
Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

1 Andrew Davison 2004

Chapter 6.2. A Side Scroller

The player’s sprite in a side-scrolling game usually travels left or right through a
landscape that extends well beyond the limits of the gaming pane. The landscape
scrolls past in the background while the player jumps (or perhaps flies) over various
obstacles and bad guys, landing safely on platforms to collect treasure, food, or rescue
Princess Peach. Of course, the quintessential side-scroller is Super Mario (still
available today in many versions, on many platforms).

Most side-scrollers implement their backgrounds using tile maps: the tiles can be
square, rectangular, or any shape once transparent GIFS are brought in. Tiles can be
unchanging blocks, animated, or behave like (clever) sprites.

Backgrounds are often composed from several tile map layers, representing various
background and foreground details. They may employ parallax scrolling – layers
'further' back in the scene scroll past at a slower rate than layers nearer the front.

Tiling is a versatile technique: Super Mario (and its numerous relatives) present a side
view of the game world, but tiles can offer bird's eye viewpoints looking down on the
scene from above, and isometric views, as is Civilization, to create a pseudo-3D
environment. We'll implement a basic isometric game in the next chapter.

This chapter describes JumpingJack, a side scroller in the Super Mario mould,
considerably simpler, but illustrating tile maps, layers, parallax scrolling, and a
jumping hero called ‘Jack’ who has to dodge exploding fireballs.

JumpingJack has a few unusual elements: the foreground is a tile map, which Jack
scrambles over, but the other layers are large GIFs. The background layers and tiles
wrap around the drawing area, so if Jack travels long enough he returns to his starting
point. There is an introductory start-up ‘screen’, which doubles as a help screen,
toggled by pressing ‘h’.

Two screenshots of JumpingJack are shown in Figure 1.

Figure 1. Two JumpingJack Screenshots.

The arrow keys make Jack move left, right, stand still, and jump. Once Jack starts
moving (when the user presses the left or right arrow keys), he keeps moving until he
hits a brick. To prevent him stopping, the user should press the jump key (up arrow)
to make him hop over bricks in his path.

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

2 Andrew Davison 2004

Fireballs shoot out from the right edge of the panel, heading to the left, unaffected by
bricks in their way. If a fireball hits Jack, the number of hits reported in the top-left of
the panel is incremented; when it reaches 20, the game is over, and a score is reported.
As a slight relief, only a single fireball is shot at Jack at a time (it also simplifies our
coding).

An instrumental version of “Jumping Jack Flash” by the Rolling Stones repeatedly
plays in the background, occasionally punctuated by an explosion audio clip when a
fireball hits Jack.

1. JumpingJack in Layers
The easiest way of understanding JumpingJack's coding design is to consider the
graphical layers making up the on-screen image. Figure 2 shows the various parts,
labeled with the classes that represent them.

Figure 2. The Visual Layers in JumpingJack.

The scenic background is made from three GIFs (mountains.gif, houses.gif, and
trees.gif in /Images), all wider than the JPanel, and moving at different speeds behind
the bricks layer and sprites. The images are drawn to the JPanel in back-to-front order,
and easily combined since houses.gif and trees.gif contain large transparent areas.

Each images is maintained by a Ribbon object, which are collectively managed by a
RibbonsManager object.

The bricks layer is composed from bricks, positioned on-screen according to a bricks
map created by the programmer. Each brick is assigned a GIF, which can be any
rectangular shape (other shapes can be ‘faked’ by using transparency). Each brick is
represented by a Brick object, grouped together and managed by BricksManager.

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

3 Andrew Davison 2004

The bricks layer is also wider than the JPanel, and wraps around in a similar way to
the Ribbon backgrounds. Jack walks or jumps over the bricks.

A strange feature of side-scrollers, which is hard to believe unless you watch the
game very carefully, is that the hero sprite often does not move in the x-direction. The
sprite’s apparent movement is achieved by shifting the background. For example,
when Jack starts going right, he doesn’t move at all (aside from his little legs
flapping). Instead, the scenery (the GIF ribbons and the bricks layer) move left.
Similarly, when Jack appears to move left, it is actually the scenery moving right.

When Jack jumps, the sprite moves up and down over the space of 1-2 seconds.
However, the jump’s arc is an illusion caused by the background moving.

2. UML Diagrams for JumpingJack
Figure 3 shows the UML diagrams for all the classes in the JumpingJack application.
Only the class names are shown.

Figure 3. All the UML Class Diagrams for JumpingJack.

The large number of classes is daunting, but many of them can be ignored since
they're unchanged from earlier chapters.

The image loaders reads in the GIFs used by the Ribbon objects, and the tile and
sprite images. ImagesPlayer animates Jack’s legs and the fireball explosion.

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

4 Andrew Davison 2004

The audio loaders play the “Jumping Jack Flash” MIDI sequence, and the explosion
and applause clips (always applaud the user, even when they lose).

The JumperSprite object handles Jack, while FireBallSprite is for the fireball; both are
subclasses of the Sprite class which we introduced in the last chapter.

The JumpingJack JFrame and the JackPanel JPanel implement the windowed
animation framework of chapters 1 and 2; BugRunner of chapter 6 uses the same
technique.

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

5 Andrew Davison 2004

If we strip away the unchanged classes from earlier chapters, we’re left with the more
manageable collection of UML class diagrams shown in Figure 4. The public
methods, and any public or protected data, are shown.

Figure 4. The Core Classes of JumpingJack.

The Sprite class is included since JumperSprite and FireBallSprite use many of its
methods, but it’s unchanged from chapter 6. We won’t bother explaining it again.

3. The JumpingJack Class
JumpingJack fixes the frame rate at only 30 FPS; anything faster makes it almost
impossible to control Jack. The illusion of speed is governed by how fast the bricks
and image ribbons move, which is controlled by a single moveSize variable in the
BricksManager class. moveSize specifies the distance that the bricks layer should be
shifted in each update of the animation loop.

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

6 Andrew Davison 2004

JumpingJack sets up window listener methods for pausing and resuming the game, in
a similar way to the BugRunner application in chapter 6.

4. The JackPanel Class
JackPanel is a subclass of JPanel, and implements the animation framework described
in chapter 1 and 2; JackPanel also resembles the BugPanel class of chapter 6.

The JackPanel() constructor creates the game entities: the RibbonsManager,
BricksManager, JumperSprite, and FireBallSprite objects. It also prepares the
explosion animation and the title/help screen.

 // some of the globals
 private JumpingJack jackTop;
 private JumperSprite jack; // the sprites
 private FireBallSprite fireball;
 private RibbonsManager ribsMan; // the ribbons manager
 private BricksManager bricksMan; // the bricks manager

 // to display the title/help screen
 private boolean showHelp;
 private BufferedImage helpIm;

 // explosion-related
 private ImagesPlayer explosionPlayer = null;
 private boolean showExplosion = false;
 private int explWidth, explHeight; // image dimensions
 private int xExpl, yExpl; // coords where image is drawn
 :

 public JackPanel(JumpingJack jj, long period)
 {
 jackTop = jj;
 this.period = period;

 setDoubleBuffered(false);
 setBackground(Color.white);
 setPreferredSize(new Dimension(PWIDTH, PHEIGHT));

 setFocusable(true);
 requestFocus(); // so receives key events

 addKeyListener(new KeyAdapter() {
 public void keyPressed(KeyEvent e)
 { processKey(e); }
 });

 // initialise the loaders
 ImagesLoader imsLoader = new ImagesLoader(IMS_INFO);
 clipsLoader = new ClipsLoader(SNDS_FILE);

 // initialise the game entities
 bricksMan = new BricksManager(PWIDTH, PHEIGHT,
 BRICKS_INFO, imsLoader);
 int brickMoveSize = bricksMan.getMoveSize();

 ribsMan = new RibbonsManager(PWIDTH, PHEIGHT,

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

7 Andrew Davison 2004

 brickMoveSize, imsLoader);

 jack = new JumperSprite(PWIDTH, PHEIGHT, brickMoveSize,
 bricksMan, imsLoader, (int)(period/1000000L)); // in ms

 fireball = new FireBallSprite(PWIDTH, PHEIGHT,
 imsLoader, this, jack);

 // prepare the explosion animation
 explosionPlayer = new ImagesPlayer("explosion",
 (int)(period/1000000L), 0.5, false, imsLoader);
 BufferedImage explosionIm = imsLoader.getImage("explosion");
 explWidth = explosionIm.getWidth();
 explHeight = explosionIm.getHeight();
 explosionPlayer.setWatcher(this) // report anim end back here

 // prepare title/help screen
 helpIm = imsLoader.getImage("title");
 showHelp = true; // show at start-up
 isPaused = true;

 // set up message font
 msgsFont = new Font("SansSerif", Font.BOLD, 24);
 metrics = this.getFontMetrics(msgsFont);
 } // end of JackPanel()

We create the BricksManager object first, so that a brickMoveSize variable can be
initialised. This will contain the number of pixels the bricks map is shifted when the
sprite appears to make a move. brickMoveSize is used as the basis for the move
increments employed by the Ribbon objects managed in RibbonsManager, and is also
used by the JumperSprite. However, the fireball travels at its own rate, independent of
the background, so doesn’t require the move size.

