
Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

1  Andrew Davison 2004

Chapter 4. Images, Visual Effects, and Animation

Images are a central part of every game, and this chapter examines how we can
(efficiently) load and display them, apply visual effects such as blurring, fading, and
rotation, and animate them.

Image loading and processing is an area of Java which is undergoing rapid change,
mainly driven by the wish for speed. We begin by reviewing the (rather outmoded)
AWT imaging model, which is being superceded by the BufferedImage and
VolatileImage classes, ImageIO, and the wide range of BufferedImageOp image
operations offered by Java 2D. If these aren't enough then JAI (Java Advanced
Imaging) has even more capabilities.

The application developed in this chapter is called ImagesTests, shown in Figure 1.

Figure 1. ImagesTests in Action.

The static picture in figure 1 doesn't show the changing effects (animations) being
applied to each image. Eleven different visual effects are used, including 'zapping',
'teleportation', and the more familiar reddening, blurring, and flipping.

The effects are mostly Java 2D operations, such as convolution or affine
transformation. Occasionally, we make use of capabilities in drawImage() (e.g. for
resizing and flipping an image).

The images (in GIF, JPEG, or PNG format) are loaded by our own ImagesLoader
class from a JAR file containing the application and the images. The images are
loaded using ImageIO's read(), and stored as BufferedImage objects, in order to take
advantage of the JVM's "managed image" features.

ImagesLoader can load individual images, image strips, and multiple image files
which represent an animation sequence.

The animation effects utilized by ImagesTests falls into two categories:

1) those defined by repeatedly applying a visual effect, such as blurring, to the same
image, but by an increasing amount;

2) those where the animation is represented by a series of different images displayed
one after another.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

2  Andrew Davison 2004

Before we examine the details of ImagesTests, we'll take a look at the imaging
capabilities in Java, including the AWT imaging model, BufferedImages, managed
images, VolatileImages, Java 2D image processing, and a brief mention of JAI.

1. Image Formats
A game will typically use a mix of the GIF, JPEG and PNG images, popular graphics
formats which have advantages and disadvantages.

A GIF (Graphics Interchange Format) image is best for cartoony-style graphics using
few colours, since only a maximum of 256 colours can be represented in a file. This is
due to GIF's use of a 256 element colour table to store information, allowing each
pixel to hold only an index into that table, reducing the requirement for 3 bytes for
red, green, and blue (RGB) information down to a single byte. One of the colour table
entries can represent a transparent 'colour', which Java honours by not drawing.

GIF offers rudimentary animation, by permitting a file to contain several images.
These will be drawn consecutively when the file is displayed (e.g. with drawImage()
in Java). Actually, this feature isn't of much use since there is no simple way of
controlling the animation from within Java.

A JPEG (Joint Photographic Experts Group) file employs 3 bytes (24 bits) per pixel (1
byte for each of the red, green, and blue components), but a lossy compression
scheme reduces the space quite considerably. This may cause large areas using a
single colour to appear blotchy, and sharp changes in contrast can become blurred
(e.g. at the edges of black text on a white background). JPEG files are best for large
photographic images, such as game backgrounds. JPEG files do not offer
transparency.

The PNG format (Portable Network Graphics) is intended as a replacement for GIF. It
includes an alpha channel along with the usual RGB components, which permits an
image to include translucent areas. Translucency is particularly useful for gaming
effects like laser beams, smoke, and ghosts (of course). Other advantages over GIF
are gamma correction, which enables image brightness to be controlled across
platforms, 2D interlacing, and (slightly) better compression, which is lossless. This
last feature makes PNG a good storage choice while a photographic image is being
edited, but JPEG is probably better for the finished image since its lossy compression
achieves greater size reductions.

Some developers prefer PNG since it is an open source standard (see
http://www.libpng.org/pub/png/), with no patents involved; the GIF format is owned
by CompuServe.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

3  Andrew Davison 2004

2. The AWT Imaging Model
JDK 1.0 introduced the AWT imaging model for downloading and drawing images.
Back then, it was thought that the most common use of imaging would involve
applets pulling graphics down off the Web. A standard 1990's example (but using
JApplet):

import javax.swing.*;
import java.awt.*;

public class ShowImage extends JApplet
{
 private Image im;

 public void init()
 { im = getImage(getDocumentBase(), "ball.gif"); }

 public void paint(Graphics g)
 { g.drawImage(im, 0, 0, this); }
}

The getDocumentBase() method returns the URL of the directory holding the original
Web document, and this is prepended to the image's filename to get a URL suitable
for getImage().

The central problem with networked image retrieval is speed. Consequently, the Java
designers considered it a bad idea to have an applet stop while an image slowly
crawled over from the server-side. This led to a (somewhat) confusing behaviour for
getImage() and drawImage().

The getImage() method is poorly named since it doesn't get (or download) the image
at all. Instead it prepares an empty Image object (im) for holding the image, returning
immediately after that. The downloading is actually triggered by drawImage() in paint
(), which is called as the applet is loaded into the browser, after init() has finished.

The fourth argument of drawImage() is an ImageObserver (usually the applet, or
JFrame in an application). It will monitor the gradual downloading of the image. As
data arrives, the Component's imageUpdate() is repeatedly called. imageUpdate()'s
default behaviour is to call repaint(), to redraw the image now that more data is
available, and return true. However, if an error has occurred with the image retrieval
then imageUpdate() will return false. imageUpdate() can be overridden and modified
by the programmer.

The overall effect is that paint() will be called repeatedly as the image is downloaded,
causing the image to appear gradually on-screen. This effect is only noticeable if the
image is coming over the network. If the file is stored locally then it will be drawn
fully almost instantaneously.

The result of this coding style means that the Image im contains no data until paint()
is called, and even then may not contain complete information for several seconds or
minutes. This make programming difficult: for instance, a GUI cannot easily allocate
an on-screen space to the image since it has no known width or height until painting
has started.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

4  Andrew Davison 2004

Experience since the introduction of JDK 1.0 has shown that most programs do not
want graphics to be drawn incrementally during execution. For example, game sprites
should be fully drawn from the very start.

The getImage() method is only for applets; there is a separate getImage() method for
applications, accessible from Toolkit. For example:
Image im = Toolkit.getDefaultToolkit().getImage("http://....");

As with the getImage() method for applets, it doesn't download anything. That task is
done by paint().

2.1. The MediaTracker Class
Most programs (and most games) want to preload images before drawing them. In
other words, we do not want to tie downloading to painting.

One solution is the MediaTracker class: a MediaTracker object can start the download
of an image and suspend execution until it has fully arrived, or an error occurs. The
init() method in ShowImage class can be modified to do this:

 public void init()
 {
 im = getImage(getDocumentBase(), "ball.gif");

 MediaTracker tracker = new MediaTracker(this);
 tracker.addImage(im, 0);
 try {
 tracker.waitForID(0);
 }
 catch (InterruptedException e)
 { System.out.println("Download Error"); }
 }

waitForID() starts the separate download thread, and suspends until it finishes. The ID
used in the MediaTracker object can be any positive integer.

This means that the applet will be slower to start since init()'s execution will be
suspended while the image is retrieved. In paint(), drawImage() will now only draw
the image, since there is no need to do a download. Consequently, drawImage() can
be supplied with a null (empty) ImageObserver:
 drawImage(im, 0, 0, null);

A common way of speeding up the downloading of multiple images is to spawn a
pool of threads, each one assigned to the retrieval of a single image. Only when each
thread has completed will init() return.

2.2. ImageIcon
Writing MediaTracker code in every applet/application can be trying, and so an
ImageIcon class was introduced which sets up a MediaTracker itself. The name of the

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

5  Andrew Davison 2004

class is a bit misleading: any size of image can be downloaded into an ImageIcon, not
just icons.

The init() method becomes:

 public void init()
 { im = new ImageIcon(getDocumentBase()+"ball.gif").getImage(); }

The ImageIcon object can be converted to an Image (as here), or be painted with
ImageIcon's paintIcon() method.

2.3. The Rise of JARS
A JAR (Java ARchive) file is a way of packaging code and resources together into a
single, compressed file. Resources can be just about anything, including images and
sounds.

If an applet (or application) is going to utilize a lot of images, repeated network
connections to download them will severely reduce execution speed. It's much better
to create a single JAR file containing the applet (or application) and all the images,
and have the browser (or user) download it. Then, when an image comes to be loaded,
it's a fast, local load from the JAR file.

From a user's point of view, the download of the 'program' takes a bit longer, but it
starts without any annoying delays caused by image loading.

At the end of this chapter, we'll explain how to package up the ImagesTests code, and
the large number of images it uses, as a JAR file. The only coding change occurs in
specifying the location of an image file. The previous ImageIcon example would
become:
 im = new ImageIcon(getClass().getResource("ball.gif")).getImage();

getClass() gets the Class reference for the object (e.g. ShowImage), and getResource()
specifies that the resource is stored in the same place as that class.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

6  Andrew Davison 2004

2.4. AWT Image Processing
It's not particularly easy to access the various elements of an Image object, such as its
pixel data or colour model. For instance, the image manipulation features in AWT are
primarily aimed at modifying individual pixels as they pass through a 'filter'. A stream
of pixel data is sent out by a ImageProducer, passes through the ImageFilter, and on
to an ImageConsumer (see Figure 2). This is known as the push model, since stream
data is 'pushed' out by the producer.

Figure 2. Image Processing in AWT.

Two pre-defined ImageFilter subclasses are CropImageFilter for cropping regions of
pixels, and RGBImageFilter for processing individual pixels.

It is possible to chain filters together by making a consumer of one filter the producer
of another.

This stream-view of filtering makes it difficult to process groups of pixels, especially
ones which are non-contiguous. For example, a convolution operation for image
smoothing would require a new subclass of ImageFilter, and a new ImageConsumer
to deal with the disruption to the pixels stream.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

7  Andrew Davison 2004

An alternative approach is to use the PixelGrabber class to collect all the pixel data
from an image into an array, where it can then be conveniently processed in its
entirety. Use must also be made of MemoryImageSource to funnel the changed array's
data as a stream to a specified ImageConsumer. The additional steps in the push
model are shown in Figure 3.

Figure 3. Processing the Image as an Array.

Modern Java code (i.e. since J2SE 1.2) can utilize the image processing capabilities of
Java 2D, with its many predefined operations, and so you're unlikely to meet the push
model, except in legacy code. If Java 2D is insufficient, then JAI should be
considered.

3. An Overview of Java 2D
In this chapter, we'll only be using the imaging capabilities of Java 2D, which are
extensive. However, Java 2D also offers a complete set of graphics features, which
address the inadequacies in the older AWT graphics classes, including single pixel
thickness lines, limited fonts, poor shape manipulation (e.g. no rotation), and no
special fills, gradients, or patterns inside shapes.

Java 2D replaces most of the shape primitives in AWT (e.g. rectangles, arcs, lines,
ellipse, polygons) with versions that can take double or floating pointing coordinates,
although many people still use the old drawLine(), drawRect(), and fillRect()
methods. Of more interest is the ability to create arbitrary geometric shapes by using
set operations on other shapes (with union, intersection, subtraction, and exclusive
or). A GeneralPath class permits a shape to be built from a series of connected lines
and curves. Curves can be defined using splines.

Java 2D distinguishes between shape stroking and filling. Stroking is the drawing of
lines and shape outlines, which may employ various patterns and thicknesses. Shape
filling can use a solid colour (as in AWT), and patterns, colour gradients, and images
acting as textures.

Affine transformations can be applied to shapes and images, including translation,
rotation, scaling, and shearing, and groups of transformations can be composed

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

8  Andrew Davison 2004

together. drawImage() can be supplied with such a transformation, which is applied
before the image is rendered.

Shapes and images can be drawn together using eight different compositing rules,
optionally combined with varying transparency values. Clipping can be applied, based
on an arbitrary shape (not just a rectangle as in AWT).

Rendering hints can be specified, including the antialiasing of shapes and text (i.e. the
smoothing of their jagged edges), image interpolation, and whether to use high-speed
or high-quality rendering.

Java-based printing finally became relatively easy to control with Java 2D.

Java’s top-level Web page for Java 2D is http://java.sun.com/products/
java-media/2D/, and there is extensive documentation and a tutorial trail.

The central Java 2D class is Graphics2D, a subclass of AWT's Graphics. paint() or
paintComponent() must cast the graphics context to become a Graphics2D object
before Java 2D operations can be employed, as shown in the paintComponent()
method below.

 public void paintComponent(Graphics g)
 // draw a blue square
 {
 super.paintComponent(g);
 Graphics2D g2d = (Graphics2D) g; // cast the graphics context

 g2d.setPaint(Color.blue);
 Rectangle2D.Double square =
 new Rectangle2D.Double(10,10,350,350);
 g2d.fill(square);
 }

The pen parameters are usually set first, which may set its colour, pattern, thickness,
and how the drawn image will be composed with others. It's also possible to apply
affine transformations to the drawing area's coordinate system, such as rotating it.

A shape object is then created, which might be a rectangle (as here), ellipse, polygon,
or a GeneralPath object. The shape can be drawn in outline with draw(), or filled
using the current pen settings by calling fill().

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

9  Andrew Davison 2004

3.1. Java 2D and Active Rendering
Java 2D operations can be easily utilized in the active rendering approach described in
chapters 1-3. As you may recall, a Graphics object for the off-screen buffer is
obtained with getGraphics() inside gameRender(). This can be cast to a Graphics2D
object.

 // global variables for off-screen rendering
 private Graphics2D dbg2D; // was a Graphics object, dbg
 private Image dbImage = null;
 :

 private void gameRender()
 // draw the current frame to an image buffer
 {
 if (dbImage == null){ // create the buffer
 dbImage = createImage(PWIDTH, PHEIGHT);
 if (dbImage == null) {
 System.out.println("dbImage is null");
 return;
 }
 else
 dbg2D = (Graphics2D) dbImage.getGraphics();
 }

 // clear the background using Java 2D
 // draw game elements using Java 2D
 ...
 if (gameOver)
 gameOverMessage(dbg2D);
 } // end of gameRender()

Methods called from gameRender(), such as gameOverMessage() will now utilize the
Graphics2D object.

In FSEM, the Graphics object is obtained with getDrawGraphics(), and its result can
be cast:

 private Graphics2D gScr2d; // global, was Graphics gScr
 :

 private void screenUpdate()
 { try {
 gScr2d = (Graphics2D) bufferStrategy.getDrawGraphics();
 gameRender(gScr2d);
 gScr2d.dispose();
 :
 }

gameRender() receives a Graphics2D object, and so has the full range of Java 2D
operations at its disposal.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

10  Andrew Davison 2004

4. The BufferedImage Class
The BufferedImage class is a subclass of Image, and so can be employed instead of
Image in methods such as drawImage(). BufferedImage has two main advantages: the
data required for image manipulation is easily accessible through it's methods, and
BufferedImage objects are automatically converted to managed images by the JVM
(when possible). A managed image may allow hardware acceleration to be employed
when the image is being rendered.

