
Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

1 Andrew Davison 2011

Chapter B4. An Echoing Client/Server Application Using
BlueCove

In many ways, this chapter is similar to chapter B1, in that it’s about an echo
client/server application using Bluetooth. It deserves it’s own chapter because I’ve
rewritten the code to use the BlueCove implementation of the Java Bluetooth API
(http://bluecove.org/), aimed at JavaSE. This means that the midlet GUI had to be
changed to Swing – a fairly easy task. A more important, and difficult, job was
revamping the device and service discovery code. The standard approach, described
in chapter B1, isn’t robust enough to deal with the radio interference in my test
environment. I made several changes to deal with the very lengthy discovery and
search times, and infrequent connection failures.

I could write at length about the hassles of finding the ‘right’ Bluetooth stack for
Windows XP, but you may be pleased to read that I’ve moved my moaning and
groaning to chapter B3, “Bluetooth Programming Problems”
(http://fivedots.coe.psu.ac.th/~ad/jg/blue3/). In essence, when the Bluetooth
communication protocol is RFCOMM (as here), then you may as well stick with the
Microsoft stack – it’s a lot less hassle than trying to replace it with a more fully-
featured implementation such as the Widcomm/Broadcom stack. I know this because
the server in this chapter is running BlueCove on top of a Widcomm stack, while my
test clients use BlueCove on Microsoft’s own stack.

If pairing is a problem, then the server side of the application should be run on the
Linux BlueZ stack, which can create an 'agent' process to accept pairing requests. The
clients can keep on using the Microsoft (or Widcomm) stack but have to utilize non-
standard extensions to JSR-82 in BlueCove to send pairing requests. I’ll talk more
about this in section 8.

1. Overview of the Client/Server Application

This chapter's example shows how a Bluetooth server processes client connections
and messages. A client searches for Bluetooth devices and services, connects to a
matching server, and sends messages to it. Several clients can connect to the server at
once, with the server using a dedicated thread for each one.

The server is a command line application which spends most of its time waiting for
client connections. Once a connection has been established, the application task is
quite simple: a message sent by the client is echoed back by the server thread,
changed to uppercase. Figure 1 shows the server starting up on the “Andrew” device,
creating a thread to handle a connection from the “oak” client, and processing two
messages.

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

2 Andrew Davison 2011

Figure 1. The BlueCove Echo Server.

The client first sends the message "hello", and receives back "HELLO". Then “today
is Thursday” arrives at the server, and is also changed to uppercase. Figure 2 shows
the client shortly after receiving the second response.

Figure 2. The BlueCove Echo Client.

Figure 3 shows the class diagrams for the server-side of the application. The top-level
server is created by the EchoServer class, and each ThreadedEchoHandler thread
deals with a separate client connection.

Figure 3. Class Diagrams for the Server.

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

3 Andrew Davison 2011

The threaded nature of the application can be seen in Figure 4, which shows three
clients connected to the server.

Figure 4. Client and Server Communication.

The stream connection between a client and handler employs Bluetooth's RFCOMM
protocol.

Figure 5 shows the classes used on the client-side of the application. As with Figure 3,
the public and protected methods are shown.

Figure 5. Class Diagrams for the Client.

EchoClient implements the client, which is quite simple mainly because the hard
work of device and service discovery are handled by the DevicesFinder and
ServiceFinder classes. TimeOutTimer is employed to stop the client waiting forever if
a message is not answered. The RemDevice class is utilized by ServiceFinder to
create a RemoteDevice object, as explained later.

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

4 Andrew Davison 2011

2. The Server
EchoServer starts by make the server's device discoverable, printing out its name and
Bluetooth address. This address can be employed by the client to more directly (and
quickly) connect to the server, as I’ll discuss when I talk about the findOn() search
method in section 6.4.

private void initDevice()
{
 try { // make the server's device discoverable
 LocalDevice local = LocalDevice.getLocalDevice();
 System.out.println("Device name: " + local.getFriendlyName());
 System.out.println("Bluetooth Address: " +
 local.getBluetoothAddress());
 boolean res = local.setDiscoverable(DiscoveryAgent.GIAC);
 System.out.println("Discoverability set: " + res);
 }
 catch (BluetoothStateException e) {
 System.out.println(e);
 System.exit(1);
 }
} // end of initDevice()

A quick look back at Figure 1 reveals that this “Andrew” device has the Bluetooth
address 001F81000250.