JackPanel is in charge of a fireball’s animated explosion and its associated audio,
rather than FireBallSprite. The explosion animation in explosion.gif is loaded into an
ImagesPlayer (see Figure 5 for its contents), and the dimensions of its first image are
recorded. When the sequence is finished, ImagesPlayer will call sequenceEnded()
back in JackPanel.

Figure 5. The Images Strip in explosion.gif.

The title/help image (in title.gif, see Figure 6) is loaded into the global helpIm, and
the booleans showHelp and isPaused are set. isPaused causes the game’s execution to
pause, and was introduced in the basic game animation framework; showHelp is a
new boolean, examined by gameRender() to decide whether to draw the image.

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

8 Andrew Davison 2004

gameRender() displays the image centered in the JPanel, so the image should not be
too large or its borders may be beyond the edges of the panel.

If the image is the same size as the JPanel, it will totally obscure the game window,
and so look more like a ‘screen’ rather than an image drawn on the game surface.

Clever use can be made of transparency to make the image an interesting shape,
although it is still a rectangle as far as drawImage() is concerned.

Figure 6. title.gif: the title/help screen in JumpingJack

The switching on of isPaused while the help image is visible requires a small change
to the resumeGame() method.

 public void resumeGame()
 { if (!showHelp) // CHANGED
 isPaused = false;
 }

This method is called from the enclosing JumpingJack JFrame when the frame is
activated (deiconified). Previously, resumeGame() always set isPaused to false, but
now this occurs only when the help screen is not being displayed.

If the game design requires distinct title and help screens, then two images and two
booleans will be needed. For example, showHelp for the help image, and showTitle
for the titles, which will be examined in gameRender(). Initially, showTitle would be
set true, showHelp assigned false. When either the titles or the help is on-screen,
isPaused should be set to true.

4.1. Dealing with Input
Only keyboard input is supported in JumpingJack. A key press triggers a call to
processKey(), which handles three kinds of input: termination keys, help controls, and
game play keys.

 private void processKey(KeyEvent e)
 {
 int keyCode = e.getKeyCode();

 // termination keys
 // listen for esc, q, end, ctrl-c on the canvas to
 // allow a convenient exit from the full screen configuration
 if ((keyCode==KeyEvent.VK_ESCAPE) || (keyCode==KeyEvent.VK_Q) ||
 (keyCode == KeyEvent.VK_END) ||
 ((keyCode == KeyEvent.VK_C) && e.isControlDown()))
 running = false;

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

9 Andrew Davison 2004

 // help controls
 if (keyCode == KeyEvent.VK_H) {
 if (showHelp) { // help being shown
 showHelp = false; // switch off
 isPaused = false;
 }
 else { // help not being shown
 showHelp = true; // show it
 isPaused = true;
 }
 }

 // game-play keys
 if (!isPaused && !gameOver) {
 // move the sprite and ribbons based on the arrow key pressed
 if (keyCode == KeyEvent.VK_LEFT) {
 jack.moveLeft();
 bricksMan.moveRight(); // bricks and ribbons move other way
 ribsMan.moveRight();
 }
 else if (keyCode == KeyEvent.VK_RIGHT) {
 jack.moveRight();
 bricksMan.moveLeft();
 ribsMan.moveLeft();
 }
 else if (keyCode == KeyEvent.VK_UP)
 jack.jump(); // jumping has no effect on bricks/ribbons
 else if (keyCode == KeyEvent.VK_DOWN) {
 jack.stayStill();
 bricksMan.stayStill();
 ribsMan.stayStill();
 }
 }
 } // end of processKey()

The termination keys are utilized in the same way as in earlier examples.

The help key (‘h’) toggles the showHelp and isPaused booleans on and off.

The arrow keys are assigned to be the game play keys. When the left or right arrow
keys are pressed, the scenery (the bricks and ribbons) is moved in the opposite
direction from Jack. We will see later that the calls to moveLeft() and moveRight() in
Jack do not actually cause the sprite to move at all.

4.2. Multiple Key Presses/Actions
A common requirement in many games is to process multiple key presses together.
For example, it should be possible for Jack to jump and move left/right at the same
time. There are two parts to this feature: implementing key capture code to handle
simultaneous key presses, and implementing simultaneous behaviours in the sprite (or
other game entity).

JumpingJack already has the ability to jump and move left/right at the same time: it
was wired into the JumperSprite class at the design stage, as we'll see later. If Jack is
currently moving left or right, then an up arrow press will make him jump. A related
‘trick’ is to start him jumping from a stationary position, causing him to rise and fall

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

10 Andrew Davison 2004

over 1-2 seconds. During that interval, the left or right arrow keys can be pressed to
get him moving horizontally through the air, or to change his direction in mid flight!

Although Jack can jump and move at the same time, this behaviour is triggered by
distinct key presses. First the left/right arrow key is pressed to start him moving, and
then the up arrow key makes him jump. Alternatively the up arrow key can be pressed
first, followed by the left or right arrow keys. If we want to capture multiple key
presses at the same time, then modifications are needed to the key listener code.

The main change is to use keyPressed() and keyReleased(), and to introduce new
booleans to indicate when keys are being pressed. The basic coding strategy is shown
below:

 // global booleans, true when a key is being pressed
 private boolean leftKeyPressed = false;
 private boolean rightKeyPressed = false;
 private boolean upKeyPressed = false;
 :

 // inside JackPanel()
 addKeyListener(new KeyAdapter() {
 public void keyPressed(KeyEvent e)
 { processKeyPress(e); }
 public void keyReleased(KeyEvent e)
 { processKeyRelease(e); }
 });
 :

 private void processKeyPress(KeyEvent e)
 {
 int keyCode = e.getKeyCode();

 // record the key press in a boolean
 if (keyCode == KeyEvent.VK_LEFT)
 leftKeyPressed = true;
 else if (keyCode == KeyEvent.VK_RIGHT)
 rightKeyPressed = true;
 else if (keyCode == KeyEvent.VK_UP)
 upKeyPressed = true;

 // use the combined key presses
 if (leftKeyPressed && upKeyPressed)
 // do a combined left and up action
 else if (rightKeyPressed && upKeyPressed)
 // do a combined right and up action
 :
 } // end of processKeyPress()

 private void processKeyRelease(KeyEvent e)
 {
 int keyCode = e.getKeyCode();

 // record the key release in a boolean
 if (keyCode == KeyEvent.VK_LEFT)
 leftKeyPressed = false;
 else if (keyCode == KeyEvent.VK_RIGHT)
 rightKeyPressed = false;
 else if (keyCode == KeyEvent.VK_UP)

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

11 Andrew Davison 2004

 upKeyPressed = false;
 } // end of processKeyRelease()

Key presses cause the relevant booleans to be set, and these remain set until the user
releases the keys at some future time. The combination of key presses can be detected
by testing the booleans in processKeyPress().

This coding effort is only need for combinations of ‘normal’ keys (e.g. the letters, the
numbers, arrow keys). Key combinations involving a standard key and the shift,
control, or meta keys can be detected more directly by using the KeyEvent methods
isShiftDown(), isControlDown(), and isMetaDown(). This coding style can be seen in
the termination keys code in processKey():

 if (...||((keyCode==KeyEvent.VK_C) && e.isControlDown())) //ctrl-c
 running = false;

4.3. The Animation Loop
The animation loop is located in run(), and is unchanged from earlier examples (e.g.
run() in BugRunner of chapter 6). In essence, it is:

 public void run()
 { ...
 while (running) {
 gameUpdate();
 gameRender();
 paintScreen();
 // timing correction code
 }
 System.exit(0);
 }

gameUpdate() updates the various game elements (the sprites, the bricks layer and
Ribbon objects).

 private void gameUpdate()
 {
 if (!isPaused && !gameOver) {
 if (jack.willHitBrick()) { // collision checking first
 jack.stayStill(); // stop jack and scenery
 bricksMan.stayStill();
 ribsMan.stayStill();
 }
 ribsMan.update(); // update background and sprites
 bricksMan.update();
 jack.updateSprite();
 fireball.updateSprite();

 if (showExplosion)
 explosionPlayer.updateTick(); // update the animation
 }
 }

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

12 Andrew Davison 2004

The new element here is dealing with potential collisions: if Jack will hit a brick when
the current update is carried out then the update should be cancelled. This requires a
testing phase before the update is committed, embodied in willHitBrick() in
JumperSprite. If Jack will hit a brick with his next update, it will be due to him
moving (we do not have animated tiles in this game), so the collision can be avoided
by stopping Jack (and the backgrounds).