The following code is the ShowImage applet recoded to use a BufferedImage:

import javax.swing.*;
import java.awt.*;
import java.io.*;
import java.awt.image.*;
import javax.imageio.ImageIO;

public class ShowImage extends JApplet
{
 private BufferedImage im;

 public void init()
 { try {
 im = ImageIO.read(getClass().getResource("ball.gif"));
 }
 catch(IOException e) {
 System.out.println("Load Image error:");
 }
 } // end of init()

 public void paint(Graphics g)
 { g.drawImage(im, 0, 0, this); }
}

The simplest, and perhaps fastest, way of loading a BufferedImage object is with read
() from the ImageIO class. Some tests suggest that it may be 10% faster than using
ImageIcon, which can be significant when the image is large. They are different
versions of read() for reading from a URL, InputStream, and ImageInputStream.

It's possible to optimize the BufferedImage so that it has the same internal data format
and colour model as the underlying graphics device. This requires us to make a copy
of the input image using GraphicsConfiguration's creatCompatibleImage(). The
various steps are packaged together inside a loadImage() method given below.

public class ShowImage extends JApplet
{
 private GraphicsConfiguration gc;
 private BufferedImage im;

 public void init()
 {
 // get this device's graphics configuration
 GraphicsEnvironment ge =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
 gc = ge.getDefaultScreenDevice().getDefaultConfiguration();

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

11  Andrew Davison 2004

 im = loadImage("ball.gif");
 } // end of init()

 public BufferedImage loadImage(String fnm)
 /* Load the image from <fnm>, returning it as a BufferedImage
 which is compatible with the graphics device being used.
 Uses ImageIO. */
 {
 try {
 BufferedImage im = ImageIO.read(getClass().getResource(fnm));

 int transparency = im.getColorModel().getTransparency();
 BufferedImage copy = gc.createCompatibleImage(
 im.getWidth(), im.getHeight()),

 transparency);

 // create a graphics context
 Graphics2D g2d = copy.createGraphics();

 // copy image
 g2d.drawImage(im,0,0,null);
 g2d.dispose();
 return copy;
 }
 catch(IOException e) {
 System.out.println("Load Image error for " + fnm + ":\n" + e);
 return null;
 }
 } // end of loadImage()

 public void paint(Graphics g)
 { g.drawImage(im, 0, 0, this); }

} // end of ShowImage class

The three argument version of createCompatibleImage() is utilized, which requires
the BufferedImage’s width, height, and transparency value.

The possible transparency values are Transparency.OPAQUE,
Transparency.BITMASK, and Transparency.TRANSLUCENT. The BITMASK
setting is applicable to GIFs which have a transparent area, while TRANSLUCENT
can be employed by translucent PNG images.

There is a two argument version of createCompatibleImage() which only requires the
image's width and height, but if the source image has a transparent or translucent
component then it (most probably) will be copied incorrectly; for instance, the
transparent areas in the source may be drawn as solid black.

Fortunately, it is quite simple to access the transparency information in the source
BufferedImage, by querying its ColourModel (explained later):
 int transparency = im.getColorModel().getTransparency();

The copy BufferedImage object is filled in by drawing the source image into its
graphics context.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

12  Andrew Davison 2004

Another reason for the use of createCompatibleImage() is that it permits J2SE 1.4.2 to
mark the resulting BufferedImage as a managed image, which may later be drawn to
the screen using hardware acceleration. However, in J2SE 1.5. the JVM knows that
anything read in by ImageIO's read() can become a managed image, so the call to
createCompatibleImage() is no longer necessary for that reason. The call should still
be made though, since it optimizes the BufferedImage's internals for the graphics
device.

4.1. From Image to BufferedImage
Legacy code usually employs Image, and it may not be feasible to rewrite the entire
code base to utilize BufferedImage. Instead, is there a way to convert an Image object
to a BufferedImage object? makeBIM() makes a gallant effort:

 private BufferedImage makeBIM(Image im, int width, int height)
 // make a BufferedImage copy of im, assuming an alpha channel
 {
 BufferedImage copy = new BufferedImage(width, height,
 BufferedImage.TYPE_INT_ARGB);
 // create a graphics context
 Graphics2D g2d = copy.createGraphics();

 // copy image
 g2d.drawImage(im,0,0,null);
 g2d.dispose();
 return copy;
 }

It can be used in ShowImage.java:

 public void init()
 // load an imageIcon, convert to BufferedImage
 {
 ImageIcon imIcon = new ImageIcon(
 getClass().getResource("ball.gif"));

 im = makeBIM(imIcon.getImage(), imIcon.getIconWidth(),
 imIcon.getIconHeight());
 }

We load an ImageIcon (to save on MediaTracker coding), and pass its Image, width,
and height into makeBIM(), getting back a suitable BufferedImage object.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

13  Andrew Davison 2004

A niggly issue with makeBIM() is located in the BufferedImage() constructor. The
constructor must be supplied with a type, and there's a lot to choose from (look at the
Java documentation for BufferedImage for a complete list). A very partial list appears
in Table 1.

BufferedImage Type Description

TYPE_INT_ARGB 8-bit alpha, red, green, and blue samples packed into a 32-bit integer.

TYPE_INT_RGB 8-bit red, green and blue samples packed into a 32-bit integer.

TYPE_BYTE_GRAY An unsigned byte grayscale image (1 pixel/byte).

TYPE_BYTE_BINARY A byte packed binary image (8 pixels/byte).

TYPE_INT_BGR 8-bit blue, green and red samples packed into a 32-bit integer.

TYPE_3BYTE_RGB 8-bit blue, green and red samples packed into a 1 byte each.

Table 1. Some BufferedImage Types.

An image is made up of pixels (of course), and each pixel is composed from (perhaps)
several samples. Samples hold the colour component data that combine to make the
pixel's overall colour.

A standard set of colour components are red, green, and blue, RGB for short. The
pixels in a transparent or translucent colour image will also include an alpha (A)
component to specify the degree of transparency for the pixels.

A grayscale image only utilizes a single sample per pixel.

BufferedImage types specify how the samples that make up a pixel's data are packed
together. For example, TYPE_INT_ARGB packs its four samples into 8 bits each, so
that a single pixel can be stored in a single 32-bit integer. This is shown graphically in
Figure 4.

Figure 4. A TYPE_INT_ARGB Pixel.

This format is used for the BufferedImage object in makeBIM(), since it’s the most
general. The red, green, blue and alpha components can have 256 different values
(28), with 255 being full on. For the alpha part, 0 means fully transparent, 255 fully
opaque.

The question is whether such flexibility is always needed, for instance, when the
image is opaque or a grayscale? Also, it may not be possible to accurately map an
image stored using a drastically different colour model to the range of colours here.
An example, would be an image using 16 bit colour components.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

14  Andrew Davison 2004

Nevertheless, makeBIM() deals with the normal range of image formats, GIF, JPEG,
and PNG, and so is satisfactory for our needs.

A more rigorous solution is to use AWT's imaging processing capabilities to analyze
the source Image object, and construct a BufferedImage accordingly. A PixelGrabber
can access the pixel data inside the Image, and determine whether there is an alpha
component, and whether the image is grayscale or RGB.

A third answer is to go back to basics, and ask exactly why the image is being
converted to a BufferedImage object at all? A common reason is to make use of
BufferedImageOp operations, but this can be achieved without a conversion. It is
possible to wrap a BufferedImageOp object in a BufferedImageFilter to make it
behave like an AWT ImageFilter.

4.2. The Internals of BufferedImage
The data maintained by a BufferedImage object is represented by Figure 5.

Figure 5. BufferedImage Internals.

A BufferedImage instance is made up of a Raster object which stores the pixel data,
and ColorModel which contains methods for converting that data into colours.

DataBuffer holds a rectangular array of numbers that make up the data, while
SampleModel explains how those numbers are grouped into the samples for each
pixel.

One way of viewing the image is as a collection of bands (or channels): a band is a
collection of the same samples from all the pixels. For instance, an ARGB file
contains four bands for alpha, red, green, and blue.

The ColorModel object defines how the samples in a pixel are mapped to colour
components, and ColorSpace specifies how the components are combined to form a
renderable colour.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

15  Andrew Davison 2004

Java 2D supports many colour spaces, including sRGB, the standardized RGB colour
space, which corresponds to the TYPE_INT_ARGB format in Figure 4. The
BufferedImage method getRGB(x,y) utilizes this format: (x,y) is the pixel coordinate,
and a single integer is returned which, with the help of some simple bit manipulation,
can expose its 8-bit alpha, red, green, and blue components.

setRGB() updates an image pixel, and there are also get and set methods that
manipulate all the pixels as an array of integers. Two of the ImagesTests visual effects
use these methods (see section 14.8).

4.3. BufferedImageOp Operations
Java 2D's image processing operations are (for the most part) subclasses of the
BufferedImageOp interface, which supports an immediate imaging model. Image
processing is a filtering operation which takes a source BufferedImage as input, and
produces a new BufferedImage as output. The idea is captured by Figure 6.

Figure 6. The BufferedImageOp Imaging Model.

This doesn't appear to be much different from the ImageFilter idea in Figure 2. The
differences are in the expressibility of the operations which can, for instance,
manipulate groups of pixels, and affect the colour space. This is due to the data model
offered by BufferedImage.

The code fragment below shows the creation of a destination BufferedImage, by
manipulating a source BufferedImage using RescaleOp, which implements the
BufferedImageOp interface.

RescaleOp negOp = new RescaleOp(-1.0f, 255f, null);
BufferedImage destination = negOp.filter(source, null);

The filter() method does the work, taking the source image as input, and returning the
resulting image.

Certain image processing operations can be carried out in place, which means that the
destination BufferedImage can be the source.

Another common way of using a BufferedImageOp is as an argument to drawImage():
the image will be processed, and the result drawn straight to the screen:
 g2d.drawImage(source, negOp, x, y);

The (x,y) coordinate is where the top-left corner of the resulting image will be placed.

The predefined BufferedImageOp image processing classes are listed in Table 2.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

16  Andrew Davison 2004

Class Name Description Some Possible Effects In Place?

AffineTransformOp A geometric transformation is
applied to the image’s coords.

Scaling, rotating, shearing. No.

BandCombineOp Combine bands in the image’s
Raster

Change the mix of colours. Yes.

ColorConvertOp ColorSpace conversion. Convert RGB to grayscale. Yes.

ConvolveOp Combine groups of pixel values
to obtain a new pixel value.

Blurring, sharpening, edge
detection.

No.

LookupOp Modify pixel values based on a
table lookup.

Colour inversion, reddening,
brightening, darkening.

Yes.

RescaleOp Modify pixel values based on a
linear equation.

Mostly the same as
LookupOp.

Yes.

Table 2. Image Processing Classes.

Various examples of these, together with more detailed explanations of the
operations, will be given when we discuss ImagesTests.

5. Managed Images
A managed image is automatically cached in VRAM (video memory) by the JVM.
When drawImage() is applied to its original version located in RAM (system
memory), the JVM uses the VRAM cache instead, and employs a hardware copy
(blit) to draw it to the screen. The payoff is speed, since a hardware blit will be faster
than a software-based copy from RAM to the screen. This idea is illustrated by Figure
7.

Figure 7. Drawing Images and Managed Images.

A managed image is not explicitly created by the programmer – there is no
ManagedImage class which can be used to instantiate suitable objects. Managed
images are created at the whim of the JVM, although the programmer can ‘encourage’
the JVM to make them.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

17  Andrew Davison 2004

Image, ImageIcon, and BufferedImage objects qualify to become managed images, if
they have been created with createImage(), createCompatibleImage(), read in with
getImage() or ImageIO's read(), or created with the BufferedImage() constructor.
Opaque images and images with BITMASK transparency (e.g. GIF files) can be
managed. Translucent images can also be managed, but require property flags to be
set, which vary between MS Windows and Linux/Solaris.

The JVM will copy an image to VRAM when it detects that the image has not been
changed/edited for a 'significant' amount of time. Typically, this means when two
consecutive drawImage() calls have used the same image. The VRAM copy will be
scrapped if the original image is manipulated by an operation which is not hardware
accelerated, and the next drawImage() will switch back to the system memory
version.

Exactly which operations are hardware accelerated depends on the OS. Virtually
nothing aside from image translation is accelerated in MS Windows; this is not due to
inadequacies in DirectDraw, but rather to the Java interface. The situation is a lot
better on Linux/Solaris where all affine transformations, composites and clips will be
accelerated. However, these features depend on underlying OS support for a version
of OpenGL that offers pbuffers. A pbuffer is a kind of offscreen rendering area,
somewhat like a pixmap but with support for accelerated rendering.

Bearing in mind how the JVM deals with managed images, it is inadvisable to
excessively modify them at run time since their hardware acceleration will probably
be lost, at least for a short time.

In some older documentation, managed images are known as automated images.

6. VolatileImage
Whereas managed images are created by the JVM, the VolatileImage class allows the
programmer to create and manage their own hardware-accelerated images. In fact, a
VolatileImage object exists only in VRAM, it has no system memory copy at all (see
Figure 8).

Figure 8. A VolatileImage Object.

VolatileImage objects stay in VRAM, and so get the benefits of hardware blitting all
the time. Well, that's sort of true, but it depends on the underlying OS. On MS
Windows, VolatileImage is implemented using DirectDraw which manages the image
in video memory, and may decide to grab the memory back to give to another task,

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

18  Andrew Davison 2004

such as a screensaver or new foreground process. This means that the programmer
must keep checking his VolatileImage objects to see if they’re still around. If a
VolatileImage’s memory is lost, then the programmer has to recreate the object.

The situation is better on Linux/Solaris since VolatileImage is implemented with
OpenGL pbuffers, which cannot be deallocated by the OS.

Another drawback with VolatileImages is that any processing of an image must be
done in VRAM, which is generally much slower to do as a software operation than
similar calculations in system memory. Of course, if the manipulation (e.g. applying
an affine transform such as a rotation) can be done by the VRAM hardware, then it
will be must faster than in system memory. Unfortunately, the mix of
software/hardware-based operations depends on the OS, as explained above for
managed images.

Bearing in mind the issues surrounding VolatileImage, when exactly it is useful? Its
key benefit over managed images is that the programmer is in charge rather than the
JVM. The programmer can decide when to create, update, delete an image.

However, managed image support is becoming so good in the JVM that most
programs probably do not need the complexity that VolatileImage adds to the code.
ImagesTests only uses managed images, which it encourages by only creating
BufferedImages.

7. Java 2D Speed
The issues over the speed of Java 2D operations mirror our discussion about the use
of managed images and VolatileImages, since speed depends on which operations are
hardware accelerated, and that depends on the OS.

On MS Windows, hardware acceleration is mostly restricted to the basic 2D
operations such as filling, copying rectangular areas, line drawing (vertical and
horizontal only), and basic text rendering. Unfortunately, the fun parts of Java 2D
such as curves, antialiasing, compositing, all use software rendering.

In Linux/Solaris, so long as OpenGL buffers are supported, then most elements of
Java 2D are accelerated.

The situation described here is for J2SE 1.5, and will undoubtedly improve. The best
check is to profile your code. General profiling techniques are explained in Appendix
??, but a Java 2D-specific approach is described later (switching on Java 2D low-level
operation logging).

