

THE MYTHS (AND TRUTHS) OF JAVA GAMES PROGRAMMING

Andrew Davison
Department of Computer Engineering

Prince of Songkla University
Hat Yai, Songkhla 90112

Thailand
E-mail: ad@fivedots.coe.psu.ac.th

KEYWORDS

java, games programming, myths, criticisms

ABSTRACT

This paper examines the commonly-expressed
criticisms of Java as a games programming language:
that's it's too slow, too high-level, prone to memory
problems, too hard to install, not available on games
consoles, not used in 'real' games, and not even
considered a gaming platform by Sun Microsystems.
All of these views are incorrect, aside from the console
issue.

INTRODUCTION

Java for games programming: are you joking? No, Java
is a great games programming language. When you
learnt Java, I'm sure it's many advantages were
mentioned: an elegant object-oriented paradigm, cross-
platform support, code reuse, ease of development, tool
availability, reliability and stability, good
documentation, support from Sun Microsystems, low
development costs, the ability to use legacy code (e.g.
C, C++), and increased programmer productivity
(Eckel 2006). That list leaves out my personal reason
for programming in Java – it's fun, especially when
you're programming something inherently good-for-
you, such as games.

Most Java-bashers tend to skip over advantages,
preferring to concentrate on criticisms. Here's a typical
list:

• Java is too slow for games programming;
• Java has memory leaks;
• Java is too high-level;
• Java application installation is a nightmare;
• Java isn't supported on games consoles;
• No one uses Java to write 'real' games;
• Sun Microsystems isn't interested in supporting

Java gaming.

Almost all of these objections are substantially wrong.
Java is roughly the same speed as C++. Memory leaks

can be avoided with good programming, and
techniques like profiling. Yes, Java is high-level, but it
also offers more direct access to graphics hardware and
external devices. Installation isn't a nightmare, if you
use decent installation software. There's a growing
number of excellent, fun Java games, and an enormous
amount of support available from Sun and Sun-
sponsored sites.

If you're keeping count, I haven't disagreed with the
lack of a games consoles port, which is a tad
embarrassing for a "write once, run anywhere"
language. Things may be changing in this category, as
I explain below.

A general point about these objections is that they had
more validity in the late 1990s, when the language and
its libraries were less sophisticated and slower. The
1990's were a long time ago – Java's user and
developer communities are currently burgeoning,
producing a plethora of useful tools, online help, and
code examples.

Now, back to the criticisms...

JAVA IS TOO SLOW FOR GAMES
PROGRAMMING

This is better rephrased as "Java is slow compared to C
and C++, the dominant languages for games
programming at the moment." This argument was valid
when Java first appeared (around 1996), but has
become increasingly ridiculous with each new release.
Some figures put JDK 1.0, that first version of the
language, at 20 to 40 times slower than C++. However,
J2SE 5—the current release—is typically only 1.1
times slower. Many benchmarks indicate that Java SE
6 is about 20% faster than J2SE 5.

These numbers depend greatly on the coding style
used. Java programmers must be good programmers in
order to utilize Java efficiently, but that’s true of any
language. Jack Shirazi's Java Performance Tuning site
(http://www.javaperformancetuning.com/) is a good
source for performance tips, and links to tools and
other resources.

The speed-up in Java is mostly due to improvements in
compiler design. The Hotspot technology introduced in
J2SE 1.3 enables the run-time system to identify
crucial areas of code that are utilized many times, and
these are aggressively compiled. Hotspot technology is
relatively new, and it’s quite likely that future versions
of Java will yield further speed-ups. For example, J2SE
5.0 is 1.2 to 1.5 times faster than its predecessor
(version 1.4).

Hotspot technology has the unfortunate side-effect that
program execution is often slow at the beginning until
the code has been analyzed and compiled.