The fireball sprite is unaffected by Jack’s impending collision: it keeps travelling left
regardless of what the JumperSprite is doing.

The showExplosion boolean is set true when the explosion animation is being played
by the ImagesPlayer, explosionPlayer, and so updateTick() must be called during each
game update.

gameRender() draws the multiple layers making up the game. Their ordering is
important: rendering must start with the image furthest back in the scene and work
forwards. The order used in JumpingJack is illustrated in Figure 2.

 private void gameRender()
 {
 if (dbImage == null){
 dbImage = createImage(PWIDTH, PHEIGHT);
 if (dbImage == null) {
 System.out.println("dbImage is null");
 return;
 }
 else
 dbg = dbImage.getGraphics();
 }

 // draw a white background
 dbg.setColor(Color.white);
 dbg.fillRect(0, 0, PWIDTH, PHEIGHT);

 // draw the game elements: order is important
 ribsMan.display(dbg); // the background ribbons
 bricksMan.display(dbg); // the bricks
 jack.drawSprite(dbg); // the sprites
 fireball.drawSprite(dbg);

 if (showExplosion) // draw the explosion (in front of jack)
 dbg.drawImage(explosionPlayer.getCurrentImage(),
 xExpl, yExpl, null);
 reportStats(dbg);
 if (gameOver)
 gameOverMessage(dbg);

 if (showHelp) // draw help at the very front (if switched on)
 dbg.drawImage(helpIm, (PWIDTH-helpIm.getWidth())/2,
 (PHEIGHT-helpIm.getHeight())/2, null);
 } // end of gameRender()

gameRender() relies on the RibbonsManager and BricksManager objects to draw the
multiple Ribbon objects and the individual bricks. The code order means that Jack
will be drawn behind the fireball if they are at the same spot (i.e. when the fireball hits

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

13 Andrew Davison 2004

him). An explosion is drawn in front of the fireball, then the game statistics, the game
over message, and finally the help ‘screen’ is top-most.

4.4. Handling an Explosion
The fireball sprite passes the responsibility of showing the explosion animation and its
audio clip to JackPanel, by calling showExplosion().

 // names of the explosion clips
 private static final String[] exploNames =
 {"explo1", "explo2", "explo3"};
 :

 public void showExplosion(int x, int y)
 // called by FireBallSprite
 {
 if (!showExplosion) { // only allow a single explosion at a time
 showExplosion = true;
 xExpl = x - explWidth/2; // (x,y) is center of explosion
 yExpl = y - explHeight/2;

 /* Play an explosion clip, but cycle through them.
 This adds variety, and gets round not being able to
 play multiple instances of a clip at the same time. */
 clipsLoader.play(exploNames[numHits%exploNames.length],
 false);
 numHits++;
 }
 } // end of showExplosion()

The (x,y) coordinate passed to showExplosion() is assumed to be where the center of
the explosion should occur, and so the top-left corner of the explosion image is
calculated and placed in the globals (xExpl, yExpl). These are used to position the
explosion in gameRender().

The use of a single boolean, showExplosion, to determine if an explosion appears on-
screen or not, is adequate only if a single explosion animation is shown at a time. This
means that if a fireball hits Jack while an explosion sequence is playing, a second
animation will not be rendered. This restriction allows us to manage with a single
ImagesPlayer object instead of a set containing one ImagesPlayer for each of the
current explosions.

play() in ClipsLoader eventually calls start() for the Clip object. A design feature of
start() is that when a clip is already playing, further calls to start() are ignored. This
makes it impossible to play multiple instances of the same Clip object at the same
time.

One answer would be to ignore the problem, and do nothing (as with the multiple
explosion animations issue). However, a typical audio clip can last several seconds,
which is a long time to wait for the sound to be playable again. Also, the absence of
the sound effect seems more noticeable than the lack of the animation.

Therefore, we’ve gone for a set of explosion clips, listed in exploNames[], and the
code cycles through them. A set of three seems enough to deal with even the highest

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

14 Andrew Davison 2004

rate of fireball hits to Jack. Since these names represent separate Clips stored in the
ClipsLoader, they can be played simultaneously.

Once an explosion animation has finished playing, its ImagesPlayer object calls
sequenceEnded() in JackPanel.

 public void sequenceEnded(String imageName)
 // called by ImagesPlayer when the expl. animation finishes
 {
 showExplosion = false;
 explosionPlayer.restartAt(0); // reset animation for next time

 if (numHits >= MAX_HITS) {
 gameOver = true;
 score = (int) ((J3DTimer.getValue() -
 gameStartTime)/1000000000L);
 clipsLoader.play("applause", false);
 }
 }

sequenceEnded() resets the animation, so it’s ready to be played next time, and checks
the game over condition. If the number of fireball hits equals or exceeds MAX_HITS,
then the game over flag is set, causing the game to eventually terminate.

The main question about sequenceEnded() is why it’s being used at all. The reason is
to make the game terminate at a natural time – just after an explosion has finished.
For instance, if the game over condition was tested at the end of showExplosion(), the
game may be terminated while ImagesPlayer was in the middle of displaying the
explosion animation. This doesn’t really matter, but may seem a little odd to the
player.

5. The RibbonsManager Class

RibbonsManager is mainly a router, sending move method calls, update() and display
() calls, on to the multiple Ribbon objects under its charge. Initially, it creates the
Ribbon objects, so also acts as a central storage for their GIFs and move factors.

The initialisation phase is carried out in the constructor:

 // globals
 private String ribImages[] = {"mountains", "houses", "trees"};
 private double moveFactors[] = {0.1, 0.5, 1.0};
 // applied to moveSize
 // a move factor of 0 would make a ribbon stationary

 private Ribbon[] ribbons;
 private int numRibbons;
 private int moveSize;
 // standard distance for a ribbon to 'move' each tick

 public RibbonsManager(int w, int h, int brickMvSz,
 ImagesLoader imsLd)
 { moveSize = brickMvSz;

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

15 Andrew Davison 2004

 // the basic move size is the same as the bricks map

 numRibbons = ribImages.length;
 ribbons = new Ribbon[numRibbons];

 for (int i = 0; i < numRibbons; i++)
 ribbons[i] = new Ribbon(w, h, imsLd.getImage(ribImages[i]),
 (int) (moveFactors[i]*moveSize));
 } // end of RibbonsManager()

The choice of GIFs is hardwired into ribImages[], and the constructor loops through
the array creating a Ribbon object for each one.

The basic move size is the same as that used by the bricks layer, but multiplied by a
fixed moveFactors[] value to get a size suitable for each Ribbon. (A move size is the
amount that a background layer moves in each animation period.)

A move factor will usually be less than one, to reduce the move size for a Ribbon in
comparison to the bricks layer. This reinforces the illusion that the Ribbons are further
back in the scene.

The other methods in RibbonsManager are simple routers. For example, moveRight()
and display():

 public void moveRight()
 { for (int i=0; i < numRibbons; i++)
 ribbons[i].moveRight();
 }

 public void display(Graphics g)
 /* The display order is important.
 Display ribbons from the back to the front of the scene. */
 { for (int i=0; i < numRibbons; i++)
 ribbons[i].display(g);
 }

moveLeft(), stayStill(), and update() are similar.

The calls from display() ensure that the display of the Ribbons is carried out in a
back-to-front order, in this case, mountains, houses, then trees.

6. The Ribbon Class
A Ribbon object manages a wraparound, moveable image, which should be wider
than the game panel. This width requirement is important for the amount of work
needed to draw the image as it wraps around the JPanel. The worst case task is to
draw the tail of the image on the left side, followed by its start on the right. If the
image was narrower than the panel, then it might be necessary to use three drawImage
() calls, or more.

The constructor initialises the graphic, its moveSize value, two movement flags, and a
position variable called xImHead.

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

16 Andrew Davison 2004

 // globals
 private BufferedImage im;
 private int width; // the width of the image (>= pWidth)
 private int pWidth, pHeight; // dimensions of display panel

 private int moveSize; // size of the image move (in pixels)
 private boolean isMovingRight; // movement flags
 private boolean isMovingLeft;

 private int xImHead; // panel position of image’s left side

 public Ribbon(int w, int h, BufferedImage im, int moveSz)
 {
 pWidth = w; pHeight = h;

 this.im = im;
 width = im.getWidth(); // no need to store the height
 if (width < pWidth)
 System.out.println("Ribbon width < panel width");

 moveSize = moveSz;
 isMovingRight = false; // no movement at start
 isMovingLeft = false;
 xImHead = 0;
 }

xImHead holds the x-coordinate in the panel where the left side of the image (its
head) should be drawn.