8. Portability and Java 2D
The current situation with Java 2D’s hardware acceleration, exposes a rather nasty
portability problem with Java. Graphics, especially gaming graphics, require speed,
and the Java implementers have taken a two-track approach. The MS Windows-based
version of Java utilize DirectX and other Windows features, while on other platforms
the software underlying Java 2D relies on OpenGL.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

19  Andrew Davison 2004

This approach seems like a unnecessary duplication of effort, and a wonderful source
of confusion to programmers. It is not surprising though, since the same situation
exists for Java 3D, as described in chapters 8 ?? and beyond.

My opinion is that Java should restrict itself to OpenGL, an open standard that is
under active development by many talented people around the world. In fact, this
view may already be prevailing inside Sun, indicated by its promotion of JOGL
(https://jogl.dev.java.net/), a Java/OpenGL binding.

9. JAI
Java Advanced Imaging (JAI) offers extended image processing capabilities beyond
those found in Java 2D. For example, geometric operations include translation,
rotation, scaling, shearing, and transposition and warping. Pixel-based operations
utilize lookup tables and rescaling equations, but can be applied to multiple sources,
combined to get a single outcome. Modifications can be restricted to regions in the
source, statistical operations are available (e.g. mean and median), and frequency
domains can be employed.

An intended application domain for JAI is the manipulation of images too large to be
loaded into memory in their entirety. A TiledImage class supports pixel editing based
on tiles, which can be processed and displayed independently of their overall image.

Image processing can be distributed over a network by using RMI to farm out areas of
the image to servers, with the results returned to the client for displaying.

JAI employs a pull imaging model, where an image is constructed from a series of
source images, arranged into a graph. Only when a particular pixel (or tile) is
required, will the image request data from its sources.

These kinds of extended features are not usually required for gaming, and are not used
here.

More information on JAI can be found at its home page at
http://java.sun.com/products/java-media/jai/.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

20  Andrew Davison 2004

10. ImagesTests Overview
The ImagesTests application is shown in Figure 1, and again in Figure 9 below. The
screenshot in Figure 9 includes the name of the images, for ease of reference later.

Figure 9. ImagesTests and Image Names.

Table 3 lists the image names against the visual effect they demonstrate.

Image Name Visual Effect

atomic rotation

balls, basn6a08 mixed colours

bee teleportation (uneven fading)

cheese horizontal/vertical flipping

eyeChart progressive blurring

house reddening

pumpkin zapping (red/yellow pixels)

scooter brightening

ufo fading

owl negation

basn6a16 resizing

cars, kaboom,
cats, figure

numbered animation

fighter named animation

numbers callback animation

Table 3. Images Names and their Visual Effects.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

21  Andrew Davison 2004

The majority of the images are GIFs with a transparent background; balls.jpg is the
only JPEG. The PNG files are: owl.png, pumpkin.png, basn6a08.png, and
basn6a16.png. The latter two use translucency, and come from the PNG suite
maintained by Willem van Schaik at http://www.schaik.com/pngsuite/pngsuite.html.

I’ve utilized several images from the excellent SpriteLib sprite library by Ari
Feldman, available at http://www.arifeldman.com/games/spritelib.html, notably for
the 'cats', 'kaboom', 'cars', and 'fighter' animations.

10.1. UML Diagrams for ImagesTests
Figure 10 shows the UML diagrams for the classes in the ImagesTests application.
The class names, public methods and constants are shown.

Figure 10. UML Class Diagrams for ImagesTests.

ImagesTests creates a JFrame and the JPanel where the images are drawn, and starts a
Swing timer to update its images every 0.1 second.

ImagesTests employs an ImagesLoader object to load the images named in a
configuration file (imsInfo.txt in the Images/ subdirectory).

The visual effects methods, such as blurring, are grouped together in ImagesSFXs.
Animations represented by sequences of images (e.g. 'numbers', 'cars', 'kaboom', 'cats',
and 'figure') are controlled by ImagesPlayer objects. A sequence may be shown
repeatedly, once only, be stopped and restarted.

A completed animation sequence can call sequenceEnded() in an object which
implements the ImagesPlayerWatcher interface. ImagesTests implements
ImagesPlayerWatcher, and is used as a callback by the 'numbers' sequence.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

22  Andrew Davison 2004

11. The ImagesLoader Class
The ImagesLoader class can load images in four different formats, which we call 'o',
'n', 's', and 'g' images.

The images are assumed to be in a local JAR file, in a subdirectory Images/ below
ImagesLoader. They are loaded as BufferedImages using ImageIO's read(), so they
can become managed images.

The typical way of using an ImagesLoader object is to supply it with a configuration
file containing the filenames of the required images, to be loaded before game play
begins. However, it is possible to call ImagesLoader’s load methods at any time
during execution.

The imsInfo.txt configuration file used in the ImagesTests example is listed below.

// imsInfo.txt images

o atomic.gif
o balls.jpg
o bee.gif
o cheese.gif
o eyeChart.gif
o house.gif
o pumpkin.png
o scooter.gif
o ufo.gif
o owl.png

n numbers*.gif 6
n figure*.gif 9

g fighter left.gif right.gif still.gif up.gif

s cars.gif 8
s cats.gif 6
s kaboom.gif 6

o basn6a08.png
o basn6a16.png

Blank lines, and lines beginning with '//', are ignored by the loader. The syntax for the
four image formats are:

o <fnm>
n <fnm*.ext> <number>
s <fnm> <number>
g <name> <fnm> [<fnm>]*

An 'o' line causes a single filename, called <fnm>, to be loaded from Images/.

A 'n' line loads a series of numbered image files, whose filenames use the numbers 0 -
<number>-1 in place of the '*' character in the filename. For example:

n numbers*.gif 6

means that the files numbers0.gif, numbers1.gif, up to numbers5.gif should be loaded.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

23  Andrew Davison 2004

A 's' line loads a strip file (called fnm) containing a single row of <number> images.
After the file’s graphic has been loaded, it is automatically divided up into the
component images. For instance:

s kaboom.gif 6

refers to the strip file "kaboom.gif" containing a row of six images, as shown in
Figure 11.

Figure 11. The kaboom.gif Strip File.

A 'g' line specifies a group of files with different names. After being loaded, the
images will be accessible using a positional notation or by means of their filenames
(minus the extension). For example, the 'fighter' 'g' images are defined as:

g fighter left.gif right.gif still.gif up.gif

Subsequently, the image in right.gif can be accessed using the number 1 or the string
"right".

11.1. Internal Data Structures
The ImagesLoader object creates two main data structures as it loads the images, both
of them HashMaps:
 private HashMap imagesMap, gNamesMap;

The imagesMap key is the image's 'name', and its value is an ArrayList of
BufferedImage objects associated with that name. The exact meaning of 'name' varies
depending on the type of image that was loaded.

For an 'o' image (e.g. "o atomic.gif"), the name is the filename minus its extension
(i.e. "atomic"), and the ArrayList holds just a single image.

For a 'n' image (e.g. "n numbers*.gif 6"), the name is the part of the filename before
the * (i.e. "numbers"), and the ArrayList holds several images (6 in this case).

For a 's' image (e.g. "s cars.gif 8"), the name is the filename minus the extension (i.e.
"cars"), and the ArrayList holds the images pulled from the strip graphic (8 for this
example).

For a 'g' image (e.g. "g fighter left.gif right.gif still.gif up.gif"), the name is the string
after the 'g' character (i.e. "fighter"), and the ArrayList is as large as the sequence of
filenames given (4).

The loading of 'g' images also causes updates to the gNamesMap HashMap. Its key is
the 'g' name (e.g. "fighter"), but its value is an ArrayList of filename Strings (minus
their extensions). For instance, the 'fighter' name has an ArrayList associated with it
holding the strings "left", "right", "still", and "up".

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

24  Andrew Davison 2004

11.2. Getting an Image
The image accessing interface is surprisingly uniform, independent of whether 'o', 'n',
's', or 'g' images are being accessed.

There are three public getImage() methods in ImagesLoader, and also getImages().
Their prototypes:

BufferedImage getImage(String name);
BufferedImage getImage(String name, int posn);
BufferedImage getImage(String name, String fnmPrefix);

ArrayList getImages(String name);

The single argument getImage() returns the image associated with name, and is
intended primarily for accessing 'o' images (which only have a single image). If a 'n',
's', or 'g' image is accessed then the first image in the ArrayList is returned.

The two-argument getImage() which takes an integer position argument is more
useful for accessing 'n', 's', and 'g' names (which will have multiple images in their
ArrayLists). If the supplied number is negative then the first image is returned. If the
number is too large then it is reduced modulo the ArrayList size.

The third getImage() method takes a String argument, and is aimed at 'g' images. The
String should be a filename, which is used to index into the ‘g’ name’s ArrayList.

The getImages() method returns the entire ArrayList for the given name.

11.3. Using ImagesLoader
ImagesTests employs ImagesLoader by supplying it with a images configuration file:
 ImagesLoader imsLoader = new ImagesLoader("imsInfo.txt");

The ImagesLoader constructor assumes the file (and all the images) are in the Images/
subdirectory below the current directory, and that everything is packed inside a JAR.
Details about creating such a JAR are given at the end of this chapter.

Loading 'o' images is straightforward:
 BufferedImage atomic = imsLoader.getImage("atomic");

Loading 'n', 's', and 'g' images usually requires a numerical value:
 BufferedImage cats1 = imsLoader.getImage("cats", 1);

A related method is numImages(), which returns the number of images associated
with a given name:
 int numCats = imsLoader.numImage("cats");

'g' images can be accessed using a filename prefix:
 BufferedImage leftFighter = imsLoader.getImage("fighter", "left");

If a requested image cannot be found, then null is returned by the loader.

An alternative way of using ImagesLoader is to create an 'empty' one (no
configuration file is supplied to the constructor). Then public methods for loading 'o',
'n', 's', and 'g' images can be called by the application:

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

25  Andrew Davison 2004

 ImagesLoader imsLoader = new ImagesLoader();

 imsLoader.loadSingleImage("atomic.gif");
 imsLoader.loadNumImages("numbers*.gif", 6);
 imsLoader.loadStripImages("kaboom.gif", 6);

 String[] fnms = {"left.gif", "right.gif", "still.gif", "up.gif"};
 imsLoader.loadGroupImages("fighter", fnms);

11.4. Implementation Details
A large part of ImagesLoader is given over to parsing and error checking. The top-
level method for parsing the configuration file is loadImagesFile().

 private void loadImagesFile(String fnm)
 {
 String imsFNm = IMAGE_DIR + fnm;
 System.out.println("Reading file: " + imsFNm);
 try {
 InputStream in = this.getClass().getResourceAsStream(imsFNm);
 BufferedReader br = new BufferedReader(
 new InputStreamReader(in));
 String line;
 char ch;
 while((line = br.readLine()) != null) {
 if (line.length() == 0) // blank line
 continue;
 if (line.startsWith("//")) // comment
 continue;
 ch = Character.toLowerCase(line.charAt(0));
 if (ch == 'o') // a single image
 getFileNameImage(line);
 else if (ch == 'n') // a numbered sequence of images
 getNumberedImages(line);
 else if (ch == 's') // an images strip
 getStripImages(line);
 else if (ch == 'g') // a group of images
 getGroupImages(line);
 else
 System.out.println("Do not recognize line: " + line);
 }
 br.close();
 }
 catch (IOException e)
 { System.out.println("Error reading file: " + imsFNm);
 System.exit(1);
 }
 } // end of loadImagesFile()

A line is read in at a time, and a multi-way branch decides which syntactic form
should be processed depending on the first character on the input line.

The input stream coming from the configuration file is created using
getResourceAsStream(), which is needed when the application and all the resources
all wrapped up inside a JAR.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

26  Andrew Davison 2004

getFileNameImage() is quite typical: it extracts the tokens from the line, processing
them by calling loadSingleImage().

 private void getFileNameImage(String line)
 // format is o <fnm>
 { StringTokenizer tokens = new StringTokenizer(line);

 if (tokens.countTokens() != 2)
 System.out.println("Wrong no. of arguments for " + line);
 else {
 tokens.nextToken(); // skip command label
 System.out.print("o Line: ");
 loadSingleImage(tokens.nextToken());
 }
 }

loadSingleImage() is the public method for loading an 'o' image. If an entry for the
image’s name does not already exist then imagesMap is extended with a new key
(holding name), and an ArrayList containing a single BufferedImage.

 public boolean loadSingleImage(String fnm)
 {
 String name = getPrefix(fnm);

 if (imagesMap.containsKey(name)) {
 System.out.println("Error: " + name + "already used");
 return false;
 }

 BufferedImage bi = loadImage(fnm);
 if (bi != null) {
 ArrayList imsList = new ArrayList();
 imsList.add(bi);
 imagesMap.put(name, imsList);
 System.out.println(" Stored " + name + "/" + fnm);
 return true;
 }
 else
 return false;
 } // end of loadSingleImage()

11.5. Image Loading
We finally arrive at the image loading method, loadImage(), which is also at the heart
of the processing of 'n' and 'g' lines. Its implementation is almost identical to the
loadImage() method described back in section 4.

 public BufferedImage loadImage(String fnm)
 {
 try {
 BufferedImage im = ImageIO.read(
 getClass().getResource(IMAGE_DIR + fnm));

 int transparency = im.getColorModel().getTransparency();
 BufferedImage copy = gc.createCompatibleImage(

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

27  Andrew Davison 2004

 im.getWidth(), im.getHeight(),
 transparency);

 // create a graphics context
 Graphics2D g2d = copy.createGraphics();

 // reportTransparency(IMAGE_DIR + fnm, transparency);

 // copy image
 g2d.drawImage(im,0,0,null);
 g2d.dispose();
 return copy;
 }
 catch(IOException e) {
 System.out.println("Load Image error for " +
 IMAGE_DIR + "/" + fnm + ":\n" + e);
 return null;
 }
 } // end of loadImage() using ImageIO

reportTransparency() is a utility for printing out the transparency value of the loaded
image. It is useful for checking whether the transparency/translucency of the image
has been detected.

ImagesLoader also contains two other versions of loadImages(), imaginatively called
loadImages2() and loadImages3(). They play no part in the functioning of the class,
and are only included to show how BufferedImages can be loaded using ImageIcon or
Image's getImage(). The ImageIcon code in loadImages2() uses:
 ImageIcon imIcon = new ImageIcon(
 getClass().getResource(IMAGE_DIR + fnm));

and then calls makeBIM() to convert its Image into a BufferedImage. makeBIM() is
described in section 4.1.

The Image code in loadImage3() uses a MediaTracker to delay execution until the
image is fully loaded (see section 2.1), and then calls makeBIM() to obtain a
BufferedImage.

11.6. Loading Strip File Images
The images from a strip file are obtained in steps: first the entire graphic is loaded
from the file, then cut into pieces, and each resulting image is placed in an array. This
array is subsequently stored as an ArrayList in imagesMap under the 's' name.

 public BufferedImage[] loadStripImageArray(String fnm, int number)
 {
 if (number <= 0) {
 System.out.println("number <= 0; returning null");
 return null;
 }

 BufferedImage stripIm;
 if ((stripIm = loadImage(fnm)) == null) {
 System.out.println("Returning null");
 return null;
 }

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

28  Andrew Davison 2004

 int imWidth = (int) stripIm.getWidth() / number;
 int height = stripIm.getHeight();
 int transparency = stripIm.getColorModel().getTransparency();

 BufferedImage[] strip = new BufferedImage[number];
 Graphics2D stripGC;

 // each BufferedImage from the strip file is stored in strip[]
 for (int i=0; i < number; i++) {
 strip[i]=gc.createCompatibleImage(imWidth,height,transparency);

 // create a graphics context
 stripGC = strip[i].createGraphics();

 // copy image
 stripGC.drawImage(stripIm,
 0,0, imWidth,height,
 i*imWidth,0, (i*imWidth)+imWidth,height,
 null);
 stripGC.dispose();
 }
 return strip;
 } // end of loadStripImageArray()

drawImage() is used to clip the images out of the strip.