Swing is Slow

Swing often comes under attack for being slow. Swing
GUI components are created and controlled from Java,
with little OS support; this increases their portability
and makes them more controllable from within a Java
program. Speed is supposedly compromised because
Java imposes an extra layer of processing above the
OS. This is one reason why some games applications
still utilize the original Abstract Windowing Toolkit
(AWT)—it's mostly just simple wrapper methods
around OS calls.

Even if Swing is slow (and I'm not convinced of that),
most games don't require complex GUIs; full-screen
game play with mouse and keyboard controls is the
norm. GUI elements maintained by Swing, such as
menu bars, button, and text fields, aren't needed, while
mouse and keyboard processing is dealt with by the
AWT. The latest versions of Java offer a very efficient
full-screen mode by suspending the normal windowing
environment.

My Program is Slow (Because of Java)

A crucial point about speed is knowing where to lay
the blame when a program runs slowly. Typically, a
large part of the graphics rendering of a game is
handled by hardware or software outside of Java. For
example, Java 3D passes its rendering tasks down to
OpenGL or DirectX, which may emulate hardware
capabilities such as bump mapping. Often the
performance bottleneck in network games is the
network, not the Java language.

JAVA HAS MEMORY LEAKS

When C/C++ programmers refer to memory leaks in
Java, it often means that they don't understand how
Java works. Java doesn't offer pointer arithmetic, and
typical C-style memory leaks—such as out-of-bounds
array accesses—are caught by the Java compiler.

However, these programmers may mean that objects
which are no longer needed by the program are not
being garbage collected. This becomes an issue if the

program keeps creating new objects—requiring more
memory—and eventually crashes when the maximum
memory allocation is exceeded.

This kind of problem is a consequence of bad
programming style, since the garbage collector can
only do its job when an object is completely
dereferenced, meaning the program no longer refers to
the object. A good profiling tool, such as JProfiler
(http://www.ej-
technologies.com/products/jprofiler/overview.html),
can be a great help in identifying code using excessive
amounts of memory. JProfiler is a commercial product;
many open source profilers are listed at http://java-
source.net/; Java SE 6 comes with a great graphical
profiler, jhat.

Another memory-related complaint is that the Java
garbage collector is executing at poorly timed
intervals, causing the application to halt for seconds
while the collector sweeps and cleans. The JVM comes
with several different garbage collectors, which collect
in various ways, and can be selected and fine-tuned
from the command line. Information on the
performance of the chosen collector can be gathered
and analyzed, and Java SE 6 offers many tools for
these tasks, including jps, jstat, jhat, and jstack.

JAVA IS TOO HIGH-LEVEL

This complaint is the age old one of abstraction versus
speed and control. The details of the argument often
include the following statements:

1. Java’s use of classes, objects, and inheritance add
too much overhead without enough coding
benefit;

2. Java’s machine independence means that low-
level, fast operations—such as direct Video RAM
I/O—are impossible.

Statement 1 ignores the obvious benefits of reusing and
extending Java’s very large class library, which
includes high-speed I/O, advanced 2D and 3D
graphics, and an enormous range of networking
techniques, from lowly sockets to distributed agents.
Also forgotten are the advantages of object-oriented
design, typified by UML, which makes complex, large
real-world systems more manageable during
development, implementation, and maintenance.

Statement 2 impacts gaming when we consider high-
speed graphics, but it's been addressed in recent
versions of Java. J2SE 1.4 introduced a full-screen
exclusive mode (FSEM), which suspends the normal
windowing environment, and allows an application to
more directly access the underlying graphics hardware.
It permits techniques such as page flipping, and
provides control over the screen's resolution and image
depth. The principal aim of FSEM is to speed up
graphics-intensive applications, such as games. A lot

of the behind-the-scenes speed improvements in Java
SE 6 are related to graphics rendering using OpenGL
and DirectX.