The isMovingRight and isMovingLeft flags determine the direction of movement for
the Ribbon image (or whether it is stationary) when its JPanel position is updated. The
flags are set by the moveRight(), moveLeft() and stayStill() methods. For example:

 public void moveRight()
 // move the ribbon image to the right on the next update
 { isMovingRight = true;
 isMovingLeft = false;
 }

update() adjusts the xImHead value depending on the movement flags. xImHead can
range between -width to width (the width of the image).

 public void update()
 { if (isMovingRight)
 xImHead = (xImHead + moveSize) % width;
 else if (isMovingLeft)
 xImHead = (xImHead - moveSize) % width;
 }

As xImHead varies, the drawing of the ribbon in the JPanel will usually be a
combination of the image's tail followed by its head.

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

17 Andrew Davison 2004

6.1. Drawing the Ribbon’s Image
The display() method does the hard work of deciding where various bits of the image
should be drawn in the JPanel.

One of the hard aspects of display() is that it utilises two different coordinate systems:
JPanel coordinates and image coordinates. This can be seen in the many calls to
Graphics' drawImage() method:

 boolean drawImage(Image img, int dx1, int dy1, int dx2, int dy2,
 int sx1, int sy1, int sx2, int sy2,
 ImageObserver observer);

Figure 7 shows that the eight integers represent two regions – the destination JPanel
and source image.

Figure 7. Drawing a Region with drawImage().

Fortunately, in Jumping Jack, the regions are always the same height, starting at the
top edge of the JPanel (y == 0) and extending to its bottom (y == pHeight). However,
dx1 and dx2 will vary in the JPanel, and sx1 and sx2 vary in the image.

The x-coordinates are derived from the current xImHead value, which ranges between
width and –width as the image is shifted right or left across the JPanel.

Also, as the image moves right (or left), there will come a point when it will be
necessary to draw both the head and tail of the image in order to cover the JPanel.

These considerations lead to display() consisting of five cases; we consider each one
below.

 public void display(Graphics g)
 {
 if (xImHead == 0) // draw im start at (0,0)
 draw(g, im, 0, pWidth, 0, pWidth);
 else if ((xImHead > 0) && (xImHead < pWidth)) {
 // draw im tail at (0,0) and im start at (xImHead,0)
 draw(g, im, 0, xImHead, width-xImHead, width); // im tail
 draw(g, im, xImHead, pWidth, 0, pWidth-xImHead); // im start
 }
 else if (xImHead >= pWidth) // only draw im tail at (0,0)
 draw(g, im, 0, pWidth,
 width-xImHead, width-xImHead+pWidth); // im tail
 else if ((xImHead < 0) && (xImHead >= pWidth-width))
 draw(g, im, 0, pWidth, -xImHead, pWidth-xImHead); // im body
 else if (xImHead < pWidth-width) {

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

18 Andrew Davison 2004

 // draw im tail at (0,0) and im start at (width+xImHead,0)
 draw(g, im, 0, width+xImHead, -xImHead, width); // im tail
 draw(g, im, width+xImHead, pWidth,
 0, pWidth-width-xImHead); // im start
 }
 } // end of display()

 private void draw(Graphics g, BufferedImage im,
 int scrX1, int scrX2, int imX1, int imX2)
 /* The y-coords of the image always starts at 0 and ends at
 pHeight (the height of the panel), so are hardwired. */
 { g.drawImage(im, scrX1, 0, scrX2, pHeight,
 imX1, 0, imX2, pHeight, null);
 }

6.1.1. Case 1. Draw the Image at JPanel (0,0)
The relevant code snippet from display():

 if (xImHead == 0) // draw im start at (0,0)
 draw(g, im, 0, pWidth, 0, pWidth);

Figure 8 illustrates the drawing operation:

Figure 8. Case 1 in Ribbon's display().

Case 1 occurs at start-up time, when the scene is first drawn, and reoccurs when Jack
has run around the width of the image, and xImHead is back at 0.

draw() is a simplified interface to drawImage(), hiding the fixed y-coordinates (0 to
pHeight). Its third and fourth arguments are the x-coordinates in the JPanel (the
positions pointed to in the gray box in Figure 8). The fifth and sixth arguments are the
positions pointed to in the image ribbon (the green box).

6.1.2. Case 2. Image Moving Right, xImHead < pWidth
The code fragment from display():

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

19 Andrew Davison 2004

 if ((xImHead > 0) && (xImHead < pWidth)) {
 // draw im tail at (0,0) and im head at (xImHead,0)
 draw(g, im, 0, xImHead, width-xImHead, width); // im tail
 draw(g, im, xImHead, pWidth, 0, pWidth-xImHead); // im head
 }

Figure 9 illustrates the drawing operations.

Figure 9. Case 2 in Ribbon's display().

When the image moves right (caused by the sprite apparently moving left), the JPanel
drawing will require two drawImage() calls: one for the tail of the image, the other for
the head (which still begins at xImHead in the JPanel).

The tricky part is calculating the x-coordinate of the start of the image's tail, and the
x-coordinate of the end of the head.

6.1.3. Case 3. Image Moving Right, xImHead >= pWidth
The relevant piece of code:

 if (xImHead >= pWidth) // only draw im tail at (0,0)
 draw(g, im, 0, pWidth, width-xImHead, width-xImHead+pWidth);

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

20 Andrew Davison 2004

Figure 10 shows the drawing operation.

Figure 10. Case 3 in Ribbon's display().

Case 3 happens after case 2, as the image moves even further to the right, and
xImHead travels beyond the right edge of the JPanel. This means that only a single
drawImage() call is necessary, to draw the middle part of the image into the JPanel.
The tricky x-coordinates are the start and end points for the image's middle.

6.1.4. Case 4. Image Moving Left, xImHead >= pWidth-width
The code snippet:

 if ((xImHead < 0) && (xImHead >= pWidth-width))
 draw(g, im, 0, pWidth, -xImHead, pWidth-xImHead); // im body

Figure 11 illustrates the drawing operation.

Figure 11. Case 4 in Ribbon's display().

Case 4 occurs when the image is moving left, which happens when the sprite
apparently travels to the right. xImHead will become negative, since it is to the left of
JPanel's origin. While it is still greater than pWidth-width, only a single drawImage()
is needed, for the middle of the image.

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

21 Andrew Davison 2004

6.1.5. Case 5. Image Moving Left, xImHead < pWidth-width
The code:

 if (xImHead < pWidth-width) {
 // draw im tail at (0,0) and im head at (width+xImHead,0)
 draw(g, im, 0, width+xImHead, -xImHead, width); // im tail
 draw(g, im, width+xImHead, pWidth,
 0, pWidth-width-xImHead); // im head
 }

Figure 12 shows the drawing operations.

Figure 12. Case 5 in Ribbon's display().

Case 5 occurs after case 4, when the image has moved further to the left, and
xImHead is smaller than pWidth-width. This distance marks the point at which two
drawImage() calls are required, one for the tail of the image, the other for its head.

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

22 Andrew Davison 2004

7. The BricksManager Class
BricksManager is separated into five broad groups of methods for:

• loading bricks information;
• initialising the bricks data structures;
• moving the bricks map;
• drawing the bricks;
• JumperSprite-related tasks. These are mostly various forms of collision

detection between the sprite and the bricks.

BricksManager reads a bricks map, and creates a Brick object for each brick. The data
structure holding the Brick objects is optimised so that drawing and collision
detection can be carried out quickly.

Moving and drawing the bricks map is analogous to the moving and drawing of an
image by a Ribbon object. However, the drawing process is complicated by the ribbon
being made up of multiple bricks instead of a single GIF.

Jack, the JumperSprite object, uses BricksManager methods to determine if its
planned moves will cause it to collide with a brick.

7.1. Loading Bricks Information
BricksManager calls loadBricksFile() to load a bricks map; in our code, the map is
assumed to be in bricksInfo.txt from /Images. The map starts with the name of an
image strip which holds the images referred to in the map. The bricks map follows:
each line continues a mix of single digits or spaces. Up to a maximum of
MAX_BRICKS_LINES lines are processed.

The map file may contain empty lines and comment lines (those starting with //),
which are ignored.

bricksInfo.txt is:

// bricks information

s tiles.gif 5

// -----------
44444
 222222222
 111
 2222
 11111
 444
 444
 22222 444 111
 1111112222222 23333 2 33 44444444
00 000111333333000000222222233333 333 2222222223333301
00000000011100000000002220000000003300000111111222222234
// -----------

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

23 Andrew Davison 2004

The images strip in tiles.gif is shown in Figure 13.

Figure 13. The Images Strip in tiles.gif.

The images strip is loaded with an ImagesLoader object, and the array of
BufferedImages are stored in a global array called brickImages[].