An alternative approach would be to use a CropImageFilter combined with a
FilteredImageSource. This seems like too much work for images which are positioned
so simply.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

29  Andrew Davison 2004

12. The ImagesTests Class
Perhaps a surprising thing about ImagesTests is that it uses a Swing timer to animate
its image effects rather than the active rendering approach developed in early
chapters. This is purely a matter of keeping the code simple, since the high accuracy
offered by active rendering is not required. The visual effects employed here are
generally composed from 5-10 distinct frames, displayed over the course of 1-2
seconds; this implies a need for 10 FPS at most, which is within the capabilities of the
Swing timer.

If necessary, the effects techniques can be easily translated to an active rendering
setting.

The timer-driven framework is illustrated by Figure 12. The details of
actionPerformed() and paintComponent() will be explained below.

Figure 12. ImagesTests and the Swing Timer.

ImagesTests maintains a global variable counter, which starts at 0, and is incremented
at the end of each paintComponent() call, modulo 100. The modulo operation isn't
significant: it's used to keep the counter value from becoming excessively large.
counter is used in many places in the code, often to generate input arguments to the
visual effects.

12.1. Starting ImagesTests
The main() method for ImagesTests creates a simple JFrame and adds the
ImagesTests JPanel to it.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

30  Andrew Davison 2004

 public static void main(String args[])
 {
 // switch on translucency acceleration in Windows
 System.setProperty("sun.java2d.translaccel", "true");
 System.setProperty("sun.java2d.ddforcevram", "true");

 // switch on hardware acceleration if using OpenGL with pbuffers
 // System.setProperty("sun.java2d.opengl", "true");

 ImagesTests ttPanel = new ImagesTests();

 // create a JFrame to hold the test JPanel
 JFrame app = new JFrame("Image Tests");
 app.getContentPane().add(ttPanel, BorderLayout.CENTER);
 app.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 app.pack();
 app.setResizable(false);
 app.show();
 } // end of main()

Of more interest are the calls to setProperty(). If we require hardware acceleration of
translucent images on MS Windows (e.g. for the PNG files basn6a08.png and
basn6a16.png) then the Java 2D 'translaccel' and 'ddforcevram' flags should be
switched on. They also accelerate alpha composite operations.

On Linux/Solaris, only the 'opengl' flag is required for hardware acceleration but, as
mentioned earlier, the version of OpenGL must support pbuffers.

The ImagesTests constructor initiates image loading, creates the ImageSFXs visual
effects object, obtains references to the 'o' images, and starts the timer.

 // various globals
 private ImagesLoader imsLoader; // the image loader
 private int counter;
 private boolean justStarted;
 private ImageSFXs imageSfx; // the visual effects class

 private GraphicsDevice gd; // for reporting accl. memory usage
 private int accelMemory;
 private DecimalFormat df;
 :

 public ImagesTests()
 {
 df = new DecimalFormat("0.0"); // 1 dp

 GraphicsEnvironment ge =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
 gd = ge.getDefaultScreenDevice();

 accelMemory = gd.getAvailableAcceleratedMemory(); // in bytes
 System.out.println("Initial Acc. Mem.: " +
 df.format(((double)accelMemory)/(1024*1024)) + " MB");

 setBackground(Color.white);

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

31  Andrew Davison 2004

 setPreferredSize(new Dimension(PWIDTH, PHEIGHT));

 // load and initialise the images
 imsLoader = new ImagesLoader(IMS_FILE); // "imsInfo.txt"
 imageSfx = new ImageSFXs();
 initImages();

 counter = 0;
 justStarted = true;

 new Timer(PERIOD, this).start(); // PERIOD = 0.1 sec
 } // end of ImagesTests()

The getAvailableAcceleratedMemory() call returns the current amount of available
hardware accelerated memory. The application continues to report this value, as it
changes, to give an indication of when BufferedImage objects become managed
images.

12.2. Initializing Images
initImages() does three tasks: it stores references to the 'o' images as global variables,
creates ImagesPlayers objects for the 'n' and 's' images, and references the first 'g'
'fighter' image, its "left" image.

 // global variables
 // hold the single 'o' images
 private BufferedImage atomic, balls, bee, cheese, eyeChart,
 house, pumpkin, scooter,
 fighter, ufo, owl, basn8, basn16;

 // for manipulating the 'n' and 's' images
 private ImagesPlayer numbersPlayer, figurePlayer, carsPlayer,
 catsPlayer, kaboomPlayer;
 :

 private void initImages()
 {
 // initialize the 'o' image variables
 atomic = imsLoader.getImage("atomic");
 balls = imsLoader.getImage("balls");
 bee = imsLoader.getImage("bee");
 cheese = imsLoader.getImage("cheese");
 eyeChart = imsLoader.getImage("eyeChart");
 house = imsLoader.getImage("house");
 pumpkin = imsLoader.getImage("pumpkin");
 scooter = imsLoader.getImage("scooter");
 ufo = imsLoader.getImage("ufo");
 owl = imsLoader.getImage("owl");
 basn8 = imsLoader.getImage("basn6a08");
 basn16 = imsLoader.getImage("basn6a16");

 /* Initialize ImagesPlayers for the 'n' and 's' images.
 The 'numbers' sequence is not cycled, the other are.
 */
 numbersPlayer =
 new ImagesPlayer("numbers", PERIOD, 1, false, imsLoader);
 numbersPlayer.setWatcher(this);

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

32  Andrew Davison 2004

 // report the sequence's finish back to ImagesTests

 figurePlayer =
 new ImagesPlayer("figure", PERIOD, 2, true, imsLoader);
 carsPlayer =
 new ImagesPlayer("cars", PERIOD, 1, true, imsLoader);
 catsPlayer =
 new ImagesPlayer("cats", PERIOD, 0.5, true, imsLoader);
 kaboomPlayer =
 new ImagesPlayer("kaboom", PERIOD, 1.5, true, imsLoader);

 // the 1st 'g' image for 'fighter' is set using a filename prefix
 fighter = imsLoader.getImage("fighter", "left");
 } // end of initImages()

The ImagesPlayer class wraps up code for playing a sequence of images. ImagesTests
uses ImagesPlayer objects for animating the 'n' and 's' 'figure', cars', 'kaboom', and
'cats' images. Each sequence is shown repeatedly.

'numbers' is also an 'n' name, so made up of several images, but its ImagesPlayer is set
up a little differently. The player will call sequenceEnded() in ImagesTests when the
end of the sequence is reached, and it doesn't play the images again. The callback
requires that ImagesTests implements the ImagesPlayerWatcher interface:

public class ImagesTests extends JPanel
 implements ActionListener, ImagesPlayerWatcher
{ ...

 public void sequenceEnded(String imageName)
 // called by ImagesPlayer when its images sequence has finished
 { System.out.println(imageName + " sequence has ended"); }

}

The name of the sequence (i.e. 'numbers') is passed as an argument to sequenceEnded
() by its player. The implementation in ImagesTests only prints out a message, but it
could do something more fanciful.

12.3. Updating the Images
Image updating is carried out by imagesUpdate() when actionPerformed() is called
(i.e. every 0.1 second).

 public void actionPerformed(ActionEvent e)
 // triggered by the timer: update, repaint
 {
 if (justStarted) // don't do updates the first time through
 justStarted = false;
 else
 imagesUpdate();

 repaint();
 } // end of actionPerformed()

 private void imagesUpdate()

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

33  Andrew Davison 2004

 {
 // numbered images ('n' images); using ImagesPlayer
 numbersPlayer.updateTick();
 if (counter%30 == 0) // restart image sequence periodically
 numbersPlayer.restartAt(2);

 figurePlayer.updateTick();

 // strip images ('s' images); using ImagesPlayer
 carsPlayer.updateTick();
 catsPlayer.updateTick();
 kaboomPlayer.updateTick();

 // grouped images ('g' images)
 // The 'fighter' images are the only 'g' images in this example.
 updateFighter();
 } // end of imagesUpdate()

imagesUpdate() does nothing to the 'o' images, since they are processed by
paintComponent(); instead, it concentrates on the 'n', 's', and 'g' images.

updateTick() in called in all of the ImagesPlayers (i.e. for 'numbers', 'figure', 'cars',
'cats', and 'kaboom'). This informs the players that another animation period has
passed in ImagesTests. This is used to calculate timings, and determine which of the
images in a sequence is the current one.

The 'n' 'numbers' images are utilized in a slightly different way: when the counter
value reaches a multiple of 30, the sequence is restarted at image number 2:
 if (counter%30 == 0)
 numbersPlayer.restartAt(2);

The on-screen behaviour of 'numbers' is to step through its 6 images (pictures of the
numbers 0 to 5) and stop after calling sequenceEnded() in ImagesTests. Later, when
ImagesTests' counter reaches a multiple of 30, the sequence will restart at picture 2,
step through to picture 5 and stop again (after calling sequenceEnded() again). This
behaviour will repeat whenever the counter reaches a multiple of 30.

Admittedly, this behaviour is somewhat strange, but it illustrates that ImagesPlayer
can do more than just endlessly cycle through image sequences.

updateFighter() deals with the 'g' 'fighter' images, defined in "imsInfo.txt" as:
 g fighter left.gif right.gif still.gif up.gif

Back in initImages(), the global BufferedImage variable, fighter, was set to refer to
the "left" image. updateFighter() cycles through the other images using the counter
value, modulo 4.

 private void updateFighter()
 /* The images are shown using their filename prefixes (although a
 positional approach could be used, which would allow an
 ImagesPlayer to be employed.
 */
 { int posn = counter % 4; // number of fighter images;
 // could use imsLoader.numImages("fighter")
 switch(posn) {

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

34  Andrew Davison 2004

 case 0:
 fighter = imsLoader.getImage("fighter", "left");
 break;
 case 1:
 fighter = imsLoader.getImage("fighter", "right");
 break;
 case 2:
 fighter = imsLoader.getImage("fighter", "still");
 break;
 case 3:
 fighter = imsLoader.getImage("fighter", "up");
 break;
 default:
 System.out.println("Unknown fighter group name");
 fighter = imsLoader.getImage("fighter", "left");
 break;
 }
 } // end of updateFighter()

This code only updates the fighter reference; the image is not actually displayed until
paintComponent() is called.

12.4. Painting the Images
paintComponent() has four main jobs:

1) it applies a visual effect to each 'o' image and displays the result;

2) it requests the current image from each ImagesPlayer and displays it;

3) it displays any change in the amount of hardware accelerated memory (VRAM);

4) it increments the counter (modulo 100).

 public void paintComponent(Graphics g)
 {
 super.paintComponent(g);
 Graphics2D g2d = (Graphics2D)g;

 //antialiasing
 g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);

 // smoother (and slower) image transforms (e.g. for resizing)
 g2d.setRenderingHint(RenderingHints.KEY_INTERPOLATION,
 RenderingHints.VALUE_INTERPOLATION_BILINEAR);

 // clear the background
 g2d.setColor(Color.blue);
 g2d.fillRect(0, 0, PWIDTH, PHEIGHT);

 // ------------------ 'o' images ---------------------
 /* The programmer must manually edit the code here in order to
 draw the 'o' images with different visual effects. */

 // drawImage(g2d, atomic, 10, 25); // only draw the image

 rotatingImage(g2d, atomic, 10, 25);
 mixedImage(g2d, balls, 110, 25);

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

35  Andrew Davison 2004

 teleImage = teleportImage(g2d, bee, teleImage, 210, 25);
 flippingImage(g2d, cheese, 310, 25);
 blurringImage(g2d, eyeChart, 410, 25);
 reddenImage(g2d, house, 540, 25);
 zapImage = zapImage(g2d, pumpkin, zapImage, 710, 25);
 brighteningImage(g2d, scooter, 10, 160);
 fadingImage(g2d, ufo, 110, 140);
 negatingImage(g2d, owl, 450, 250);
 mixedImage(g2d, basn8, 650, 250);
 resizingImage(g2d, basn16, 750, 250);

 // --------------- numbered images -------------------
 drawImage(g2d, numbersPlayer.getCurrentImage(), 280, 140);
 drawImage(g2d, figurePlayer.getCurrentImage(), 550, 140);

 // --------------- strip images ----------------------
 drawImage(g2d, catsPlayer.getCurrentImage(), 10, 235);
 drawImage(g2d, kaboomPlayer.getCurrentImage(), 150, 250);
 drawImage(g2d, carsPlayer.getCurrentImage(), 250, 250);

 // --------------- grouped images --------------------
 drawImage(g2d, fighter, 350, 250);

 reportAccelMemory();
 counter = (counter + 1)% 100; // 0-99 is a large enough range
 } // end of paintComponent()

The calls to setRenderingHint() show how Java 2D can make rendering requests,
based around a key and value scheme.

The use of antialiasing has no appreciable effect in this example, since there are no
lines, shapes, or text drawn in the JPanel. It might be better not to bother with this
hint, and so gain a little extra speed.

The interpolation hint is more useful, especially for the resizing operation. For
instance, there is a noticeable improvement in the resized smoothness of 'basn6a16'
with the hint compared to when the hint is absent.

The eleven visual effects applied to the 'o' images are explained below. However, all
the methods have a similar interface, requiring a reference to the graphics context, the
name of the image, and the (x,y) coordinate where the modified image will be drawn.