Statement 2 also comes into play for game peripherals,
such as joysticks and game pads; machine
independence seems to suggest that non-standard I/O
devices won't be useable. Java games requiring these
types of devices can utilize JNI, the Java Native
Interface, to link to C or C++, and therefore to the
hardware. There's also JInput, a very versatile Java-
based game controller API
(https://jinput.dev.java.net/).

An interesting historical observation is that the gaming
community used to think that C and C++ were too
high-level for fast, efficient games programming, when
compared to assembly language. Opinions started to
change only after the obvious success of games written
in C, such as Doom and Dungeon Master, in the mid
1980s. Also important was the appearance of cross-
platform development tools that supported C, such as
Renderware.

JAVA APPLICATION INSTALLATION IS A
NIGHTMARE

The general point made here is that a user needs to be a
Java expert in order to install and execute a Java
application, whereas most game players just want to
point and click on a few dialog boxes to get a game up
and running. More specific comments include:

1. Java (specifically, the JRE) has to be on the
machine before the application will run.

2. Code bloat—even small programs require a 16
MB JRE. Downloading this can be very slow.

3. Frequently changing JVMs make it hard to write
code that will work for every possible version of
Java.

4. Non-standard components are often required (e.g.
Java 3D), causing even more installation
problems.

5. It's not possible to compile the application for a
specific platform.

6. The .jar extension is commonly hijacked by other
software (e.g. by compression programs) at
execution time, meaning that the user can't just
double click on a JAR to get it to start.

7. The JRE is slower to start up compared to a native
compiled application.

All these problems—aside from 2 and 7 perhaps—can
be solved by using good installation software. Java
applets can be delivered via the Web, and the Java SE
6 plug-in for Internet Explorer and Netscape starts very
quickly. Java Web Start (JWS) can be utilized to
download applications, and has been improved

significantly since J2SE 1.4. There's numerous third-
party installers, such as install4j (http://www.ej-
technologies.com/products/install4j/overview.html).

The code bloat comment is increasingly irrelevant,
with many games weighing in at over 100 MB, and
even many graphics and sound card drivers are larger
than 15 MB. Adobe Acrobat requires around 25 MB,
Real Player 13 MB, and .NET 23 MB. Network speeds
are a problem, especially overseas, but broadband
usage is growing rapidly.

Sun Microsystems estimates that around 70% of all
new PC's come with a JRE pre-installed, although a
game installer must still cater for the others.

There's some truth to point 7, but the slow start-up time
is fairly negligible compared to the total running time
of an average game. Also, Java SE 6's splash screen
feature can be employed to 'entertain' the user during
start-up.

JAVA ISN'T SUPPORTED ON GAMES
CONSOLES

Unfortunately, this criticism has some justification.
Video gaming is a multi-billion dollar industry, with
estimates placing revenues at $29 billion by 2007—the
market will cater to over 235 million gamers. PCs and
game consoles account for almost all the income, but
only about 10-20% of it is from PCs, the majority
coming from three consoles: Sony’s PlayStation 2
(PS2), Microsoft’s XBox, and Nintendo’s GameCube.
Sony is the dominant console maker, having nearly
twice as many units in homes compared to Microsoft
and Nintendo combined. Microsoft accounts for about
95% of the desktop PC market. Arguably, there are
only two important games platforms: the PS2 and
Windows—and Java isn't available on the PlayStation.

This problem has long been recognized by Sun: back at
the JavaOne conference in 2001, Sony and Sun
announced their intention to port the JVM to the PS2.
Nothing was ever officially released, although it is
possible to run Java on Sony's version of Linux, but the
OS requires the PS2 to have a hard disk, and only has
limited access to the PS2's other hardware.

The difficulties of this approach should be contrasted
to the availability of feature rich C/C++ tools and
engines for consoles, such as RenderWare
(http://www.renderware.com/) and Gamebryo
(http://www.ndl.com/). They have a track record of
best-selling games, and can port games across the PS2,
Xbox, GameCube, and PCs.