There are several drawbacks with this approach. One is the reliance on single digits to
index into the images strip. This makes it impossible to utilize strips with more than
10 images (0-9), which is inadequate for a real map. The solution probably entails
moving to a letter-based scheme (A-Z, a-z), to allow up to 52 tiles.

loadBricksFile() calls storeBricks() to read in a single map line, adding Brick objects
to a bricksList ArrayList.

 private void storeBricks(String line, int lineNo, int numImages)
 {
 int imageID;
 for(int x=0; x < line.length(); x++) {
 char ch = line.charAt(x);
 if (ch == ' ') // ignore a space
 continue;
 if (Character.isDigit(ch)) {
 imageID = ch - '0'; // we assume a digit is 0-9
 if (imageID >= numImages)
 System.out.println("Image ID "+imageID+" out of range");
 else // make a Brick object
 bricksList.add(new Brick(imageID, x, lineNo));
 }
 else
 System.out.println("Brick char " + ch + " is not a digit");
 }
 }

A Brick object is initialised with its image ID (a number in the range 0-9); a reference
to the actual image is added later. The brick is also passed its map indices (x, lineNo).
lineNo starts at 0 when the first map line is read, and incremented with each new line.

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

24 Andrew Davison 2004

Figure 14 shows some of the important variables associated with a map, including
example map indices.

Figure 14. Brick Map Variables.

7.2. Initialising the Bricks Data Structures
Once the bricksList ArrayList has been filled, BricksManager calls initBricksInfo() to
extract various global data from the list, and check if certain criteria are met. For
instance, the maximum width of the map should be greater than the width of the panel
(width >= pWidth).

Another criteria for accepting the map is that its bottom row must not have any gaps.
This makes it impossible for Jack to fall down a hole while running about, so
simplifying the JumperSprite implementation.

The bricksList ArrayList doesn’t store its Brick objects in order, which makes finding
a particular Brick very time-consuming. Unfortunately, searching for a brick is a
common task – it must be performed every time that Jack is about to move, to prevent
it from hitting something.

A more useful way of storing the bricks map is ordered by column, as illustrated in
Figure 15.

Figure 15. Bricks Stored by Column.

This data structure is excellent for brick searches where the column of interest is
known beforehand, since the array allows constant-time access to a given column.

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

25 Andrew Davison 2004

A column is implemented as an ArrayList of Bricks in no particular order, so a linear
search looks for a brick in the selected column. However, a column contains very few
bricks compared to the entire map, so the search time is acceptable.

Also, since there are no gaps in the bottom row of the map, each column must contain
at least one brick, guaranteeing that none of the column ArrayLists in columnBricks[]
is null.

The columnBricks[] array is built by BricksManager calling createColumns().

7.3. Moving the Bricks Map
The BricksManager uses the same approach to moving its bricks map as the Ribbon
class does for its GIF.

The isMovingRight and isMovingLeft flags determine the direction of movement for
the bricks map (or whether it is stationary) when its JPanel position is updated. The
flags are set by the moveRight(), moveLeft() and stayStill() methods. For example:

 public void moveRight()
 { isMovingRight = true;
 isMovingLeft = false;
 }

update() increments a xMapHead value depending on the movement flags. xMapHead
is the x-coordinate in the panel where the left edge of the bricks map (its head) should
be drawn. xMapHead can range between -width to width (the width of the bricks map
in pixels).

 public void update()
 { if (isMovingRight)
 xMapHead = (xMapHead + moveSize) % width;
 else if (isMovingLeft)
 xMapHead = (xMapHead - moveSize) % width;
 }

7.4. Drawing the Bricks
The display() method does the hard work of deciding where the bricks in the map
should be drawn in the JPanel.

As in the Ribbon class, several different coordinate systems are combined: the JPanel
coordinates and the bricks map coordinates. The bad news is that the bricks map use
two different schemes. One way of locating a brick is by its pixel position in the
bricks map, the other is by using its map indices (see Figure 14). This means that
there are three coordinate systems utilised in display() and its helper method
drawBricks().

 public void display(Graphics g)
 {
 int bCoord = (int)(xMapHead/imWidth) * imWidth;

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

26 Andrew Davison 2004

 // bCoord is the drawing x-coord of the brick containing xMapHead
 int offset; // offset is distance between bCoord and xMapHead
 if (bCoord >= 0)
 offset = xMapHead - bCoord; // offset is positive
 else // negative position
 offset = bCoord - xMapHead; // offset is positive

 if ((bCoord >= 0) && (bCoord < pWidth)) {
 drawBricks(g, 0-(imWidth-offset), xMapHead,
 width-bCoord-imWidth); // bm tail
 drawBricks(g, xMapHead, pWidth, 0); // bm start
 }
 else if (bCoord >= pWidth)
 drawBricks(g, 0-(imWidth-offset), pWidth,
 width-bCoord-imWidth); // bm tail
 else if ((bCoord < 0) && (bCoord >= pWidth-width+imWidth))
 drawBricks(g, 0-offset, pWidth, -bCoord); // bm tail
 else if (bCoord < pWidth-width+imWidth) {
 drawBricks(g, 0-offset, width+xMapHead, -bCoord); // bm tail
 drawBricks(g, width+xMapHead, pWidth, 0); // bm start
 }
 } // end of display()

The details of drawBricks() will be explained below. For now, it's enough to know the
meaning of its prototype:
 void drawBricks(Graphics g, int xStart, int xEnd, int xBrick);

drawBricks() draws bricks into the JPanel starting at xStart, ending at xEnd. The
bricks are drawn a column at a time. The first column of bricks is the one at the
xBrick pixel x-coordinate in the bricks map.

display() starts by calculating a brick coordinate (bCoord) and offset from the
xMapHead position. These are used in the calls to drawBricks() to specify where a
brick image's left edge should appear. This should hopefully become clearer as we
consider the four drawing cases.

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

27 Andrew Davison 2004

7.4.1. Case 1. Bricks Map Moving Right and bCoord < pWidth
The relevant code snippet in display():

 if ((bCoord >= 0) && (bCoord < pWidth)) {
 drawBricks(g, 0-(imWidth-offset), xMapHead,
 width-bCoord-imWidth); // bm tail
 drawBricks(g, xMapHead, pWidth, 0); // bm start
 } // bm means bricks map

Figure 16 illustrates the drawing operations:

Figure 16. Case 1 in BricksManager's display().

Case 1 occurs as the bricks map moves right, since the sprite is apparently moving
left. xMapHead will have a value between 0 and pWidth (the width of the JPanel).
Two groups of bricks will need to be drawn, requiring two calls to drawBricks(). The
first group starts near the left edge of the JPanel, the second starts at the xMapHead
position. It is the first group that poses the problem.

A complete column of bricks must be drawn, and this requires the x-coordinate of the
column's left edge. Depending on the xMapHead value, the left edge of the column
probably does not line up with the left edge of the panel, most likely occuring
somewhere to its left, off screen.

The calculation of the column's left edge requires the offset value calculated in
display() before the if tests were entered. The resulting coordinate can also be
expressed using bCoord.

A drawBricks() call takes three integer arguments. The first two are the start and end
coordinates in the JPanel for a set of columns, which correspond to the values pointed
to in the gray JPanel box in Figure 16. The third argument is the coordinate of the left
edge of the bricks column in the bricks map, which is the value pointed to in the green
rectangle in Figure 16.

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

28 Andrew Davison 2004

7.4.2. Case 2. Bricks Map Moving Right and bCoord >= pWidth
The code piece:

 if (bCoord >= pWidth)
 drawBricks(g, 0-(imWidth-offset), pWidth,
 width-bCoord-imWidth); // bm tail

Figure 17 shows the operation:

Figure 17. Case 2 in BricksManager's display().

Case 2 happens some time after case 1, when xMapHead has moved further right,
beyond the right edge of the JPanel. The drawing task becomes simpler, since only a
single call to drawBricks() is required to draw a group of columns taken from the
middle of the bricks map.

Case 2 has the same problem as case 1 in determining the position of the first
column's left edge, which is solved using the offset and bCoord values.

7.4.3. Case 3. Bricks Map Moving Left and
 bCoord >= pWidth-width+imWidth

The relevant code fragment:

 if ((bCoord < 0) && (bCoord >= pWidth-width+imWidth))
 drawBricks(g, 0-offset, pWidth, -bCoord); // bm tail

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

29 Andrew Davison 2004

Figure 18 illustrates the drawing operation:

Figure 18. Case 3 in BricksManager's display().

Case 3 applies when the bricks map is moving left, as the sprite is supposedly
travelling to the right. xMapHead goes negative, as does bCoord, but the calculated
offset is adjusted to be positive.

Until bCoord drops below pWidth-width+imWidth, the bricks map will only require a
single drawBricks() call to fill the JPanel.

7.4.4. Case 4. Bricks Map Moving Left and
 bCoord < pWidth-width+imWidth
The code:

 if (bCoord < pWidth-width+imWidth) {
 drawBricks(g, 0-offset, width+xMapHead, -bCoord); // bm tail
 drawBricks(g, width+xMapHead, pWidth, 0); // bm start
 }

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

30 Andrew Davison 2004

Figure 19 shows the operations:

Figure 19. Case 4 in BricksManager's display().