The 'n' and 's images are managed by ImagesPlayer objects, so the current image is
obtained by calling the objects' getCurrentImage() method. The returned image
reference is passed to drawImage(), which wraps a little extra error processing around
Graphics' drawImage().

 private void drawImage(Graphics2D g2d, BufferedImage im,
 int x, int y)
 /* Draw the image, or a yellow box with ?? in it if
 there is no image. */
 {
 if (im == null) {
 // System.out.println("Null image supplied");
 g2d.setColor(Color.yellow);

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

36  Andrew Davison 2004

 g2d.fillRect(x, y, 20, 20);
 g2d.setColor(Color.black);
 g2d.drawString("??", x+10, y+10);
 }
 else
 g2d.drawImage(im, x, y, this);
 }

12.5. Information on Accelerated Memory
reportAccelMemory() prints the total amount of VRAM left, and the size of the
change since the last report. This method is called at the end of every animation loop,
but only writes output if there has been a change in the VRAM quantity.

 private void reportAccelMemory()
 // report any change in the amount of accelerated memory
 {
 int mem = gd.getAvailableAcceleratedMemory(); // in bytes
 int memChange = mem - accelMemory;

 if (memChange != 0)
 System.out.println(counter + ". Acc. Mem: " +
 df.format(((double)accelMemory)/(1024*1024)) +
 " MB; Change: " +
 df.format(((double)memChange)/1024) + " K");
 accelMemory = mem;
 } // end of reportAcceleMemory()

A typical run of ImagesTests produces the following stream of messages (edited to
emphasize the memory related prints):

DirectDraw surfaces constrained to use vram
Initial Acc. Mem.: 179.6 MB
Reading file: Images/imsInfo.txt
 // many information lines printed by the loader
 :
0. Acc. Mem: 179.6 MB; Change: -1464.8 K
1. Acc. Mem: 178.1 MB; Change: -115.5 K
3. Acc. Mem: 178.0 MB; Change: -113.2 K
4. Acc. Mem: 177.9 MB; Change: -16.3 K
5. Acc. Mem: 177.9 MB; Change: -176.8 K
numbers sequence has ended
6. Acc. Mem: 177.7 MB; Change: -339.0 K
7. Acc. Mem: 177.4 MB; Change: -99.0 K
 // 9 similar accelerated memory lines edited out
 :
18. Acc. Mem: 176.6 MB; Change: -16.2 K
19. Acc. Mem: 176.6 MB; Change: -93.9 K
21. Acc. Mem: 176.5 MB; Change: -48.8 K
25. Acc. Mem: 176.4 MB; Change: -60.0 K
numbers sequence has ended
numbers sequence has ended
numbers sequence has ended
numbers sequence has ended
 :

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

37  Andrew Davison 2004

The images use about 120K in total, and appear to be moved into VRAM at load time,
together with space for other rendering tasks (see line number 0). The large additional
allocation is probably caused by Swing, which uses VolatileImage for its double
buffering.

The later VRAM allocations are due to the rendering carried out by the visual effect
operations, and stop occurring after the counter reaches 25 (or thereabouts). Since
each loop takes about 0.1 seconds, this means that new VRAM allocations cease after
about 2.5 seconds. VRAM is not claimed in every animation loop; for instance, no
VRAM change is reported when the counter is 20, 22, and 24.

This behaviour can be understood by considering how the visual effects methods
behave. Typically, every few animation frames they generate new images based on
the original 'o' images. The operations are cyclic: after a certain number of frames
they start over. The longest running cyclic is the fade method, which completes one
cycle after 25 frames (2.5. seconds). Some of the operations write directly to the
screen, and so will not require additional VRAM, while others use temporary
BufferedImage variables; it is these which probably trigger the VRAM allocations.
Once these claims have been granted, the space can be reused by the JVM when the
methods restart there image processing cycle.

If the 'ddforcevram' flag is commented out from main() in ImagesTests:
 // System.setProperty("sun.java2d.ddforcevram", "true");

Then only the first reduction to VRAM occurs (of about 1.4 MB). The subsequent
requests are never made.

More information can be obtained about the low-level workings of Java 2D by turning
on logging. For instance:
 > java -Dsun.java2d.trace=log,count,out:log.txt ImagesTests

This will record all the internal calls made by Java 2D, together with a count of the
calls, to the text file log.txt. Unfortunately, the sheer volume of data can be
overwhelming, and it's probably better to utilize real profiling if this level of detail is
required (see Appendix ??). However, if only the call counts are recorded, then the
data is more manageable:
 > java -Dsun.java2d.trace=count,out:log.txt ImagesTests

The vast majority of the calls, about 92% of them, are software rendering operations
for drawing filled blocks of colour (the MaskFill() function). The percentage of
hardware-assisted copies (blits) is greater when the 'ddforcevram' flag is switched on.
These operations have "Win32", "DD", or "D3D" in their names. Nevertheless, it only
increases from a paltry 0.5% to 2.3%.

The comparatively few hardware-based operations in the log is a reflection of Java's
lack of support for image processing operations in MS Windows. Undoubtedly this
will improve in later versions of Java and, in any case, greatly depends on the mix of
operations that an application utilizes.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

38  Andrew Davison 2004

It may be worth moving the application to FSEM, since VolatileImages are
automatically utilized for page flipping.

13. The ImagesPlayer Class
ImagesPlayer is aimed at displaying the sequence of images making up a 'n', 's', or 'g'
set of images.

The ImagesPlayer constructor is supplied with the duration required for showing the
entire sequence (seqDuration). This is used to calculate showPeriod, the amount of
time each image will be the current one before the next image takes its place.

The animation period (animPeriod) argument of the ImagesPlayer constructor states
how often the ImagesPlayer's updateTick() method will be called. The intention is that
updateTick() will be called periodically by the update() method in the top-level
animation framework (in our code, this is imagesUpdate() in ImagesTests).

The current animation time is calculated when updateTick() is called, and used to
calculate imPosition, imPosition specifies which image should be returned when
getCurrentImage() is called.

This situation is illustrated by Figure 13.

Figure 13. ImagesPlayer in Use.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

39  Andrew Davison 2004

This approach relies on the animation loop calling updateTick() regularly at a fixed
time interval, which is true for ImagesTests, and the animation frameworks developed
in earlier chapters.

Another implicit assumption is that showPeriod will be larger than the animPeriod.
For example, showPeriod might be in tenths of seconds while animPeriod may be in
milliseconds.

If showPeriod is less than animPeriod then rendering progresses too slowly to display
all the images within the required seqDuration time, and images (frames) will be
skipped.

When the sequence finishes, a callback, sequenceEnded(), can be invoked in a
specified object implementing the ImagesPlayerWatcher interface. This is done for
the 'n' 'numbers' images:
 numbersPlayer =
 new ImagesPlayer("numbers", PERIOD, 1, false, imsLoader);
 numbersPlayer.setWatcher(this);
 // report sequence's finish to ImagesTests

The ImagesPlayer constructor takes the name of the images, the animPeriod value, a
seqDuration value, a boolean indicating if the sequence should repeat, and a reference
to the ImagesLoader.

In the case of 'numbers', animPeriod is PERIOD (0.1 sec), seqDuration is 1 second,
and the sequence will not repeat. Since there are 6 'numbers' files, showPeriod will be
about 0.17 seconds, so (just) greater than the animPeriod.

ImagesPlayer includes public methods for stopping, resuming and restarting an
animation at a given image position.

'numbers' uses the reStartAt() method to restart the animation at the third image
 numbersPlayer.restartAt(2);

13.1. Implementation Details
The ImagesPlayer object maintains an animTotalTime variable, which holds the
current time (in milliseconds) since the object was created. It is incremented when
updateTick() is called.

 public void updateTick()
 // We assume that this method is called every animPeriod ms
 {
 if (!ticksIgnored) {
 // update total animation time, modulo seq duration
 animTotalTime = (animTotalTime + animPeriod) %
 (long)(1000 * seqDuration);

 // calculate current displayable image position
 imPosition = (int) (animTotalTime / showPeriod);

 if ((imPosition == numImages-1) && (!isRepeating)) { //seq end

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

40  Andrew Davison 2004

 ticksIgnored = true; // stop at this image
 if (watcher != null)
 watcher.sequenceEnded(imName); // call callback
 }
 }
 }

imPosition holds the index into the sequence of images. showPeriod is defined as:
 showPeriod = (int) (1000 * seqDuration / numImages);

This means that imPosition can only be a value between 0 and numImages-1.

getCurrentImage() uses imPosition to access the relevant image in the loader:

 public BufferedImage getCurrentImage()
 { if (numImages != 0)
 return imsLoader.getImage(imName, imPosition);
 else
 return null;
 }

getCurrentImage()'s test of numImages is used to detect problems which may have
arisen when the ImagesPlayer was created, typically that the image name (imName) is
unknown to the loader.

The ticksIgnored boolean is employed to stop the progression of a sequence. In
updateTick(), if ticksIgnored is true then the internal time counter, animTotalTime, is
not incremented. It is controlled by the stop(), resume() and restartAt() methods.
stop() is simply:

 public void stop()
 { ticksIgnored = true; }

14. ImagesTests 'o' Image Visual Effects
A quick look at Table 3 at the beginning of section 10 shows that ImagesTests utilizes
a large number of visuals effects. These can be classified into two groups:

1) animations of image sequences, carried out by ImagesPlayer objects;

2) image processing operations applied to 'o' images.

We have already described the first group, which leaves a total of eleven effects.
These are applied to the 'o' images inside paintComponent() of ImagesTests. The
relevant code fragment is:

 :
 // ------------------ 'o' images ---------------------
 /* The programmer must manually edit the code here in order to
 draw the 'o' images with different visual effects. */

 // drawImage(g2d, atomic, 10, 25); // only draw the image

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

41  Andrew Davison 2004

 rotatingImage(g2d, atomic, 10, 25);
 mixedImage(g2d, balls, 110, 25);
 teleImage = teleportImage(g2d, bee, teleImage, 210, 25);
 flippingImage(g2d, cheese, 310, 25);
 blurringImage(g2d, eyeChart, 410, 25);
 reddenImage(g2d, house, 540, 25);
 zapImage = zapImage(g2d, pumpkin, zapImage, 710, 25);
 brighteningImage(g2d, scooter, 10, 160);
 fadingImage(g2d, ufo, 110, 140);
 negatingImage(g2d, owl, 450, 250);
 mixedImage(g2d, basn8, 650, 250);
 resizingImage(g2d, basn16, 750, 250);
 :

All the methods have a similar interface, requiring a reference to the graphics context,
the name of the image, and the (x,y) coordinate where the modified image will be
drawn.

The eleven operations can be grouped into eight categories, shown in Table 4.
1.drawImage() Based

resizingImage() The image grows.

flippingImage() Keep flipping the image horizontally and vertically.

2. Alpha Compositing

fadingImage() The image smoothly fades away to nothing.

3. Affine Transforms

rotatingImage() Spin the image in a clockwise direction.

4. ConvolveOp

blurringImage() Make the image increasingly more blurred.

5. LookupOp

reddenImage() Turn the image ever more red.

6. RescaleOp

reddenImage() Turn the image ever more red (again).

brighteningImage() Keep turning up the image's brightness.

negatingImage() Keep switching between the image and its negative.

7. BandCombineOp

mixedImage() Keep mixing up the colours of the image.

8. Pixel Effects

teleportImage() Make the image fade, groups of pixels at a time.

zapImage() Change the image to a mass of red and yellow pixels.

Table 4. Visual Effect Operations by Category.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

42  Andrew Davison 2004

The following subsections are organized according to the eight categories, with the
operations explained in their relevant category. However, some general comments can
be made about them here.

The methods in ImagesTest do not do image processing. Their main task is to use the
current counter value, modulo some constant, to generate suitable arguments to image
processing methods located in ImageSFXs.

The use of the modulo operator means that the effects will repeat as the counter
progresses. For example, resizingImage() makes the image grow bigger for 6 frames,
at which point the image is redrawn back at its starting size, and growth begins again.

The image processing methods in ImagesSFXs do not change the original 'o' images.
Some of the methods write directly to the screen, by calling drawImage() with an
image processing operator. Other methods generate a temporary BufferedImage
object which is subsequently drawn to the screen. The object exists only until the end
of the method.

teleportImage() and zapImage() are different in that their images are stored globally
in ImagesTests, in the variables teleImage and zapImage. This means that method
processing can be cumulative, since earlier changes will be stored/remembered in the
global variables. Note that even these operations do not modify the original 'o' images,
only teleImage and zapImage.

The main reason for not changing the original images is to allow them to be reused as
the effects cycles repeat. Another reason is that any changes to the images will cause
the JVM to drop them from VRAM. This would make their future rendering slower,
at least for a short time.

Where possible, image operations should be applied through drawImage() directly to
the screen, as this will make hardware acceleration more likely to occur.

If a temporary variable is absolutely necessary, then it might be a good idea to apply
the image operation to a copy of the graphic in a VolatileImage object, forcing
processing to be carried out in VRAM. There is a chance that this will allow the
operation to be accelerated, but it may also slow things down!

On MS Windows, the ddforcevram flag appears to force the creation of managed
images for temporary BufferedImage variables, and so the VolatileImage approach is
unnecessary.

The main drawback with image processing operations is their potentially adverse
effect on speed. On Windows, none of the operations, except perhaps for those using
drawImage() resizing and flipping, will be hardware accelerated. The situation should
be considerably better on Solaris/Linux, although I have not tested it.

In general, visual effects based around image processing operations should be used
sparingly, due to their poor performance. In many cases, alternatives using image
sequences can be employed; rotation is an example. The 's' 'cars' images display a
series of rotated car images, which may all be in VRAM since the images are never
modified internally. By comparison, the rotatingImage() method applied to the
'atomic' 'o' image also makes it rotate, but this is achieved by generating new images
at run time using affine transformations. On Windows, none of these images would be
hardware accelerated.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

43  Andrew Davison 2004

One way of viewing this suggestion is that graphical effects should be pre-calculated
outside of the application, and stored as ready-to-use images. The cost/complexity of
image processing is therefore separated from the executing game.

14.1. drawImage() Based Processing
There are several variants of drawImage(), useful for visual effects such as scaling
and flipping, and much faster than the BufferedImageOp operations.

The version of drawImage() relevant for resizing is:

boolean drawImage(Image im, int x, int y,
 int width, int height, ImageObserver imOb)

The width and height arguments scale the image so it has the required dimensions. By
default, scaling uses a nearest neighbour algorithm: the colour of a pixel on-screen is
based on the scaled image pixel that is nearest to the on-screen one. This tends to
make an image blocky-looking, if it is enlarged excessively. A smoother appearance,
although slower to calculate, can be achieved with bilinear interpolation. The colour
of an on-screen pixel is derived from a combination of all the scaled image pixels that
overlap the on-screen one. Bilinear interpolation can be requested at the start of
paintComponent():
 g2d.setRenderingHint(RenderingHints.KEY_INTERPOLATION,
 RenderingHints.VALUE_INTERPOLATION_BILINEAR);

resizingImage() in ImagesTests:

 private void resizingImage(Graphics2D g2d, BufferedImage im,
 int x, int y)
 { double sizeChange = (counter%6)/2.0 + 0.5; // gives 0.5 -- 3
 imageSfx.drawResizedImage(g2d, im, x, y,sizeChange,sizeChange);
 }

The sizeChange value is calculated from the counter value in such a way that it
increases from 0.5 to 3.0 in steps of 0.5, then restarts. This causes the image
('basn6a16') to start at half size and gradually grow to 3 times its actual dimensions.

The two sizeChange values become widthChange and heightChange in
drawResizedImage() in ImageSFXs, and after some error-checking, its resizing code
is:

 int destWidth = (int) (im.getWidth() * widthChange);
 int destHeight = (int) (im.getHeight() * heightChange);

 // adjust top-left (x,y) coord of resized image so remains centered
 int destX = x + im.getWidth()/2 - destWidth/2;
 int destY = y + im.getHeight()/2 - destHeight/2;

 g2d.drawImage(im, destX, destY, destWidth, destHeight, null);

The drawing coordinate (destX,destY) is adjusted so that the image's center point does
not move on-screen when the image is resized.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

44  Andrew Davison 2004

The version of drawImage() suitable for image flipping is:

boolean drawImage(Image im, int dx1, int dy1, int dx2, int dy2,
 int sx1, int sy1, int sx2, int sy2,
 ImageObserver imOb)

The eight integers represent 4 coordinates: (sx1,sy1) and (sx2,sy2) are the top-left and
bottom-right corners of the image, and (dx1,dy1) and (dx2,dy2) are the top-left and
bottom-right corners of a rectangle somewhere on-screen where those points will be
drawn. The idea is shown in Figure 14.