In the future, Java may have a better chance of
acceptance into the closed-world of console makers
because of two trends: consoles are mutating into home
media devices, and the meteoric rise of online gaming.
Both require consoles to offer complex networking and
server support, strong areas for Java and Sun.

The prospects for Java on the PlayStation 3 (PS3) look
fairly bright. Both the basic and premium PS3 versions
will have 512 MB of RAM, a large hard drive, will
support Linux, and use an extended version of
OpenGL. Sony's software development chief, Izumi
Kawanishi, has spoken of making it easier for
individuals to create games on the PS3. Development
kits are expected to appear in Spring 2007.

Applications will be written in a high-level, object-
oriented language, but currently there's no word on
what it'll be. It's likely that a virtual machine will
execute the code, utilizing JIT technology.

The PS3 will include a Blu-ray disc for storing high-
definition video and data. All Blu-ray drives support a
version of Java called BD-J for implementing
interactive menus and other GUIs. Also, Blu-ray's
network connectivity means that BD-J can be utilized
for networking applications such as downloading
subtitles, short movies, and adverts.

The lack of Java on consoles is a serious issue, but the
remaining PC market is far from miniscule. The
Gartner Group believes there are 661 million PC users
in 2006. The number will hit 953 million by the end of
2008, and cross over the billion mark in 2009.

Games on PCs benefit from superior hardware—such
as video cards, RAM, and internet connections—so
can offer more exciting game play. There are many
more PC games, particularly in the area of multiplayer
online games.

Another rapidly expanding market is the one for
mobile games, with sales of $530 million in 2003,
potentially rising to $2.5 billion in 2007. There are
thought to be around 250 million Java-enabled phones
at the moment.

NO ONE USES JAVA TO WRITE REAL GAMES

The word "real" here probably means commercial
games. The number of commercial Java games is small
compared to ones coded in C++ or C, but the number
is growing, and many have garnered awards and
become bestsellers: Tribal Trouble, Puzzle Pirates, Call
of Juarez, Chrome, Titan Attacks, Star Wars Galaxies,
Runescape, Alien Flux, Kingdom of Wars, Law and
Order II, Ultratron, Roboforge, IL-2 Sturmovik,
Galactic Village, and Wurm Online. Many are written
entirely in Java, others employ Java in sub-components
such as game logic.

Java is used widely in the casual gaming market, where
game-play is generally less complex and time-
consuming. Implementation timelines are shorter,
budgets smaller, and the required man-power is within
the reach of small teams. By 2008, industry analysts
believe the casual games market will surpass $2 billion
in the US alone.

There are numerous Java gaming sites, including a
showcase at Sun Microsystems
(http://www.java.com/en/games/), community pages at
http://community.java.net/games/, a collection of open-
source gaming tools at https://games.dev.java.net/, the
Java Games factory (http://javagamesfactory.org/),
works-in-progress at https://games-forge.dev.java.net/,
and many, very helpful forums at
http://www.javagaming.org/.

There are several excellent books on Java games
programming (Brackeen et al. 2003, Clingman et al.
2004, Croft 2004, Davison 2005).

SUN MICROSYSTEMS ISN'T INTERESTED IN
SUPPORTING JAVA GAMING

The games market isn’t a traditional one for Sun, and
it'll probably never have the depth of knowledge of a
Sony or Nintendo. However, the last few years have
demonstrated Sun's increasing commitment to gaming.

J2SE has strengthened its games support through
successive versions: version 1.3 improved its graphics
and audio capabilities, and version 1.4 introduced full
screen mode and page flipping in hardware. Faster I/O,
memory mapping, and support for non-block sockets,
which is especially useful in client/server multiplayer
games, also appeared first in 1.4. Version 5.0 has a
decent nanosecond timer at last. Java extension
libraries, such as Java 3D, the Java Media Framework
(JMF), the Java Communications API, Jini, and JAXP
(Java’s peer-to-peer API) all offer something to games
programmers. Java SE 6 has improved graphics
rendering speeds, and offers new features useful for
gaming, such as splash screens, scripting, and a
desktop API.