Case 4 occurs after xMapHead has moved to the left of pWidth-width+imWidth. Two
drawBricks() calls are needed to render two groups of columns to the JPanel.

7.4.5. The drawBricks() Method
drawBricks() draws bricks into the JPanel between xStart and xEnd. The bricks are
drawn a column at a time, separated by imWidth pixels. The first column of bricks
drawn is the one at the xBrick pixel x-coordinate in the bricks map.

 private void drawBricks(Graphics g, int xStart, int xEnd,
 int xBrick)
 { int xMap = xBrick/imWidth; // get column position of the brick
 // in the bricks map
 ArrayList column;
 Brick b;
 for (int x = xStart; x < xEnd; x += imWidth) {
 column = columnBricks[xMap]; // get the current column
 for (int i=0; i < column.size(); i++) { // draw all bricks
 b = (Brick) column.get(i);
 b.display(g, x); // draw brick b at JPanel posn x
 }
 xMap++; // examine the next column of bricks
 }
 }

drawBricks() converts the xBrick value, a pixel x-coordinate in the bricks map, into a
map x index. This index is the column position of the brick, and so the entire column
can be accessed immediately in columnBricks[]. The bricks in the column are drawn
by calling the display() method for each brick.

Only the JPanel's x-coordinate is passed to display(), the y-coordinate is already
stored in the Brick object. This is possible since a brick's y-axis position never
changes as the bricks map is moved horizontally over the JPanel.

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

31 Andrew Davison 2004

7.5. JumperSprite-related Methods
The BricksManager has several public methods used by JumperSprite to determine or
check its position in the bricks map. The prototypes of the complicated methods are:

• int findFloor(int xSprite);
• boolean insideBrick(int xWorld, int yWorld);
• int checkBrickBase(int xWorld, int yWorld, int step);
• int checkBrickTop(int xWorld, int yWorld, int step);

7.5.1. Finding the Floor
When Jack is first added to the scene, his x-coordinate is in the middle of the JPanel,
but what should his y-coordinate be? He should be placed on the top-most brick at, or
near, the given x-coordinate. findFloor() searches for this brick, returning its y-
coordinate.

 public int findFloor(int xSprite)
 {
 int xMap = (int)(xSprite/imWidth); // x map index

 int locY = pHeight; // starting y pos (largest possible)
 ArrayList column = columnBricks[xMap];
 Brick b;
 for (int i=0; i < column.size(); i++) {
 b = (Brick) column.get(i);
 if (b.getLocY() < locY)
 locY = b.getLocY(); // reduce locY (i.e. move up)
 }
 return locY;
 }

Matters are simplified by the timing of the call – findFloor() is invoked before the
sprite has moved, so before the bricks map has moved. Consequently, the sprite’s x-
coordinate in the JPanel (xSprite) is the same x-coordinate in the bricks map.

xSprite is converted to a map x index, to permit the relevant column of bricks to be
accessed in columnBricks[].

7.5.2. Testing for Brick Collision
JumperSprite implements collision detection by calculating its new position after a
proposed move, and testing whether that point (xWorld, yWorld) is inside a brick. If it
is, then the move is aborted, and the sprite stops moving.

The point testing is done by BricksManager's insideBrick(), which uses worldToMap
() to convert the sprite’s coordinate to a brick map index tuple.

 public boolean insideBrick(int xWorld, int yWorld)
 // Check if the world coord is inside a brick
 {
 Point mapCoord = worldToMap(xWorld, yWorld);
 ArrayList column = columnBricks[mapCoord.x];

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

32 Andrew Davison 2004

 Brick b;
 for (int i=0; i < column.size(); i++) {
 b = (Brick) column.get(i);
 if (mapCoord.y == b.getMapY())
 return true;
 }
 return false;
 } // end of insideBrick()

worldToMap() returns a Point object holding the x and y map indices corresponding
to (xWorld,yWorld). The relevant brick column in columnBricks[] can then be
searched for a brick at the y map position.

The conversion carried out by worldToMap() can be understood by referring to Figure
14, which we repeat again here as Figure 20.

Figure 20. Brick Map Variables.

The code:

 private Point worldToMap(int xWorld, int yWorld)
 // convert world coord (x,y) to a map index tuple
 {
 xWorld = xWorld % width; // limit to range (width to –width)
 if (xWorld < 0) // make positive
 xWorld += width;
 int mapX = (int) (xWorld/imWidth); // map x-index

 yWorld = yWorld - (pHeight-height); // relative to map
 int mapY = (int) (yWorld/imHeight); // map y-index

 if (yWorld < 0) // above the top of the bricks
 mapY = mapY-1; // match to next ‘row’ up

 return new Point(mapX, mapY);
 }

xWorld can be any positive or negative value, so must be restricted to the range 0-
width (the extent of the bricks map). The coordinate is then converted to a map a
index.

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

33 Andrew Davison 2004

The yWorld value uses the JPanel's coordinate system, so is made relative to the y-
origin of the bricks map (some distance down from the top of the JPanel). The
conversion to a map y index must take into account the possibility that the sprite's
position is above the top of the bricks map. This can occur by having the sprite jump
upwards while standing on a platform at the top of the bricks map.

7.5.3. Jumping and Hitting Your Head
When Jack jumps, his progress upwards will be halted if he about to pass through the
base of a brick. The idea is shown in Figure 21.

Figure 21. A Rising Sprite Hitting a Brick

The sprite hopes to move upwards by a step amount, but this will cause it to enter the
brick. Instead it will travel upwards by a smaller step, step-(imHeight-topOffset),
placing its top edge next to the bottom edge of the brick.

checkBrickBase() is supplied with the planned new position (xWorld, yWorld),
labelled as (x,y) in Figure 21, and the step. It returns the step distance that the sprite
can move without passing into a brick.

 public int checkBrickBase(int xWorld, int yWorld, int step)
 {
 if (insideBrick(xWorld, yWorld)) {
 int yMapWorld = yWorld - (pHeight-height);
 int mapY = (int) (yMapWorld/imHeight); // map y- index
 int topOffset = yMapWorld - (mapY * imHeight);
 return (step - (imHeight-topOffset)); // a smaller step
 }
 return step; // no change
 }

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

34 Andrew Davison 2004

7.5.4. Falling and Sinking into the Ground
As a sprite descends, during a jump or after walking off the edge of a raised platform,
it must test its next position to ensure that it doesn't pass through a brick on its way
down. When a brick is detected beneath the sprite's feet, the descent is stopped so it
lands on top of the brick. Figure 22 illustrates the calculation.

Figure 22. A Falling Sprite Hitting a Brick.

The sprite moves downwards by a step amount on each update, but when a collision is
detected, the step size is reduced to step-topOffset, so it comes to rest on top of the
brick.

 public int checkBrickTop(int xWorld, int yWorld, int step)
 {
 if (insideBrick(xWorld, yWorld)) {
 int yMapWorld = yWorld - (pHeight-height);
 int mapY = (int) (yMapWorld/imHeight); // map y- index
 int topOffset = yMapWorld - (mapY * imHeight);
 return (step – topOffset); // a smaller step
 }
 return step; // no change
 }

The intended new position for the sprite (xWorld,yWorld) is passed to checkBrickTop
(), along with the step size. The returned value is the step that the sprite should take to
avoid sinking into a brick.

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

35 Andrew Davison 2004

8. The Brick Class
The Brick class stores coordinate information for a brick, and a reference to its image.

The coordinate details are the brick's map indices, and its y-axis pixel position inside
the map. The x-axis position isn't stored since it changes as the bricks map is moved
horizontally.

Brick's display() method is very simple:

 public void display(Graphics g, int xScr)
 // called by BricksManager's drawBricks()
 { g.drawImage(image, xScr, locY, null); }

xScr is the current JPanel x coordinate for the brick.

The capabilities of the Brick class could easily be extended. One common feature in
side-scrollers are animated tiles, such as flames and rotating balls. If the animation is
local to the tile's allocated map location, then the effect can be coded by adding an
ImagesPlayer to Brick. One issue is whether to assign a unique ImagesPlayer to each
Brick (costly if there are many bricks), or store a reference to a single ImagesPlayer.
The drawback with the reference solution is that all the animated bricks be the same.

Probably the best solution is to create an AnimatedBrick subclass, which will be used
rarely, and so can support the overhead of having its own ImagesPlayer.

If tiles can move about in the game world (e.g. a platform that moves up and down),
then bricks will need more sprite-like capabilities. This will also complicate
BricksManager since a Brick object can no longer be relied on to stay in the same
column.

9. The FireBallSprite Class
A fireball starts at the lower right hand side of the panel, and travels across to the left.
If it hits Jack, the fireball explodes, and a suitable sound is heard. A fireball that has
traveled off the left hand side of the panel, or exploded, is reused.