Figure 14. Drawing an Image into an On-Screen.

Usually, the image coordinates are (0,0) and (width, height) so the entire image is
drawn. The versatility comes in the range of possibilities for the on-screen rectangle:
it can be used to scale, stretch, and flip (as here).

flippingImage() in ImagesTests calls getFlippedImage() in ImageSFXs with an
ImageSFXs flipping constant.

 private void flippingImage(Graphics2D g2d, BufferedImage im,
 int x, int y)
 { BufferedImage flipIm = null;
 if (counter%4 == 0)
 flipIm = im; // no flipping
 else if (counter%4 == 1)
 flipIm =imageSfx.getFlippedImage(im,ImageSFXs.HORIZONTAL_FLIP);
 else if (counter%4 == 2)
 flipIm = imageSfx.getFlippedImage(im, ImageSFXs.VERTICAL_FLIP);
 else
 flipIm = imageSfx.getFlippedImage(im, ImageSFXs.DOUBLE_FLIP);

 drawImage(g2d, flipIm, x, y);
 }

The counter value is manipulated so that the image ('cheese') will be repeatedly
flipped horizontally, vertically, both ways, and not at all.

The image returned from getFlippedImage() is drawn by drawImage(). This code does
not make further use of flipIm, but it might be useful to store flipped copies of images
for use later.

getFlippedImage() creates an empty copy of the source BufferedImage, and then
writes a flipped version of the image into it by calling renderFlip().

 public BufferedImage getFlippedImage(BufferedImage im,int flipKind)

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

45  Andrew Davison 2004

 {
 if (im == null) {
 System.out.println("getFlippedImage: input image is null");
 return null;
 }

 int imWidth = im.getWidth();
 int imHeight = im.getHeight();
 int transparency = im.getColorModel().getTransparency();

 BufferedImage copy =
 gc.createCompatibleImage(imWidth, imHeight, transparency);
 Graphics2D g2d = copy.createGraphics();

 // draw in the flipped image
 renderFlip(g2d, im, imWidth, imHeight, flipKind);
 g2d.dispose();

 return copy;
 } // end of getFlippedImage()

renderFlip() is a multi-way branch based on the flipping constant supplied in the top-
level call.

 private void renderFlip(Graphics2D g2d, BufferedImage im,
 int imWidth, int imHeight, int flipKind)
 {
 if (flipKind == VERTICAL_FLIP)
 g2d.drawImage(im, imWidth, 0, 0, imHeight,
 0, 0, imWidth, imHeight, null);
 else if (flipKind == HORIZONTAL_FLIP)
 g2d.drawImage(im, 0, imHeight, imWidth, 0,
 0, 0, imWidth, imHeight, null);
 else // assume DOUBLE_FLIP
 g2d.drawImage(im, imWidth, imHeight, 0, 0,
 0, 0, imWidth, imHeight, null);
 }

To illustrate how the flipping works, consider the vertical flip shown in Figure 15
(w = imWidth, h = imHeight).

Figure 15. A Vertical Flip.

ImageSFXs also contains two flipping methods which draw directly to the screen:
drawVerticalFlip() and drawHorizFlip(); they are not currently used by ImagesTests.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

46  Andrew Davison 2004

14.2. Alpha Compositing
Compositing is the process of combining two images together. The existing image
(often the screen's drawing surface) is called the destination, and the image being
rendered onto it is the source. Java 2D offers eight compositing rules which specify
varies ways that the source can be combined with the destination; the most useful is
probably SRC_OVER (source over destination), the others include DST_OVER
(destination over source), and SRC_IN which clips the source to be visible only inside
the boundaries of the destination.

Java 2D's AlphaComposite class adds another element to the compositing rules: the
alpha values for the source and destination. This can be somewhat confusing,
especially when both images have alpha channels. However, for the SRC_OVER
case, when the destination image is opaque (e.g. the on-screen background), the alpha
effectively applies to the source image only. An alpha value of 0.0f makes the source
disappear, while 1.0f makes it completely opaque, and various degrees of
translucency exist between.

fadingImage() in ImagesTests hacks together a alpha value based on the counter, such
that as the counter increases towards 25, the alpha value goes to 0. The result is that
the image ('ufo' in ImagesTests) will gradually fade away over a period of 2.5 seconds
(25 frames, each of 0.1 second), then spring back into view as the process starts again.

 private void fadingImage(Graphics2D g2d, BufferedImage im,
 int x, int y)
 { float alpha = 1.0f - (((counter*4)%100)/100.0f);
 imageSfx.drawFadedImage(g2d, ufo, x, y, alpha);
 }

drawFadedImage() in ImageSFXs does various forms of error checking, and then
creates an AlphaComposite object using SRC_OVER and the alpha value:

 Composite c = g2d.getComposite(); // backup the old composite

 g2d.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER, alpha));
 g2d.drawImage(im, x, y, null);

 g2d.setComposite(c);
 // restore old composite so it doesn't mess up future rendering

g2d is the screen's graphics context, and its composite is modified prior to calling
drawImage(). Care must be taken to backup the existing composite, so it can be
restored after the draw.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

47  Andrew Davison 2004

14.3. Affine Transforms
rotatingImage() in ImagesTests rotates the image ('atomic') in steps of 10 degrees in a
clockwise direction, using the image's center as the center of rotation.

The ImageSFXs method getRotatedImage() utilizes an AffineTransform operation to
rotate a copy of the image, which is returned to rotatingImage() and drawn.

 private void rotatingImage(Graphics2D g2d, BufferedImage im,
 int x, int y)
 { int angle = (counter * 10) % 360;
 BufferedImage rotIm = imageSfx.getRotatedImage(im, angle);
 drawImage(g2d, rotIm, x, y);
 }

getRotatedImage() makes a new BufferedImage, called dest. An AffineTransform
object is created which rotates dest's coordinate space by angle degrees anti-clockwise
around its center. The source image is then copied in, which makes it appear to be
rotated by angle degrees clockwise around the center of dest.

 public BufferedImage getRotatedImage(BufferedImage src, int angle)
 {
 if (src == null) {
 System.out.println("getRotatedImage: input image is null");
 return null;
 }

 int transparency = src.getColorModel().getTransparency();
 BufferedImage dest = gc.createCompatibleImage(
 src.getWidth(), src.getHeight(), transparency);
 Graphics2D g2d = dest.createGraphics();

 AffineTransform origAT = g2d.getTransform(); // save original

 // rotate the coord. system of the dest. image around its center
 AffineTransform rot = new AffineTransform();
 rot.rotate(Math.toRadians(angle),
 src.getWidth()/2, src.getHeight()/2);
 g2d.transform(rot);

 g2d.drawImage(src, 0, 0, null); // copy in the image

 g2d.setTransform(origAT); // restore original transform
 g2d.dispose();

 return dest;
 }

The single AffineTransform object (e.g. rot) can be composed from multiple
transforms, such as translations, scaling, and shearing, by simply applying more
operations to it. For instance, translate(), scale(), and shear() applied to rot will be
cumulative in effect. Ordering is important: a translation followed by a rotation is
generally not the same as a rotation followed by a translation.

The main problem with this approach is that the image is transformed within the
image space of dest, which acts as a clipping rectangle. Thus, if the image is

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

48  Andrew Davison 2004

translated/rotated/sheared outside dest's boundaries, for example beyond the bottom-
right corner, then the image will be clipped or perhaps 'disappear' completely

This problem can occur even with rotations around dest's center; a look at the rotating
'atomic' image highlights the problem.

The simplest solution is a careful design of the graphic, to ensure that its opaque areas
all fall within a 'rotation' circle placed at the center of the image file, with a radius
constrained by the file's dimensions. For example, the image in Figure 16a is safe to
rotate (around the file's center point), the image in Figure 16b is not.

Figure 16. Safe and Unsafe Rotations.

The rotation circle can also be employed as an image boundary when carrying out
collision detection between the image and other sprites. Two images have 'collided' if
their rotation circles intersect.

When an image is rotated, there will often be areas in the destination image which do
not correspond to pixels in the source. For instance, in Figure 16b, there are strips on
the left and right of the rotated image which do not correspond to pixels in the
original. Fortunately, these are drawn transparently if the original image has an alpha
channel. However, if the original image is opaque (e.g. a JPEG), then the pixels are
coloured black.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

49  Andrew Davison 2004

14.4. ConvolveOp Processing
A convolution operator calculates the colour of each pixel in a destination image in
terms of a combination of the colours of the corresponding pixel in the source image,
and its neighbours. A matrix (called a kernel) specifies the neighbours and gives
weights for how their colours should be combined with the source pixel to give the
destination pixel value. The kernel must have an odd number of rows and columns
(e.g. 3 by 3) so that the central cell can represent the source pixel (e.g. cell (1,1)), and
the surrounding cells its neighbours.

Convolution is carried out by applying the kernel to every pixel in the source,
generating destination pixels as it traverses the image. The example in Figure 17 is
using a 3 by 3 kernel.

Figure 17. Convolution from Source to Destination.

A typical 3 by 3 kernel:

The 1/9 values are the weights. This kernel combines the source pixel and its eight
neighbours using equal weights, which causes the destination pixel to be a
combination of all those pixel's colours, resulting in an overall blurry image.

The weights should add up to 1 in order to maintain the brightness of the destination
image. A total weight of more than 1 will make the image brighter, less than 1 will
darken it. Also, the resulting pixel colour values are constrained to be between 0 and
255 (since the sRGB format assigns 8 bits to each colour).

One tricky aspect is what to do at the edges of the image, for example, for the source
pixel at (0,0) which has no left and top neighbours? In most image processing
packages, the solution is to treat the graphic as a wrap-around so that the pixels at the
bottom of the image are used as the top neighbours, and the pixels at the right edge as
left neighbours. Unfortunately, Java 2D is a little lacking in this area, since its edge
behaviours are quite simple. Either the destination pixel (e.g. (0,0)) is automatically

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

50  Andrew Davison 2004

filled with black, or set to contain the source pixel value unchanged. These
possibilities are denoted by the ConvolveOp constants EDGE_ZERO_FILL and
EDGE_NO_OP.

Kernels for edge detection and sharpening are given in Figure 18.

Figure 18. Edge Detection and Sharpening Kernels.

The edge detection kernel highlights the places where the colours in the image change
sharply (usually at the boundaries between parts of the images), drawing them in
white or gray. Meanwhile, large blocks of similar colour will be cast into gloom. The
result is a destination image showing only the edges between areas in the original
picture.

The sharpening kernel is actually a variant of the edge detection matrix, with more
weight applied to the source pixel, making the overall weight 1.0 so that the
destination image's brightness is maintained. The result is that the original image will
still be visible but edges will be thicker and brighter.

ImageSFXs contains a drawBluredImage() method which applies a precalculated
blurring kernel:

 private ConvolveOp blurOp; // global for image blurring
 :

 private void initEffects()
 // Create pre-defined ops for image negation and blurring.
 { // image negative, explained later...

 // blur by convolving the image with a matrix
 float ninth = 1.0f / 9.0f;

 float[] blurKernel = { // the 'hello world' of Image Ops :)
 ninth, ninth, ninth,
 ninth, ninth, ninth,
 ninth, ninth, ninth
 };
 blurOp = new ConvolveOp(
 new Kernel(3, 3, blurKernel), ConvolveOp.EDGE_NO_OP, null);
 }

 public void drawBlurredImage(Graphics2D g2d,
 BufferedImage im, int x, int y)
 // blurring with a fixed convolution kernel
 { if (im == null) {

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

51  Andrew Davison 2004

 System.out.println("getBlurredImage: input image is null");
 return;
 }
 g2d.drawImage(im, blurOp, x, y); // use predefined ConvolveOp
 } // end of drawBlurredImage()

When the ImageSFXs object is created, initEffects() is called to initialise the blurOp
ConvolveOp object. A 3 by 3 array of floats is used to create the kernel. The
EDGE_NO_OP argument states that pixels at the edges of the image will be
unaffected by the convolution process.

Note that drawBlurredImage() uses the version of drawImage() which takes a
BufferedImageOp argument, so the modified image is written directly to the screen.

This coding is quite adequate, but we require an image to become increasingly blurry
over a period of several frames (see 'eyeChart' in ImagesTests).

One solution would be to store the destination image at the end of the convolution,
and apply blurring to it again during the next frame. Unfortunately, ConvolveOps
cannot be applied in place, and so a new destination image must be created each time.

Instead, our approach is to generate increasingly blurry ConvolveOps in each frame,
and apply them to the original image via drawImage().

Increasingly blurry kernels are simply larger matrices which generate a destination
pixel based on more neigbours. We begin with a 3 by 3 matrix, then a 5 by 5, and so
on, increasing to 15 by 15. The matrices must have odd length dimensions so there is
a center point. Also, the weights in the matrix must add up to 1 so, for instance, the 5
by 5 matrix will be filled with 1/25 in every cell.

The top-level method in ImagesTests is blurringImage():

 private void blurringImage(Graphics2D g2d, BufferedImage im,
 int x, int y)
 {
 int fadeSize = (counter%8)*2 + 1; // gives 1,3,5,7,9,11,13,15
 if (fadeSize == 1)
 drawImage(g2d, im, x, y); // start again with original image
 else
 imageSfx.drawBlurredImage(g2d, im, x, y, fadeSize);
 }

drawBlurredImage() in ImageSFXs takes a fadeSize argument which becomes the
row and column lengths of the kernel. The method is complicated by making sure that
the kernel dimensions are odd, not too small, and not bigger than the image.

 public void drawBlurredImage(Graphics2D g2d,
 BufferedImage im, int x, int y, int size)
 /* The size argument is used to specify a size*size blur kernel,
 filled with 1/(size*size) values. */
 {
 if (im == null) {
 System.out.println("getBlurredImage: input image is null");
 return;
 }

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

52  Andrew Davison 2004

 int imWidth = im.getWidth();
 int imHeight = im.getHeight();
 int maxSize = (imWidth > imHeight) ? imWidth : imHeight;

 if ((maxSize%2) == 0) // if even
 maxSize--; // make it odd

 if ((size%2) == 0) { // if even
 size++; // make it odd
 System.out.println(
 "Blur size must be odd; adding 1 to make size = " + size);
 }

 if (size < 3) {
 System.out.println("Minimum blur size is 3");
 size = 3;
 }
 else if (size > maxSize) {
 System.out.println("Maximum blur size is " + maxSize);
 size = maxSize;
 }

 // create the blur kernel
 int numCoords = size * size;
 float blurFactor = 1.0f / (float) numCoords;

 float[] blurKernel = new float[numCoords];
 for (int i=0; i < numCoords; i++)
 blurKernel[i] = blurFactor;

 ConvolveOp blurringOp = new ConvolveOp(
 new Kernel(size, size, blurKernel),
 ConvolveOp.EDGE_NO_OP, null); // leaves edges unaffected
 // ConvolveOp.EDGE_ZERO_FILL, null); //edges filled with black

 g2d.drawImage(im, blurringOp, x, y);
 } // end of drawBlurredImage() with size argument

A drawback with larger kernels is that more of the pixels at the edges of the source
image will be affected by the edge behaviour constants. With EDGE_NO_OP, a
increasingly thick band of pixels around the edges will be unaffected. With
EDGE_ZERO_FILL, the band will be pitch black. There is a need for more edge
behaviour options in future versions of the ConvolveOp class.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

53  Andrew Davison 2004

14.5. LookupOp Processing
At the heart of LookupOp is the representation of a pixel using the sRGB colour
space, which stores the red, green, blue (and alpha) channels in 8 bits (1 byte) each,
snugly fitting them all into a single 32-bit integer. This is shown in Figure 19.