The server's device must be discoverable by a client:
 LocalDevice local = LocalDevice.getLocalDevice();
 boolean res = local.setDiscoverable(DiscoveryAgent.GIAC);

The DiscoveryAgent.GIAC (General/Unlimited Inquiry Access Code) constant means
that all remote devices (i.e. all the clients) will be able to find the device.

createRFCOMMConnection() is called to create a RFCOMM connection notifier for
the server, with the given UUID and name. Both parameters are also used by the
client to find the service at search time.

// globals
// UUID and name of the echo service
private static final String UUID_STRING =
 "11111111111111111111111111111111";
 // 32 hex digits which will become a 128 bit ID
private static final String SERVICE_NAME = "echoserver";

private StreamConnectionNotifier server;

private void createRFCOMMConnection()
{
 try {
 System.out.println("Start advertising " + SERVICE_NAME + "...");
 server = (StreamConnectionNotifier) Connector.open(
 "btspp://localhost:" + UUID_STRING +
 ";name=" + SERVICE_NAME + ";authenticate=false");
 }

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

5 Andrew Davison 2011

 catch (IOException e) {
 System.out.println(e);
 System.exit(1);
 }
} // end of createRFCOMMConnection()

The RFCOMM stream connection offered by the server requires a suitably formatted
URL. The basic format is:
 btspp://<hostname>:<UUID>;<parameters>

I use localhost as the hostname. The UUID field is a unique 128-bit identifier
representing the service; I utilize a 32 digit hexadecimal string (each hex digit uses 4
bits).

The URL's parameters are "<name>=<value>" pairs, separated by semicolons.
Typical <name> values are "name" for the service name (used here), and security
parameters such as "authenticate", "authorize", and "encrypt". It’s a good idea to set
the value of the "name" string in lowercase or some stacks won't be able to recognize
the service name at discovery time.

The inclusion of “authenticate=false” in the Bluetooth URL may allow the server to
bypass explicit pairing with the client, but this depends on the types of devices and
stacks being used. In my tests, it did not disable pairing for clients accessing the
server from a laptop or netbook.

2.1. Waiting for a Client
The server enters a while-loop inside processClients() which spawns a
ThreadedEchoHandler thread when a client connects to the server

// globals
private ArrayList<ThreadedEchoHandler> handlers;
private volatile boolean isRunning = false;

private void processClients()
{
 isRunning = true;
 try {
 while (isRunning) {
 System.out.println("Waiting for incoming connection...");
 StreamConnection conn = server.acceptAndOpen();
 // wait for a client connection
 System.out.println("Connection requested...");

 ThreadedEchoHandler hand = new ThreadedEchoHandler(conn);
 // create client handler
 handlers.add(hand);
 hand.start();
 }
 }
 catch (IOException e) {
 System.out.println(e);
 }
} // end of processClients()

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

6 Andrew Davison 2011

The call to acceptAndOpen() makes the server block until a client connection arrives,
and also adds the server's service record to the device's Service Discovery Database
(SDDB). When a client carries out device and service discovery it contacts the
SDDBs of the devices that it's investigating.

When a client connection is made, acceptAndOpen() returns a StreamConnection
object, which is passed to a ThreadedEchoHandler instance so it can deal with the
client communication.

2.2. Closing Down
Since the server doesn’t have a GUI with a close-box, the server constructor utilizes a
shut-down hook to call closeDown() when the server is terminated.

// in EchoServer’s constructor:
Runtime.getRuntime().addShutdownHook(new Thread() {
 public void run()
 { closeDown(); }
});

The server and handler threads are terminated by closeDown().

private void closeDown()
{
 System.out.println("Closing down server");
 if (isRunning) {
 isRunning = false;
 try {
 server.close();
 }
 catch (IOException e)
 { System.out.println(e); }

 // close down all the handlers
 for (ThreadedEchoHandler hand : handlers)
 hand.closeDown();
 handlers.clear();
 }
} // end of closeDown();

The closing of the StreamConnectionNotifier also instructs the SDDB to delete the
server's service record.

The handlers are each terminated by calling their closeDown() method.

3. The Threaded Echo Handler
A handler begins by extracting information about the client from the
StreamConnection instance.