Only a single fireball is on-screen at a time, so JumpingJack only creates a single
FireBallSprite object. It is declared in JackPanel's constructor:

 fireball = new FireBallSprite(PWIDTH, PHEIGHT, imsLoader,
 this, jack);

The fourth argument is a reference to JackPanel, the fifth argument allows the fireball
to communicate with Jack.

As the fireball moves left, it keeps checking whether it has hit Jack. If a collision
occurs, JackPanel is asked to display an explosion, while FireBallSprite resets its
position.

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

36 Andrew Davison 2004

9.1. Statechart Specification
The statechart in Figure 23 is a useful way of specifying the design needs of
FireBallSprite. Statecharts were introduced in chapter 6.

Figure 23. The FireBallSprite Statechart.

The update/draw cycle driven by JackPanel's animation loop is clearly visible. There
are two special cases to consider – when the fireball hits Jack, and when it leaves the
left side of the panel.

The "examining environment" and "move" states are represented by updateSprite():

 public void updateSprite()
 { hasHitJack();
 goneOffScreen();
 super.updateSprite();
 }

 private void hasHitJack()
 /* If the ball has hit jack, tell JackPanel (which will
 display an explosion and play a clip), and begin again.
 */
 { Rectangle jackBox = jack.getMyRectangle();
 jackBox.grow(-jackBox.width/3, 0); // make bounded box thinner

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

37 Andrew Davison 2004

 if (jackBox.intersects(getMyRectangle())) { // collision?
 jp.showExplosion(locx, locy+getHeight()/2);
 // tell JackPanel, supplying it with a hit coordinate
 initPosition();
 }
 } // end of hasHitJack()

 private void goneOffScreen()
 {
 if (((locx+getWidth()) <= 0) && (dx < 0)) // gone off left
 initPosition(); // start the ball in a new position
 }

Collision detection (the [has hit jack]) condition in the statechart), is carried out by
obtaining Jack's bounded box, and checking if it intersects the bounded box for the
fireball. Jack's bounded box width is reduced a little, to trigger a collision only when
the fireball is right on top of him.

The move state is dealt with by Sprite's updateSprite(), which is called from
FireBallSprite's updateSprite().

The draw state is implemented by Sprite's drawSprite() method.

10. The JumperSprite Class
A JumperSprite object can appear to move left or right, jump, and stand still. In fact,
the sprite doesn't move horizontally at all, but the left and right movement requests
will affect its internal state. It maintains its current world coordinates in (xWorld,
yWorld).

When a sprite starts moving left or right, it will keep travelling in that direction until
stopped by a brick. If the sprite runs off a raised platform, it will fall to the ground
below, and continue moving forward.

When the sprite jumps, it continues upwards for a certain distance, then falls back to
the ground. The upwards trajectory is stopped if the sprite hits a brick.

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

38 Andrew Davison 2004

10.1. Statechart Specification
The JumperSprite statechart is given in Figure 24.

Figure 24. The JumperSprite Statechart.

The statechart models JumperSprite as three concurrent activities: its horizontal
movement in the top section, its vertical movement in the middle section, and the
update/draw cycle in the bottom section.

The effects of an updateSprite() event have been distributed through the diagram,
rather than placing them together in an "examining environment" state.

The horizontal movement section shows that a new updateSprite() event does not
change the current state, be it "moving right", "moving left", or "stationary".

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

39 Andrew Davison 2004

Movement stops either when the user sends a stop event, or when the sprite hits a
brick.

The vertical movement section utilises three states: "not jumping", "rising", and
"falling". Rising is controlled by an upCount counter, which limits how long an
upward move can last. Rising may also be stopped by the sprite hitting a brick.
Falling is triggered when rising finishes, and when there is no brick underneath the
sprite. This latter condition becomes true when the sprite moves horizontally off a
raised platform.

The "falling" state can lead to termination if the sprite drops below the bottom of the
panel [yWorld > pHeight]. In fact, this transition led to a redesign of BricksManager
to reject a bricks map with a gap in its floor. Consequently, 'dropping off the panel'
cannot occur in JumpingJack.

Although the statechart is very clear, we want to avoid the complexity of multiple
threads in JumperSprite. Instead, the concurrent activities are interleaved together in
the code, making it somewhat harder to understand.

10.2. Representing the States
The "moving right", "moving left", and "stationary" states are represented indirectly
as two booleans, isFacingRight and isStill, which combine to define the current
horizontal state. For instance, when isStill is false and isFacingRight is true, then the
sprite is moving right.

The "not jumping", "rising", and "falling" states are encoded as constants, assigned to
a vertMoveMode variable.

 private static final int NOT_JUMPING = 0;
 private static final int RISING = 1;
 private static final int FALLING = 2;

 private int vertMoveMode;
 /* can be NOT_JUMPING, RISING, or FALLING */

 private boolean isFacingRight, isStill;

In J2SE 1.5, vertMoveMode could be defined using an enumerated type.

10.3. Initialization
The "initialize" state is coded in JumperSprite's constructor.

 // some globals
 private int vertStep; // distance to move vertically in one step
 private int upCount;

 private int moveSize; // obtained from BricksManager

 private int xWorld, yWorld;
 /* the current position of the sprite in 'world' coordinates.
 The x-values may be negative. The y-values will be between
 0 and pHeight. */

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

40 Andrew Davison 2004

 :

 public JumperSprite(int w, int h, int brickMvSz, BricksManager bm,
 ImagesLoader imsLd, int p)
 {
 super(w/2, h/2, w, h, imsLd, "runningRight");
 // standing center screen, facing right
 moveSize = brickMvSz;
 // the move size is the same as the bricks ribbon

 brickMan = bm;
 period = p;
 setStep(0,0); // no movement

 isFacingRight = true;
 isStill = true;

 /* Adjust the sprite's y- position so it is
 standing on the brick at its mid x- position. */
 locy = brickMan.findFloor(locx+getWidth()/2)-getHeight();
 xWorld = locx; yWorld = locy; // store current position

 vertMoveMode = NOT_JUMPING;
 vertStep = brickMan.getBrickHeight()/2;
 // the jump step is half a brick's height
 upCount = 0;
 } // end of JumperSprite()

The (xWorld, yWorld) coordinates are set, as are the sprite's position and speed. The
state variables isFacingRight, isStill, and vertMoveMode define a stationary, non-
jumping sprite, facing to the right.

Other variables from the statechart (e.g. moveSize, vertStep) are initialized in the
constructor.

BricksManager's findFloor() method is used to get a y location for the sprite that lets
it stand on top of a brick.

10.4. Key Event Processing
The events "move left", "move right", "stop", and "jump" in the statechart are caught
as key presses by the key listener in JackPanel, triggering calls to the JumperSprite
methods moveLeft(), moveRight(), stayStill(), and jump().

moveLeft(), moveRight() and stayStill() affect the horizontal state by adjusting the
isFacingRight and isStill variables. The animated image associated with the sprite is
also changed.

 public void moveLeft()
 { setImage("runningLeft");
 loopImage(period, DURATION); // cycle through the images
 isFacingRight = false; isStill = false;
 }

 public void moveRight()
 { setImage("runningRight");
 loopImage(period, DURATION); // cycle through the images

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

41 Andrew Davison 2004

 isFacingRight = true; isStill = false;
 }

 public void stayStill()
 { stopLooping();
 isStill = true;
 }

The jump() method represents the transition from the "not jumping" to the "rising"
state in the statechart. This is coded by changing the value stored in vertMoveMode.
The sprite's image is also modified.

 public void jump()
 { if (vertMoveMode == NOT_JUMPING) {
 vertMoveMode = RISING;
 upCount = 0;
 if (isStill) { // only change image if the sprite is 'still'
 if (isFacingRight)
 setImage("jumpRight");
 else
 setImage("jumpLeft");
 }
 }
 }

10.5. JackPanel Collision Testing
The [will hit brick on the right] and [will it brick on the left] conditional transitions in
the statechart are implemented as a public willHitBrick() method, called from
JackPanel's gameUpdate() method.

 private void gameUpdate()
 {
 if (!isPaused && !gameOver) {
 if (jack.willHitBrick()) { // collision checking first
 jack.stayStill(); // stop everything moving
 bricksMan.stayStill();
 ribsMan.stayStill();
 }
 ribsMan.update(); // update background and sprites
 bricksMan.update();
 jack.updateSprite();
 fireball.updateSprite();
 :
 }
 }

The reason for placing the test in JackPanel's hands is so it can coordinate the other
game entities when a collision occurs. Not only is the JumperSprite brought to a halt,
so are the background layers in the game.

 public boolean willHitBrick()
 {
 if (isStill)

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

42 Andrew Davison 2004

 return false; // can't hit anything if not moving

 int xTest; // for testing the new x- position
 if (isFacingRight) // moving right
 xTest = xWorld + moveSize;
 else // moving left
 xTest = xWorld - moveSize;

 // test a point near the base of the sprite
 int xMid = xTest + getWidth()/2;
 int yMid = yWorld + (int)(getHeight()*0.8); // use y posn

 return brickMan.insideBrick(xMid,yMid);
 } // end of willHitBrick()

willHitBrick() represents two conditional transitions, so the isFacingRight flag is used
to distinguish how xTest should be modified. The proposed new coordinate is
generated, then passed to BricksManager's insideBrick() for evaluation.