Figure 19. The sRGB Colour Space Format.

The red, green, blue and alpha components can each have 256 different values (28),
with 255 being full on. For the alpha part, 0 means fully transparent, 255 fully
opaque.

A LookupOp operation utilizes a lookup table (perhaps several lookup tables) with
256 entries. Each entry contains a colour value (i.e. an integer between 0 and 255), so
that the table defines a mapping from the image's existing colour values to new
values.

The simplest form of LookupOp is one that uses a single lookup table. The example
below converts a colour component value i to (255-i), and is applied to all the
channels in the image. For example, a red colour component of 0 (no red) is mapped
to 255 (full on). Thus, the table will invert the colour scheme.

 short[] invert = new short[256];
 for (int i = 0; i < 256; i++)
 invert[i] = (short)(255 - i);

 LookupTable table = new ShortLookupTable(0, invert);
 LookupOp invertOp = new LookupOp(table, null);

 g2d.drawImage(im, invertOp, x, y); // draw the image

The ShortLookupTable class is mostly just an array, used to initialize the operation.
There is also a ByteLookupTable that is built with an array of bytes.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

54  Andrew Davison 2004

A visual way of understanding the mapping defined by invert[] is shown in Figure 20.

Figure 20. The invert[] Lookup Table.

The table defines a straight line in this case, but a table can hold any mapping from
source colour component values to destination values.

In general, it is more common to utilize several lookup tables, different ones for each
channel. Also, no mapping is usually applied to an alpha channel of a transparent or
translucent image.

reddenImage() in ImagesTests draws its source image with increasing amounts of red
over a period of 20 frames, and then starts again (e.g. see the 'house' image). The
original image is unaffected, since the LookupOp writes directly to the screen via
drawImage(). To increase the effect, as the redness increases, the amount of green and
blue decreases, so necessitating different lookup tables for red and green/blue. Also,
any alpha component in the image is left unaffected.

 private void reddenImage(Graphics2D g2d, BufferedImage im,
 int x, int y)
 {
 float brightness = 1.0f + (((float) counter%21)/10.0f);
 // gives values in the range 1.0-3.0, in steps of 0.1
 if (brightness == 1.0f)
 drawImage(g2d, im, x, y); // start again with original image
 else
 imageSfx.drawRedderImage(g2d, im, x, y, (float) brightness);
 }

drawRedderImage() in ImageSFXs does the lookup-based colour changes, based on a
brightness value that ranges from 1.0 to 3.0.

A minor hassle, illustrated by drawRedderImage(), is dealing with opaque versus non-
opaque images. An opaque image requires two unique lookup tables (one for red, one
used for green and blue), while a non-opaque image requires a third lookup table for
the alpha channel. This separation occurs in all LookupOp (and RescaleOp and
BandCombineOp) methods which may be passed both types of image.

 public void drawRedderImage(Graphics2D g2d, BufferedImage im,
 int x, int y, float brightness)
 /* Draw the image with its redness is increased, and its greenness
 and blueness decreased. Any alpha channel is left unchanged.
 */
 { if (im == null) {

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

55  Andrew Davison 2004

 System.out.println("drawRedderImage: input image is null");
 return;
 }

 if (brightness < 0.0f) {
 System.out.println("Brightness must be >= 0.0f;set to 0.0f");
 brightness = 0.0f;
 }
 // brightness may be less than 1.0 to make the image less red

 short[] brighten = new short[256]; // for red channel
 short[] lessen = new short[256]; // for green and blue channels
 short[] noChange = new short[256]; // for the alpha channel

 for(int i=0; i < 256; i++) {
 float brightVal = 64.0f + (brightness * i);
 if (brightVal > 255.0f)
 brightVal = 255.0f;
 brighten[i] = (short) brightVal;
 lessen[i] = (short) ((float)i / brightness);
 noChange[i] = (short) i;
 }

 short[][] brightenRed;
 if (hasAlpha(im)) {
 brightenRed = new short[4][];
 brightenRed[0] = brighten; // for the red channel
 brightenRed[1] = lessen; // for the green channel
 brightenRed[2] = lessen; // for the blue channel
 brightenRed[3] = noChange; // for the alpha channel
 // without this the LookupOp fails; a bug (?)
 }
 else { // not transparent
 brightenRed = new short[3][];
 brightenRed[0] = brighten; // red
 brightenRed[1] = lessen; // green
 brightenRed[2] = lessen; // blue
 }
 LookupTable table = new ShortLookupTable(0, brightenRed);
 LookupOp brightenRedOp = new LookupOp(table, null);

 g2d.drawImage(im, brightenRedOp, x, y);
 } // end of drawRedderImage()

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

56  Andrew Davison 2004

The three lookup tables, brighten[], lessen[], and noChange[] are shown in Figure 21
when brightness has the value 2.0. As the value increases, more of the red colour
components will be mapped to full on and the blue and green colour values will be
lowered further.

Figure 21. Lookup Tables Used in drawReddenImage().

A two-dimensional array, brightenRed[][] is declared and filled with 3 or 4 tables
depending on if the image is opaque (i.e. only has RGB components) or also has an
alpha channel. This array is used to create a LookupOp table called table, and then the
operation.

A LookupOp operation will raise an exception if the source image has an alpha
channel and the operation only contains three tables. Therefore it is essential to check
for the presence of an alpha band in the image, which is achieved with hasAlpha()

 public boolean hasAlpha(BufferedImage im)
 // does im have an alpha channel?
 {
 if (im == null)
 return false;

 int transparency = im.getColorModel().getTransparency();

 if ((transparency == Transparency.BITMASK) ||
 (transparency == Transparency.TRANSLUCENT))
 return true;
 else
 return false;
 }

A colour model may use BITMASK transparency (as in GIFs), TRANSULENT (as
in translucent PNGs), or OPAQUE (as in JPEGs).

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

57  Andrew Davison 2004

14.6. RescaleOp Processing
The rescaling operation is a specialized form of LookupOp. As with a lookup, a pixel
is considered to be in sRGB form: the red, green, blue (and alpha) channels are each
stored in 8 bits (1 byte), allowing the color components to range between 0 and 255.

Instead of specifying a table mapping, the new colour component is defined as a
linear equation involving a scale factor applied to the existing colour value, plus an
optional offset:

colourdest = scaleFactor * coloursource + offset

The destination colour is bounded to be between 0 and 255.

This means that any Lookup table that can be defined by a straight line can be
rephrased as a RescaleOp operation. Conversely, any RescaleOp can be written as a
LookupOp. LookupOp is more general since the table mapping permits non-linear
relationships to be defined between the source and destination colour components.

Since LookupOp is functionally a superset of RescaleOp, and probably more efficient
to execute, it is somewhat unclear why Java 2D offers RescaleOp at all.

drawReddenImage(), which was defined as a LookupOp using three (or four) tables,
can be rephrased as a RescaleOp consisting of three (or four) rescaling equations.
Each equation has two parts: a scale factor and an offset.

 RescaleOp brigherOp;
 if (hasAlpha(im)) {
 float[] scaleFactors =
 {brightness, 1.0f/brightness, 1.0f/brightness, 1.0f};
 // don't change alpha
 // without the 1.0f the RescaleOp fails; a bug (?)
 float[] offsets = {64.0f, 0.0f, 0.0f, 0.0f};
 brigherOp = new RescaleOp(scaleFactors, offsets, null);
 }
 else { // not transparent
 float[] scaleFactors =
 {brightness, 1.0f/brightness, 1.0f/brightness};
 float[] offsets = {64.0f, 0.0f, 0.0f};
 brigherOp = new RescaleOp(scaleFactors, offsets, null);
 }
 g2d.drawImage(im, brigherOp, x, y);

The RescaleOp constructor takes an array of scale factors, an array of offsets, and
optional rendering hints as its arguments.

The three equations employed in this code fragment are:

red_colourdest = brightness * red_coloursource + 64

green/blue_colourdest = (1/brightness) * green/blue_coloursource + 0

alpha_colourdest = 1 * alpha_coloursource + 0

Note that the new red colour component is clamped to 255, even if the equation
returns a larger value. The green/blue_colour equation is used for both the green and
blue channels.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

58  Andrew Davison 2004

These equations are the same as the LookupOp tables used in the first version of
drawReddenImage().

As with LookupOp, it is essential that the right number of scale factors and offsets are
supplied according to the number of channels in the image. For instance, if only three
equations are defined for an image with an alpha channel, then an exception will be
raised at run time when the operation is applied.

14.6.1. Brightening the Image
ImagesTests' brigheningImage() increases the brightness of its image over a period of
9 frames, then start again with the original colours (see 'scooter' for an example). The
original image is unaffected, since the operation writes to the screen. The brightness
only affects the RGB channels, the alpha component is unchanged.

 private void brighteningImage(Graphics2D g2d, BufferedImage im,
 int x, int y)
 { int brightness = counter%9; // gives 0-8
 if (brightness == 0)
 drawImage(g2d, im, x, y); // start again with original image
 else
 imageSfx.drawBrighterImage(g2d, im, x, y, (float) brightness);
 }

The ImageSFXs method, drawBrighterImage(), uses a RescaleOp based around the
equations:

RGB_colourdest = brightness * RGB_coloursource + 0

alpha_colourdest = 1 * alpha_coloursource + 0

The RBG_colour equation is used for the red, green, and blue channels. When the
source image has no alpha, we can utilize a RescaleOp constructor that takes a single
scale factor and offset. It will automatically apply the equation to all the RGB
channels:

 public void drawBrighterImage(Graphics2D g2d, BufferedImage im,
 int x, int y, float brightness)
 { if (im == null) {
 System.out.println("drawBrighterImage: input image is null");
 return;
 }
 if (brightness < 0.0f) {
 System.out.println("Brightness must be >= 0.0f; set to 0.5f");
 brightness = 0.5f;
 }
 RescaleOp brigherOp;
 if (hasAlpha(im)) {
 float[] scaleFactors =
 {brightness, brightness, brightness, 1.0f};
 float[] offsets = {0.0f, 0.0f, 0.0f, 0.0f};
 brigherOp = new RescaleOp(scaleFactors, offsets, null);
 }
 else // not transparent
 brigherOp = new RescaleOp(brightness, 0, null);

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

59  Andrew Davison 2004

 g2d.drawImage(im, brigherOp, x, y);
 } // end of drawBrighterImage()

14.6.2. Negating the Image
ImagesTests' negatingImage() keeps switching between the original image and its
negative depending on the counter value (see the 'owl' image for an example). A
colour component value i is converted to 255-i in the RGB channels, but the alpha is
untouched.

 private void negatingImage(Graphics2D g2d, BufferedImage im,
 int x, int y)
 { if (counter%10 < 5) // show the negative
 imageSfx.drawNegatedImage(g2d, im, x, y);
 else // show the original
 drawImage(g2d, im, x, y);
 }

When the ImageSFXs object is first created, the negative rescaling operations, negOp
and negOpTrans, are predefined. negOpTrans is used when the image has an alpha
channel, and contains the equations:

RGB_colourdest = -1 * RGB_coloursource + 255

alpha_colourdest = 1 * alpha_coloursource + 0

The RGB_colour equation is applied to the red, green, and blue channels.

negOp is for opaque images, so only requires the RGB equation.

 // global rescaling ops for image negation
 private RescaleOp negOp, negOpTrans;
 :

 private void initEffects()
 {
 // image negative.
 // Multiply each colour value by -1.0 and add 255
 negOp = new RescaleOp(-1.0f, 255f, null);

 // image negative for images with transparency
 float[] negFactors = {-1.0f, -1.0f, -1.0f, 1.0f};
 // don't change the alpha
 float[] offsets = {255f, 255f, 255f, 0.0f};
 negOpTrans = new RescaleOp(negFactors, offsets, null);

 ...
 }

 public void drawNegatedImage(Graphics2D g2d, BufferedImage im,
 int x, int y)
 { if (im == null) {
 System.out.println("drawNegatedImage: input image is null");
 return;

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

60  Andrew Davison 2004

 }
 if (hasAlpha(im))
 g2d.drawImage(im, negOpTrans, x, y); // predefined RescaleOp
 else
 g2d.drawImage(im, negOp, x, y);
 } // end of drawNegatedImage()

14.7. BandCombineOp Processing
Both LookupOp and RescaleOp specify transformations that take a single colour
component in a pixel (e.g. the red colour) and map it to a new value. A
BandCombineOp generalizes this idea to allow a new colour component to be
potentially defined in terms of a combination of all the colour components in the
source pixel.

To be precise, a BandCombineOp does not manipulate the colour components
directly, but rather the samples in a pixel. However, the intention is to cause the
colours in the destination image to change.

The destination pixel {redN, greenN, blueN, alphaN} is created from some
combination of the source pixel {red, green, blue, alpha}, where the combination is
defined using matrix multiplication as in Figure 22.

Figure 22. BandCombineOp as a Matrix Operation.

For example,
 redNsample = m11 * redsample + m12 * greensample + m13 * bluesample + m14 * alphasample

If the source image has no alpha channel, then a 3 by 3 matrix is used.

BandCombineOp is different from the other operations we have discussed since it
implements the RasterOp interface, not BufferedImageOp. This means that a little
extra work is required to access the Raster object inside the source BufferedImage,
and that the resulting changed Raster must be built up into a destination
BufferedImage.