// globals
private StreamConnection conn; // client connection

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

7 Andrew Davison 2011

private String clientName;

public ThreadedEchoHandler(StreamConnection conn)
{
 this.conn = conn;
 // store the name of the connected client
 clientName = reportDeviceName(conn);
 System.out.println(" Handler spawned for client: " + clientName);
} // end of ThreadedEchoHandler()

private String reportDeviceName(StreamConnection conn)
/* Return the 'friendly' name of the device being examined,
 or "device ??" */
{
 String devName;
 try {
 RemoteDevice rd = RemoteDevice.getRemoteDevice(conn);
 devName = rd.getFriendlyName(false);
 }
 catch (IOException e)
 { devName = "device ??"; }
 return devName;
} // end of reportDeviceName()

The information about the remote device (the client in this case) is stored in a
RemoteDevice instance. RemoteDevice includes methods for finding the client's
Bluetooth address, its 'friendly' device name, details about its security settings, and for
verifying those settings.

The handler retrieves the client's device name by calling
RemoteDevice.getFriendlyName():
 devName = dev.getFriendlyName(false);

The false argument stops the handler from obtaining the name by contacting the
client via a new connection. Instead, information present in the RemoteDevice object
(dev) is utilized.

If true is used, it's possible for an IOException to be raised on certain devices,
because the requested connection may take the total number of connections past the
maximum allowed.

3.1. Connecting to the Client
ThreadedEchoHandler's run() method creates input and output streams, and starts
processing the client's messages. When message processing is finished, the streams
and connection are closed down.

// globals
private StreamConnection conn;
private InputStream in;
private OutputStream out;

public void run()
{

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

8 Andrew Davison 2011

 try {
 // Get I/O streams from the stream connection
 in = conn.openInputStream();
 out = conn.openOutputStream();

 processMsgs();

 System.out.println(" Closing " + clientName + " connection");
 if (conn != null) {
 in.close();
 out.close();
 conn.close();
 }
 }
 catch (IOException e)
 { System.out.println(e); }
} // end of run()

An InputStream and OutputStream are extracted from the StreamConnection instance,
and used in processMsgs().

It's possible to map a DataInputStream and DataOutputStream to the
StreamConnection instance, so that basic Java data types (e.g. integers, floats,
doubles, strings) can be read and written. I've used InputStream and OutputStream
because their byte-based read() and write() methods can be easily utilized as 'building
blocks' for implementing different forms of message processing (as shown below).

3.2. Processing Client Messages
The processMsgs() method repeatedly waits for a message to arrive from the client,
converts it to uppercase, and sends it back. If the message is "bye$$", then the client
wants to close the link, so the processing loop exits.

// globals
private volatile boolean isRunning = false;

private void processMsgs()
{
 isRunning = true;
 String line;
 while (isRunning) {
 if((line = readData()) == null)
 isRunning = false;
 else { // there was some input
 System.out.println(" " + clientName + " --> \"" +
 line + "\"");
 if (line.trim().equals("bye$$"))
 isRunning = false;
 else {
 String upper = line.trim().toUpperCase();
 if (isRunning) {
 System.out.println(" " + clientName + " <--- " + upper);
 sendMessage(upper);
 }
 }
 }

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

9 Andrew Davison 2011

 }
} // end of processMsgs()

The messy details of reading a message are hidden inside readData(), which either
returns the message as a string, or null if there's been a problem. A message is
transmitted with sendMessage().

3.3. Reading a Message
When a client sends a message to the handler (e.g. "hello"), it is actually sent as a
stream of bytes prefixed with its length (e.g. "5hello"). The number is encoded in a
single byte, which puts an upper limit on the message's length of 255 characters.

Since a message always begins with its length, readData() can use that value to
constrain the number of bytes it reads from the input stream.

private String readData()
{
 byte[] data = null;
 try {
 int len = in.read(); // get the message length
 if (len <= 0) {
 System.out.println(clientName + ": Message Length Error");
 return null;
 }

 data = new byte[len];
 len = 0;
 // read the message, perhaps requiring several read() calls
 while (len != data.length) {
 int ch = in.read(data, len, data.length - len);
 if (ch == -1) {
 System.out.println(clientName + ": Message Read Error");
 return null;
 }
 len += ch;
 }
 }
 catch (IOException e)
 { System.out.println("readData(): " + e);
 return null;
 }

 return new String(data).trim(); // convert byte[] to String
} // end of readData()

InputStream.read() is called repeatedly until the necessary number of bytes have been
obtained. The bytes are converted into a String, and returned; the message length is
discarded.

