable.

• YARTS (http://www.btinternet.com/~duncan.jauncey/old/javagame/)
YARTS (Yet Another Real Time Strategy game) is a 2D rectangular tile-based
real-time strategy game. The source code for the first version is available.

• Hephaestus (http://kuoi.asui.uidaho.edu/~kamikaze/Hephaestus/)
A role-playing game construction kit based around 2D rectangular tiles.

Mappy for PC (http://www.tilemap.co.uk/mappy.php) can create isometric and
hexagonal tile maps, and there are several Java-based playback libraries, including
JavaMappy (http://www.alienfactory.co.uk/javamappy/).

The surface image created for AlienTiles (shown in Figure 3) was hacked together
using MS PowerPoint and Paint – a reasonable approach for demos but not
recommended for real maps.

Java Prog. Techniques for Games. Chapter 6.4. An Isometric Tile Game. Draft #1 (4th May ‘04)

36  Andrew Davison 2004

The workings of the A* algorithm can be hard to visualize. The A* Demo page
(http://www.ccg.leeds.ac.uk/james/aStar/) by James Macgill, lets the user create a
search map, and watch the scoring process in action. The applet source code can be
downloaded.

The pseudo-code I used is based on code from:

“The Basics of A* for Path Planning”, Bryan Stout
In Game Programming Gems, Mike DeLoura (ed.)
Charles River Media, 2000, part 3.3, pp. 254-263

There are two other articles in Game Programming Gem related to A* optimization.

An online version of another A* article by Bryan Stout:

“Smart Moves: Intelligent Pathfinding”
Bryan Stout, August 1997
http://www.gamasutra.com/features/19970801/pathfinding.htm

It includes a PathDemo application which graphically illustrates several search
algorithms, including A*.

The A* algorithm tutor
(http://www.geocities.com/SiliconValley/Lakes/4929/astar.html) by Justin Heyes-
Jones offers a detailed account of the algorithm.

Amit J. Patel’s Web site on games programming (http://www-cs-
students.stanford.edu/~amitp/gameprog.html) covers several relevant topics,
including pathfinding (with a bias towards A*), tile games, and the use of hexagonal
grids.

Information on A* can be found at game AI sites, usually under the pathfinding
heading. Two excellent sources:

• Game AI Site (http://www.gameai.com/)

• GameDev’s AI section (http://www.gamedev.net/reference/list.asp?
categoryid=18)

A modern AI textbook, with plentiful discussion of search algorithms, including A*:

Artificial Intelligence: A Modern Approach
Stuart Russell and Peter Norvig
Prentice Hall, 2nd edition, 2002
http://aima.cs.berkeley.edu/

Many of the pseudo-code examples from the book have been rewritten in Java
(including those for doing search); they're available from the Web site.