Sun started showing an interest in gaming back in
2001, with its announcement of the Java Game Profile,
a collaboration with several other companies, including
Sega and Sony, to develop a Java gaming API. The
profile was perhaps too ambitious, and was abandoned
at the end of 2003. However, it did produce three
game-focused technologies: a Java binding for
OpenGL called JOGL, a binding for OpenAL (a 3D
audio library) called JOAL, and JInput.

Part of the 2001 initiative was the creation of the
JavaGaming.org website (http://www.javagaming.org),
initially manned by volunteers. In 2003, the Game
Technology Group was formed, and JavaGaming.org
received a substantial makeover as part of the creation
of the new java.net portal (http://www.java.net) aimed
at the technical promotion of Java. java.net hosts many
discussion forums, user groups, projects, communities,
and news. The communities include: Java Desktop,
Java Education and Learning, Java Enterprise, and
Java Games.

The Java Games community pages can be accessed
through http://www.javagaming.org or

http://community.java.net/games/. The site includes
Java games forums, projects, news, weblogs, a wiki
(http://wiki.java.net/bin/view/Games/WebHome), and
links to games affiliates.

Numerous Java game forums can be accessed from
http://www.javagaming.org/forums/index.php. These
are probably the best sources of technical advice on
Java gaming on the Web, with over 8500 highly
opinionated registered users. Discussion topics include
Java 3D, Java 2D, Java Sound, J2ME, networking,
online games development, performance tuning,
JOGL, JOAL, and JInput. There are also sections on
projects and code examples.

The project sections (https://games.dev.java.net/)
mostly concentrate on JOGL, JOAL, and JInput, but
the games-middleware and games-forge sections are
wider ranging. The games-forge projects include
Chinese chess, jbantumi (a strategic game from
Africa), and an online fantasy football management
system.

Sun’s substantial presence at
http://community.java.net/games/ is mostly as a host
for community forums and open source projects (or
projects with licenses very close to open source). The
projects include JOGL, JOAL, JInput, and Java 3D.
Sun is relying on community involvement to move
these projects forward, since the Game Technology
Group is quite small (Twilleager et al. 2004).

One in-house product is Sun's Project DarkStar
(http://games-darkstar.dev.java.net), aimed at
developing tools for supporting massive multi-player
online games. The Sun Game Server (SGS) is it's
server-side platform, and there are client APIs for C++,
Java SE, and Java ME

REFERENCES

Brackeen , D., Barker, B., Vanhelswue. L. 2003.
Developing Games in Java, New Riders Games;
August.

Clingman, C., Kendall. S., and Mesdaghi . S. 2004.
Practical Java Game Programming, Charles River
Media, June

Croft, D.W. 2004. Advanced Java Game
Programming, Apress, April.

Davison, A. 2005. Killer Game Programming in Java,
O'Reilly Media, May.

Eckel, B. 2006. Thinking in Java, Prentice Hall, 4th
ed., February

Twilleager, D., Kesselman, J., Goldberg, A., Petersen,
D., Soto, J.C., and Melissinos, C. 2004. "Java
Technologies For Games", ACM Computers in
Entertainment, Vol. 2, No. 2, April.

BIBLIOGRAPHY

ANDREW DAVISON received his Ph.D. from Imperial
College in London in 1989. He was a lecturer at the
University of Melbourne for six years before moving
to Prince of Songkla University in Thailand in 1996.

His research interests include scripting languages,
logic programming, visualization, and teaching
methodologies. This latter topic led to an interest in
teaching games programming in 1999.

His O'Reilly book, Killer Game Programming in Java,
was published in 2005, accompanied by a website at
http://fivedots.coe.psu.ac.th/~ad/jg/.