3.4. Sending a Message
sendMessage() adds the message's length to the front of a message, and it is sent out
as a sequence of bytes:

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

10 Andrew Davison 2011

private boolean sendMessage(String msg)
{
 try {
 out.write(msg.length());
 out.write(msg.getBytes());
 out.flush();
 return true;
 }
 catch (Exception e)
 { System.out.println(clientName + " sendMessage(): " + e);
 return false;
 }
}

3.5. Closing Down the Handler
The server terminates a handler by calling its closeDown() method, which sets the
isRunning boolean to false to make processMsgs() finish.

public void closeDown()
{ isRunning = false; }

4. How a Client Finds the Server
Before invoking a client object, the main() function of EchoClient.java creates an
instance of ServiceFinder to carry out devices and services searches. If a suitable
service record is found, only then is the client instantiated.

// globals: UUID and name of the echo service
private static final String UUID_STRING =
 "11111111111111111111111111111111";
 // 32 hex digit string (will become 128 bit ID)
private static final String SERVICE_NAME = "echoserver”;

public static void main(String args[])
// for EchoClient.java
{
 ServiceFinder srvFinder =
 new ServiceFinder(ServiceFinder.RFCOMM,
 UUID_STRING, SERVICE_NAME);
 ServiceRecord sr = srvFinder.find();
 if (sr != null)
 new EchoClient(sr);
} // end of main()

The required service is identified by its communication protocol (RFCOMM), its
UUID, and service name, which are passed to the ServiceFinder constructor before its
find() method is called.

The search will usually take many seconds, so progress reports are printed to standard
output, as shown in Figure 6.

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

11 Andrew Davison 2011

Figure 6. Search Output at Client Start.

The ServiceFinder constructor can be called without a UUID string for the server:
ServiceFinder srvFinder =
 new ServiceFinder(ServiceFinder.RFCOMM, SERVICE_NAME);

This will typically increase the search time since more matching services will be
passed back to the client for processing.

The ServiceFinder class encapsulates the most complex aspects of writing a Bluetooth
application – having a client discover devices, and then search each of those devices
for relevant services. The next section explains device discovery, while section 6
considers services search.

5. Device Discovery
Figure 7 shows the key stages in the discovery of devices:

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

12 Andrew Davison 2011

Figure 7. Devices Discovery State Diagram.

The state diagram includes three methods that are utilized in devices search:
DiscoveryAgent.startInquiry(), DiscoveryListener.deviceDiscovered(), and
DiscoveryListener.inquiryCompleted(). The latter two are implemented by the
application, as explained below.

Figure 7 finishes by outputting a list of devices (actually an array of RemoteDevice
objects), which is passed to the services search described in section 6.

The DevicesFinder constructor creates a discovery agent, then starts the devices
search by calling DiscoveryAgent.startInquiry():

// globals
private HashMap<String,RemoteDevice> devicesMap = null;
 // stores the remote devices found during the device search

private final Object inquiryCompletedEvent = new Object();
 // used to block execution until startInquiry() finishes

public DevicesFinder()
{
 devicesMap = new HashMap<String,RemoteDevice>();
 System.out.println("Starting service search...");
 try {
 // get the discovery agent, by asking the local device
 LocalDevice local = LocalDevice.getLocalDevice();
 System.out.println("This device's name: " +
 local.getFriendlyName());
 agent = local.getDiscoveryAgent();

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

13 Andrew Davison 2011

 System.out.println("\Checking for previous devices...");
 initDevices(DiscoveryAgent.CACHED);
 initDevices(DiscoveryAgent.PREKNOWN);

 boolean hasStarted =
 agent.startInquiry(DiscoveryAgent.GIAC, this); //non-blocking
 if (!hasStarted)
 System.out.println("Device inquiry failed to start");
 else {
 System.out.println("Waiting for inquiry to complete...");
 synchronized(inquiryCompletedEvent){
 inquiryCompletedEvent.wait();
 }
 }
 }
 catch (Exception e) {
 System.out.println(e);
 }
} // end of DevicesFinder()

devicesMap is used during the search to hold device name and RemoteDevice
information pairs.

The tricky aspect of device discovery is that DiscoveryAgent.startInquiry() is non-
blocking, which means that my code must make itself wait until the search has
finished. Also, the second argument of startInquiry() is a reference to the
DiscoveryListener (this object) whose deviceDiscovered() and inquiryCompleted()
methods must be implemented. The search communicates its progress by repeatedly
calling deviceDiscovered() as new devices are found, and signals that it has finished
by executing inquiryCompleted() (as shown in Figure 7).