ImagesTests' mixedImage() draws an image with its green and blue bands modified in
random ways, while keeping the red band and any alpha band unchanged. See the
'balls' and 'basn6a08' images for examples.

 private void mixedImage(Graphics2D g2d, BufferedImage im,

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

61  Andrew Davison 2004

 int x, int y)
 { if (counter%10 < 5) // mix it up
 imageSfx.drawMixedColouredImage(g2d, im, x, y);
 else // show the original
 drawImage(g2d, im, x, y);
 }

drawMixedColouredImage() distinguishes whether the source has an alpha channel,
and creates a 4 by 4 or 3 by 3 matrix accordingly. The source Raster is accessed, the
operation applied using filter(), and the result packaged up as a new BufferedImage
which is drawn.

 public void drawMixedColouredImage(Graphics2D g2d, B
 ufferedImage im, int x, int y)
 // Mix up the colours in the green and blue bands
 { if (im == null) {
 System.out.println("drawMixedColouredImage: input is null");
 return;
 }
 BandCombineOp changeColoursOp;
 Random r = new Random();
 if (hasAlpha(im)) {
 float[][] colourMatrix = { // 4 by 4
 { 1.0f, 0.0f, 0.0f, 0.0f }, // new red band, unchanged
 { r.nextFloat(), r.nextFloat(), r.nextFloat(), 0.0f },
 // new green band
 { r.nextFloat(), r.nextFloat(), r.nextFloat(), 0.0f },
 // new blue band
 { 0.0f, 0.0f, 0.0f, 1.0f} }; // unchanged alpha

 changeColoursOp = new BandCombineOp(colourMatrix, null);
 }
 else { // not transparent
 float[][] colourMatrix = { // 3 by 3
 { 1.0f, 0.0f, 0.0f }, // new red band, unchanged
 { r.nextFloat(), r.nextFloat(), r.nextFloat() },
 // new green band
 { r.nextFloat(), r.nextFloat(), r.nextFloat() }};
 // new blue band

 changeColoursOp = new BandCombineOp(colourMatrix, null);
 }

 Raster sourceRaster = im.getRaster(); // access source Raster
 WritableRaster destRaster =
 changeColoursOp.filter(sourceRaster, null);

 // make the destination Raster into a BufferedImage
 BufferedImage newIm = new BufferedImage(im.getColorModel(),
 destRaster, false, null);

 g2d.drawImage(newIm, x, y, null); // draw it
 } // end of drawMixedColouredImage()

The matrices are filled with random numbers in the rows applied to the green and blue
components of the source pixel.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

62  Andrew Davison 2004

The matrix row for the red component is {1, 0, 0, 0}, which will send the red source
unchanged into the destination pixel. Similarly, the alpha component is {0, 0, 0, 1}
which leaves the alpha part unchanged..

It is possible to treat a pixel as containing an additional unit element, which allows the
BandCombineOp matrix to contain an extra column. This permits a wider range of
equations to be defined. Figure 23 shows the resulting multiplication using a 4 by 5
matrix.

Figure 23. BandCombineOp with an Additional Pixel Element.

For example,
 redNsample = m11 * redsample + m12 * greensample + m13 * bluesample + m14 * alphasample + m15

The change is the additional m15 element, which can be used to define equations with
offsets.

If the source image has no alpha channel, then a 3 by 4 matrix is used.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

63  Andrew Davison 2004

14.8. Pixel Effects
The great advantage of BufferedImage is the ease with which its elements can be
accessed: pixel data, sample model, colour space, etc. However, a lot can be done
using only the BufferedImage methods getRGB() and setRGB() to manipulate a given
pixel (or array of pixels).

The single pixel versions are:
 int getRGB(int x, int y);
 void setRGB(int x, int y, int newValue);

The getRGB() method returns an integer representing the pixel at location (x,y),
formatted using sRGB. The red, green, blue (and alpha) channels use 8 bits (1 byte)
each, so they can fit into the 32-bit integer result. The sRGB format is shown in
Figure 19.

The colour components can be extracted from the integer using bit manipulation.

 BufferedImage im = ...;
 int pixel = im.getRGB(x,y);

 int alphaVal = (pixel >> 24) & 255;
 int redVal = (pixel >> 16) & 255;
 int greenVal = (pixel >> 8) & 255;
 int blueVal = pixel & 255;

alphaVal, redVal, greenVal, and blueVal will have values between 0 and 255.

The setRGB() method takes an integer argument, newValue, constructed using similar
bit manipulation in reverse.

 int newValue = blueVal | (greenVal << 8) |
 (redVal << 16) | (alphaVal << 24);
 im.setRGB(x, y, newVal);

Care should be taken that alphaVal, redVal, greenVal, and blueVal have values
between 0 and 255 or the resulting integer will be incorrect.

Of more use are the versions of getRGB() and setRGB() that work with an array of
pixels. getRGB() is general enough to extract an arbitrary rectangle of data from the
image, returning it as a one-dimensional array. However, its most common use is to
extract all the pixel data. Then a loop can be employed to traverse over the data, as
below:

 int imWidth = im.getWidth();
 int imHeight = im.getHeight();

 // make an array to hold the data
 int[] pixels = new int[imWidth * imHeight];

 // extract the data from the image into pixels[]
 im.getRGB(0, 0, imWidth, imHeight, pixels, 0, imWidth);

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

64  Andrew Davison 2004

 for(int i=0; i < pixels.length; i++) {
 // do something to pixels[i]
 }
 // update the image with pixels[]
 im.setRGB(0, 0, imWidth, imHeight, pixels, 0, imWidth);

At the end of the loop, the updated pixels[] array can be placed back inside the
BufferedImage via a call to setRGB().

The prototypes for the array versions of getRGB() and setRGB() are:

int[] getRGB(int startX, int startY, int w, int h,
 int[] RGBArray, int offset, int scansize);

void setRGB(int startX, int startY, int w, int h,
 int[] RGBArray, int offset, int scansize);

The extraction rectangle is defined by startX, startY, w, and h. offset states where in
the pixels array the extracted data should start being written. scansize specifies the
number of elements in a row of the returned data; normally it is the width of the
image.

14.8.1. Teleporting an Image
The 'teleport' effect causes the image to disappear, multiple pixels at a time, spread
over the course of 7 frames (after which the effect repeats). Individual pixels are
assigned the value 0, which results in their becoming transparency. The 'bee' image
has this effect applied to it.

This pixilated visual should be compared with the smoother fading offered by
fadingImage(), described in section 14.2 on alpha compositing.

The changes are applied to a copy of the image (stored in the global teleImage). The
copy is assigned an alpha channel if the original does not have one, to ensure that the
image becomes transparent (rather than black).

A global is used so that pixel erasing can be repeatedly applied to the same image,
and so be cumulative.

The ImageSFXs method used is eraseImageParts(). Its second argument specifies that
the affected pixels are located in the image's pixel array at positions which are
multiple of the supplied number.

 private BufferedImage teleportImage(Graphics2D g2d,
 BufferedImage im, BufferedImage teleIm, int x, int y)
 {
 if (teleIm == null) { // start the effect
 if (imageSfx.hasAlpha(im))
 teleIm = imageSfx.copyImage(im);
 else // no alpha channel
 teleIm = imageSfx.makeTransImage(im);
 // give the copy an alpha channel
 }

 int eraseSteps = counter%7; // range is 0 to 6
 switch(eraseSteps) {

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

65  Andrew Davison 2004

 case 0: // restart the effect
 if (imageSfx.hasAlpha(im))
 teleIm = imageSfx.copyImage(im);
 else // not transparent
 teleIm = imageSfx.makeTransImage(im);
 break;
 case 1:
 imageSfx.eraseImageParts(teleIm, 11); //every 11th pixel goes
 break;
 case 2:
 imageSfx.eraseImageParts(teleIm, 7); // every 7th pixel
 break;
 case 3:
 imageSfx.eraseImageParts(teleIm, 5); // 5th
 break;
 case 4:
 imageSfx.eraseImageParts(teleIm, 3); // 3rd
 break;
 case 5:
 imageSfx.eraseImageParts(teleIm, 2); // every 2nd pixel
 break;
 case 6:
 imageSfx.eraseImageParts(teleIm, 1);
 break; // every pixel goes, i.e. fully erased
 default:
 System.out.println("Unknown count for teleport");
 break;
 } // end switch

 drawImage(g2d, teleIm, x, y);
 return teleIm;
 } // end of teleportImage()

The ImageSFXs support methods, copyImage() and makeTransImage(), both make
copies of a BufferedImage, and are quite similar.

copyImage() utilizes GraphicsConfiguration's createCompatibleImage() to make a
BufferedImage object, and then the source image is drawn into it.

makeTransImage() creates a new BufferedImage object of type TYPE_INT_ARGB to
ensure that it has an alpha channel. Then the source image is drawn into it.

 public BufferedImage makeTransImage(BufferedImage src)
 {
 if (src == null) {
 System.out.println("makeTransImage: input image is null");
 return null;
 }
 BufferedImage dest = new BufferedImage(
 src.getWidth(), src.getHeight(),
 BufferedImage.TYPE_INT_ARGB); // alpha channel
 Graphics2D g2d = dest.createGraphics();

 // copy image
 g2d.drawImage(src, 0, 0, null);
 g2d.dispose();
 return dest;
 }

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

66  Andrew Davison 2004

ImageSFXs' eraseImageParts() has the same structure as the array-based getRGB()
and setRGB() code outlined above.

 public void eraseImageParts(BufferedImage im, int spacing)
 {
 if (im == null) {
 System.out.println("eraseImageParts: input image is null");
 return;
 }
 int imWidth = im.getWidth();
 int imHeight = im.getHeight();
 int [] pixels = new int[imWidth * imHeight];
 im.getRGB(0, 0, imWidth, imHeight, pixels, 0, imWidth);

 int i = 0;
 while (i < pixels.length) {
 pixels[i] = 0; // make transparent (or black if no alpha)
 i = i + spacing;
 }
 im.setRGB(0, 0, imWidth, imHeight, pixels, 0, imWidth);
 }

The loop jumps over the array, setting every ith pixel to have the value 0. This causes
the red, green, blue and alpha channels to be completely filled with 0 bits. Due to the
alpha channel, this causes the pixel to become transparent. If there was no alpha, then
the 0 bits signify that red, green, and blue are switched off, and the pixel would be
drawn in black.

14.8.2. Zapping an Image
Zapping means the gradual changing of the image's visible parts to a random mix of
red and yellow pixels. The number of changed pixels increases over the course of the
effect (11 frames). See 'pumpkin' for an example of the effect in action.

The changes are applied to a copy of the image (stored in the global zapImage). After
11 frames, the image is restored, and the effect begins again.

As with the teleportation effect, a global is used so that the colour changes can be
repeatedly applied to the same image, and so be cumulative.

The amount of 'zapping' is controlled by the likelihood value which increases from 0
to 1.

The method used in ImageSFXs is zapImageParts()

 private BufferedImage zapImage(Graphics2D g2d, BufferedImage im,
 BufferedImage zapIm, int x, int y)
 { if ((zapIm == null) || (counter%11 == 0))
 zapIm = imageSfx.copyImage(im); // restart the effect
 else {
 double likelihood = (counter%11)/10.0;
 // produces range 0 to 1
 imageSfx.zapImageParts(zapIm, likelihood);
 }
 drawImage(g2d, zapIm, x, y);
 return zapIm;

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

67  Andrew Davison 2004

 } // end of zapImage()

zapImageParts() uses the same approach as previously: the pixel array is extracted,
modified in a loop, then written back into the BufferedImage object.

 public void zapImageParts(BufferedImage im, double likelihood)
 {
 if (im == null) {
 System.out.println("zapImageParts: input image is null");
 return;
 }
 if ((likelihood < 0) || (likelihood > 1)) {
 System.out.println("likelihood must be in the range 0 to 1");
 likelihood = 0.5;
 }

 int redCol = 0xf90000; // nearly full-on red
 int yellowCol = 0xf9fd00; // a mix of red and green

 int imWidth = im.getWidth();
 int imHeight = im.getHeight();
 int [] pixels = new int[imWidth * imHeight];
 im.getRGB(0, 0, imWidth, imHeight, pixels, 0, imWidth);

 double rnd;
 for(int i=0; i < pixels.length; i++) {
 rnd = Math.random();
 if (rnd <= likelihood) {
 if (rnd <= 15*likelihood/16) // red more likely
 pixels[i] = pixels[i] | redCol;
 else
 pixels[i] = pixels[i] | yellowCol;
 }
 }

 im.setRGB(0, 0, imWidth, imHeight, pixels, 0, imWidth);
 } // end of eraseImageParts()

The random effect of changing pixels to red or yellow is achieved by the use of
Math.random().

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

68  Andrew Davison 2004

The red colour (redCol) is defined as the octal 0xf90000, and yellow (yellowCol) as
0xf9fd00. To understand these, it helps to remember that the sRGB format stores
colour components in the order alpha, red, green, and blue, each in 8 bits. Eight bits
can be represented by the octals 0x00 to 0xFF, as in Figure 24.

Figure 24. The sRGB Format in Octal.

Consequently, the red field in the sRGB format will be the 5th and 6th octal digits
from the right, the green field will be the 3rd and 4th.

The octals are bitwise-or'ed with a pixel, which causes the relevant colour
components to be overwritten. redCol overwrites the red colour component only,
while yellowCol replaces the red and yellow parts, which is a more drastic change.
This is balanced in the code, by having the red change done more often.

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

69  Andrew Davison 2004

15. Packaging ImagesTests as a JAR
We're converting the ImagesTests application into a JAR so that all the resources
(images in this case) are packaged with the code in a single file. This makes the
application easier to transport, and we get the additional benefit of compression.

The JAR file is configured so that ImagesTests automatically starts when the user
double-clicks on its icon.

We will not consider how to use applets and JAR together, or advanced topics like
signing, and manipulating JARs from inside Java code. The Java tutorial (trail) on
JARs should be consulted on these matters.

Before JARing begins, it is important to organize the resources in relation to the
application. The ImagesTests code is located in the directory ImagesTests/ (see Figure
25), which acts as the top-level directory for the JAR. The images are placed in an
Images/ subdirectory within ImagesTests/. This makes their inclusion into the JAR
particularly easy.

Figure 25. The ImagesTests/ Directory and Images/ Subdirectory.

One issue with using MS Windows is that it displays filenames in a 'user-friendly'
lowercase format. Unfortunately, Java is less forgiving, and will be unable to find a

Java Prog. Techniques for Games. Chapter 4. Images Draft #1 (18th March 04)

70  Andrew Davison 2004

file such as BASN6A08.PNG if told to load basn6a08.png. The application developer
should open a DOS window and check the filenames in Images/ directly.

The next step is to create a text file, which will become the basis of the manifest
inside the JAR file. The manifest holds a range of meta-information about the JAR,
related to matters like authentication, extensions, and sealing. However, we'll only
add the name of the top-level class, ImagesTests, which contains the main() method.
This permits the application to be started by double-clicking.

The text file, mainClass.txt (any name will do), contains a single line:
 Main-Class: ImagesTests

The file should be stored in the same directory as the application.

The JAR file can now be made, using the command:
 > jar cvmf mainClass.txt ImagesTests.jar *.class Images

This command should be executed in the application directory. It has the format:
 jar <options> <manifest info file> <name of JAR file>
 <list of input files/directories>

The options, cvmf, specify:

• c: create a JAR file;

• v: verbose output goes to stdout during the creation process, including a list of
everything added to the JAR;

• m: a manifest information file is included on the command line, and its
information should be incorporated into the JAR's manifest;

• f: a filename for the resulting JAR is given on the command line.

The list of input files can use the wildcard symbol, *, as here. All the .class files in the
current directory are added to the JAR (these are ImageSFXs.class,
ImagesLoader.class, ImagesPlayer.class, ImagesPlayerWatcher.class, and
ImagesTests.class, as shown in Figure 25). Also, the subdirectory Images/ is added,
together with all its contents.

The ImagesTests.jar file will appear in ImagesTests/, and can be started by double-
clicking upon its icon. It is about 130K in size, compressed by 13% from the original
collection of files.

The application can be started from the command line as well, by typing:
 > java –jar ImagesTests.jar

The advantage of this approach is that the output from the application will appear in
the DOS window, whereas it is lost if the program is started via its icon.

A simple way of checking the contents of the JAR file is to open it with a zip utility,
such as WinZip (http://www.winzip.com). Alternatively, type:
 > jar tf ImagesTests.jar