The vertical collision testing in the middle section of the statechart, [will hit brick
below] and [will hit brick above], are carried out by JumperSprite not JackPanel,
since a collision only affects the sprite.

10.6. The updateSprite() Method
The statechart distributes the actions of the updateState() event around the statechart:
actions are associated with the "moving right", "moving left", "rising", and "falling"
states. These actions are implemented in the updateState() method, and the functions
it calls:

 public void updateSprite()
 {
 if (!isStill) { // moving
 if (isFacingRight) // moving right
 xWorld += moveSize;
 else // moving left
 xWorld -= moveSize;
 if (vertMoveMode == NOT_JUMPING) // if not jumping
 checkIfFalling(); // may have moved out into empty space
 }

 // vertical movement has two components: RISING and FALLING
 if (vertMoveMode == RISING)
 updateRising();
 else if (vertMoveMode == FALLING)
 updateFalling();

 super.updateSprite();
 } // end of updateSprite()

The method updates its horizontal position (xWorld) first, distinguishing between
moving right or left by examining isStill and isFacingRight.

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

43 Andrew Davison 2004

After the move, checkIfFalling() decides whether the [no brick below] transition from
"not jumping" to "falling" should be applied.

The third stage of the method is to update the vertical states.

Lastly, the call to Sprite's updateSprite() method modifies the sprite's position and
image.

updateSprite() illustrates the sort of complications that arise when concurrent
activities (horizontal and vertical movement) are combined and sequentialised. The
horizontal actions are carried out before the vertical ones.

checkIfFalling() determines whether the "not jumping" state should be changed to
"falling".

 private void checkIfFalling()
 {
 // could the sprite move downwards if it wanted to?
 // test its center x-coord, base y-coord
 int yTrans = brickMan.checkBrickTop(xWorld+(getWidth()/2),
 yWorld+getHeight()+vertStep, vertStep);
 if (yTrans != 0) // yes it could
 vertMoveMode = FALLING; // set it to be in falling mode
 }

The test is carried out by passing the coordinates of the sprite's feet, plus a vertical
offset downwards, to checkBrickTop() in BricksManager.

10.7. Vertical Movement
updateRising() deals with the updateSprite() event associated with the "rising" state,
and tests the two conditional transitions which leave the state: [upCount == MAX]
and [will hit brick above]. Rising will continue until the maximum number of vertical
steps is reached, or the sprite hits the base of a brick. The sprite then switches to
falling mode. checkBrickBase() in BricksManager carries out the collision detection.

 private void updateRising()
 { if (upCount == MAX_UP_STEPS) {
 vertMoveMode = FALLING; // at top, now start falling
 upCount = 0;
 }
 else {
 int yTrans = brickMan.checkBrickBase(xWorld+(getWidth()/2),
 yWorld-vertStep, vertStep);
 if (yTrans == 0) { // hit the base of a brick
 vertMoveMode = FALLING; // start falling
 upCount = 0;
 }
 else { // can move upwards another step
 translate(0, -yTrans);
 yWorld -= yTrans; // update position
 upCount++;
 }

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

44 Andrew Davison 2004

 }
 } // end of updateRising()

updateFalling() processes the updateSprite() event associated with the "falling" state,
and deals with the [will hit brick below] transition going to the "not jumping" state.
checkBrickTop() in BricksManager carries out the collision detection.

The other conditional leading to termination is not implemented, since the bricks map
cannot contain any holes for the sprite to fall through.

 private void updateFalling()
 { int yTrans = brickMan.checkBrickTop(xWorld+(getWidth()/2),
 yWorld+getHeight()+vertStep, vertStep);
 if (yTrans == 0) // hit the top of a brick
 finishJumping();
 else { // can move downwards another step
 translate(0, yTrans);
 yWorld += yTrans; // update position
 }
 }

 private void finishJumping()
 { vertMoveMode = NOT_JUMPING;
 upCount = 0;
 if (isStill) { // change to running image, but not looping yet
 if (isFacingRight)
 setImage("runningRight");
 else // facing left
 setImage("runningLeft");
 }
 }

11. Other Side-Scroller Examples
There are many areas where JumpingJack could be improved, including adding
multiple levels, more 'bad guys' (enemy sprites), and complex tiles.

A good source of ideas are other side-scrolling games. ArcadePod.com
(http://arcadepod.com/java/) lists 64 'scoller' games, although none of the ones I tried
came with source code.

The following is a list of side-scrollers which do include source, and were written in
the last 2-3 years.

• MeatFighter: the Wiener Warrior (http://www.meatfighter.com/). The Web site
includes an article about the implementation, which appeared in Java Developers
Journal, March 2003, Vol. 8, No. 3.

• Frogma (http://sourceforge.net/projects/frogma/).

• VideoToons (http://sourceforge.net/projects/videotoons/).

• Mario Platformer (http://www.paraduck.net/misterbob/Platformer1.1/classes/).
Only the compiled classes are available for this applet.

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

45 Andrew Davison 2004

Chapter 5 of David Brackeen's book is about a side-scroller (a 2D platform game):

Developing Games in Java
David Brackeen, Bret Barker, Laurence Vanhelswue
New Riders, August 2003

The source can be obtained from http://www.brackeen.com/javagamebook/. He
develops a wider range of bad guys than I have, and includes things for the hero to
pick up.

A good place for articles about tile-based games is the "Isometric and Tile-based
Games" reference section at GameDev (http://www.gamedev.net/reference/list.asp?
categoryid=44).

12. J2ME and the Game API
MIDP 2.0 for J2ME has a Game API offering an easy-to-use animation loop, and a set
of classes for building layers of tiles and sprites. Porting the API to J2SE would be
quite straightforward.

Good online overviews of the API:

• Jonathan Knudsen, "Creating 2D Action Games with the Game API",
http://developers.sun.com/techtopics/mobility/midp/articles/game/
Knudsen's example is a tank game with the player's viewpoint looking downwards
from directly overhead.

• Mikko Kontio, "MIDP 2.0: The Game API",
http://www.microjava.com/articles/techtalk/game_api?
content_id=4271 The example is a blocky side-scroller.

• Carol Hamer, "MIDP 2.0 Games: a Step-by-Step Tutorial with Code Samples",
http://www.microjava.com/articles/techtalk/midp2_games
This lengthy tutorial builds up to a side-scroller involving a cowboy jumping over
tumbleweed.

The only textbook that includes a Game API example (a side-scroller) is:

Wireless Java: Developing with J2ME
Jonathan Knudsen
APress, 2003, 2nd edition

The source from the book can be obtained from
http://www.apress.com/book/bookDisplay.html?bID=138. The side-scroller appears
in chapter 11.

The Java Tiny Gfx Library (JTGL) (http://www.jtgl.org) provides a common set of
graphics and gaming classes on top of J2ME, J2SE, and several mobile APIs. The
gaming classes include Surface, TiledMap, and Sprite.

Java Prog. Techniques for Games. Chapter 6.2. A Side Scroller Draft #1 (19th May 04)

46 Andrew Davison 2004

13. Tiling Software
One of the time-consuming aspects of side-scroller creation is the building of the tile
map. A realistic game will require a much larger collection of tiles, including ones for
smoothing the transition between one type of tile and another.

Tile map editors let you visually edit tiles, and build a map using drawing tools. Two
popular, and free, tools are:

• Tile Studio (http://tilestudio.sourceforge.net/)

• Mappy for PC (http://www.tilemap.co.uk/mappy.php)

Functionally they are quite similar, but Mappy has additional support for creating
hexagonal and isometric tiles.

It is possible to customize the way that TileStudio exports its data, by creating a TSD
(Tile Studio Definition) defining the output file format.

Tile Studio is used with Java (actually J2ME) in chapter 11 of:

J2ME Game Programming
Martin Wells
Premier Press, February 2004

In the example, Tile Studio exports several tile maps to a TSD-defined file, and java
is used to read them. This chapter is available online at
http://www.courseptr.com/ptr_detail.cfm?isbn=1592001181

Mappy places a lot of emphasis on playback libraries/APIs, allowing its maps to be
loaded, manipulated, and displayed. The Mappy Web site offers two Java playback
libraries. There is also JavaMappy (http://www.alienfactory.co.uk/javamappy/), an
open source Java playback library for Mappy. It includes pluggable renderers for
J2ME and J2SE 1.4. The download includes several examples and documentation.