After DiscoveryAgent.startInquiry() is started, the DevicesFinder() blocks itself by
waiting on a ‘wake-up’ signal for the inquiryCompletedEvent object, which is
eventually transmitted by my inquiryCompleted() method:

public void inquiryCompleted(int inqType)
// device search has finished
{
 showInquiryCode(inqType);
 synchronized(inquiryCompletedEvent){
 inquiryCompletedEvent.notifyAll(); // wake-up signal
 }
} // end of inquiryCompleted()

The DevicesFinder constructor also calls initDevices() to load any cached and
preknown RemoteDevice information into devicesMap before embarking on a new
devices search:
initDevices(DiscoveryAgent.CACHED);
initDevices(DiscoveryAgent.PREKNOWN);

Cached devices are remote devices discovered in earlier searches, while preknown
devices are those known to be frequently contacted. Many stacks don't support the
storage of preknown device information.

private void initDevices(int devType)

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

14 Andrew Davison 2011

// load previous devices into the devices map
{
 RemoteDevice[] oldDevices = agent.retrieveDevices(devType);
 if (oldDevices == null)
 return;
 String devName;
 for (RemoteDevice dev : oldDevices) {
 devName = DevicesFinder.getDeviceName(dev);
 if (devicesMap.get(devName) == null) {
 System.out.println("Found old device info for: " + devName);
 devicesMap.put(devName, dev);
 }
 }
} // end of initDevices()

Using cached information may avoid the need for a devices search, but unfortunately
it's impossible to quickly determine which cached devices are relevant to the present
search. Also, there's no indication of whether a cache is up-to-date.

5.1. Finding a Device
The search initiated by the DiscoveryAgent.startInquiry() calls deviceDiscovered()
each time a device is found. My implementation examines the device's details, and
only adds PCs or phones to devicesMap.

public void deviceDiscovered(RemoteDevice dev, DeviceClass cod)
/* A matching device was found during the device search.
 Only store it if it's a PC or phone. */
{
 String devName = DevicesFinder.getDeviceName(dev);
 System.out.println("Found device: " + devName);

 int majorDC = cod.getMajorDeviceClass();
 int minorDC = cod.getMinorDeviceClass(); // not used in the code

 // restrict matching device to PC or Phone
 if ((majorDC != 0x0100) && (majorDC != 0x0200)) {
 System.out.println("Device not PC or phone, so rejected");
 return;
 }

 if (devicesMap.get(devName) != null)
 System.out.println(" - updating existing info");
 devicesMap.put(devName, dev);
} // end of deviceDiscovered()

It's a good idea to do as much device 'filtering' as possible at this stage, to keep
devicesMap small. This will speed up the subsequent services search since fewer
devices will need to be contacted.

deviceDiscovered()'s two arguments are RemoteDevice and DeviceClass objects.

A RemoteDevice instance maintains some useful filtering information, such as the
remote device's name. Most device filtering is done by examining the device's
DeviceClass object, which represents a Bluetooth Class of Device (CoD) record. A

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

15 Andrew Davison 2011

CoD record contains the device's major class ID, minor class ID, and service classes
type. DeviceClass offers getMajorDeviceClass(), getMinorDeviceClass(), and
getServiceClasses() for accessing these details.

A complete list of the CoD classifications can be found at Bluetooth.org, at
https://www.bluetooth.org/foundry/assignnumb/document/baseband.

The major device classification is a broad functional category, such as 'computer',
'phone', or 'imaging device'. My version of deviceDiscovered() only stores a device if
it is a computer or phone.

A device may belong to several minor device classifications, so it's necessary to use a
bit mask to check if the device is in a particular category. For example:

int majorDC = cod.getMajorDeviceClass();
int minorDC = cod.getMinorDeviceClass();

// check if the device is a printer
if (majorDC == 0x600) // device is an imaging device
 if (minorDC & 0x80) // device is a printer
 System.out.println("Device is a printer");

A device may offer multiple services, such as networking, rendering, capture, and
audio, so bit masks are required again:

int serviceClass = cod.getServiceClasses();
if (serviceClass & 0x20000) != 0)
 System.out.println("Device supports networking");
if (serviceClass & 0x40000) != 0)
 System.out.println("Device supports rendering");

5.2. The End of the Devices Search
When no more devices can be found, the system calls inquiryCompleted().

public void inquiryCompleted(int inqType)
// device search has finished
{
 showInquiryCode(inqType);
 synchronized(inquiryCompletedEvent){
 inquiryCompletedEvent.notifyAll(); // wake-up signal
 }
} // end of inquiryCompleted()

private void showInquiryCode(int inqCode)
{
 if(inqCode == INQUIRY_COMPLETED)
 System.out.println("Device Search Completed");
 else if(inqCode == INQUIRY_TERMINATED)
 System.out.println("Device Search Terminated");
 else if(inqCode == INQUIRY_ERROR)
 System.out.println("Device Search Error");
 else
 System.out.println("Unknown Device Search Status: " + inqCode);

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

16 Andrew Davison 2011

} // end of showResponseCode()

inquiryCompleted() is passed an inquiry completion integer, indicating how the
search terminated. Normal termination is represented by
DiscoveryListener.INQUIRY_COMPLETED.

The subsequent service search only needs a list of RemoteDevices, not a map, and so
DevicesFinder includes getDevicesList() for converting the devicesMap to an array:

public RemoteDevice[] getDevicesList()
{ return devicesMap.values().toArray(
 new RemoteDevice[devicesMap.size()]);
}

5.3. Making the Devices Search Faster
The devices search may take over 10 seconds to complete, which is too long for many
applications. One way of reducing this time is to cut short the search as soon as a
suitable device has been found.

The search can be terminated by calling cancelInquiry():
 agent.cancelInquiry(this);

this refers to the object implementing the DiscoveryListener interface, which is
DevicesFinder in this example.

There will be no further calls to deviceDiscovered(), and the inquiryCompleted()
argument will be DiscoveryListener.INQUIRY_TERMINATED.

6. Services Search
The ServiceFinder constructors stores parameters employed in later searches, and
initializes data structures and the search agent.

// globals
private Vector<ServiceRecord> servicesVec;
private javax.bluetooth.UUID[] uuids;
private int[] attrSet;
private String serviceStr; // (partial) name of service
private DiscoveryAgent agent;

public ServiceFinder(long protocolUUID, String UUIDStr,
 String serviceStr)
{
 this.serviceStr = serviceStr;
 uuids = setUUIDs(protocolUUID, UUIDStr);

 attrSet = new int[1];
 attrSet[0] = 0x0100; // service name attribute

 servicesVec = new Vector<ServiceRecord>();
 try {
 // get the discovery agent, by asking the local device

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

17 Andrew Davison 2011

 LocalDevice local = LocalDevice.getLocalDevice();
 agent = local.getDiscoveryAgent();
 }
 catch (Exception e) {
 System.out.println(e);
 }
} // end of ServiceFinder()

The constructor’s three input arguments are the Bluetooth protocol (e.g. RFCOMM),
the UUID of the service, and its name (or partial name) stored in serviceStr. The
service UUID is optional, which makes the creation of ServiceFinder easier since
there’s no need to enter a 32 digit hex string, but it also makes the search more time-
consuming. More service records will be returned to the client, which all need to be
examined.

The search criteria are specified in two arrays: uuids[] and attrSet[]. uuids[] stores the
UUIDs for the protocol and service (if it isn’t null), and is initialized by setUUIDs():

private javax.bluetooth.UUID[] setUUIDs(long protocolUUID,
 String UUIDStr)
{ javax.bluetooth.UUID[] uuids;
 if (UUIDStr != null)
 uuids = new javax.bluetooth.UUID[2];
 else
 uuids = new javax.bluetooth.UUID[1];

 // add the UUIDs for the protocol and service
 uuids[0] = new javax.bluetooth.UUID(protocolUUID);
 if (UUIDStr != null)
 uuids[1] = new javax.bluetooth.UUID(UUIDStr, false);
 return uuids;
} // end of setUUIDs()

attrSet[] lists any non-standard attributes that should be included in the retrieved
service records. In this case, I want the service's name to be added:
attrSet = new int[1];
attrSet[0] = 0x0100; // service name attribute

Hex values for the many possible UUIDs and attributes are listed at
https://www.bluetooth.org/foundry/assignnumb/document/service_discovery.

6.1. The Heart of the Search
As I’ll explain shortly, ServiceFinder supports two search methods, find() and
findOn(), which utilize private support methods. The most important of these is
findServicesOnDevice() which collects all the services on a specified remote device
matching the service criteria set in the constructor.

The main stages of findServicesOnDevice() are shown in Figure 8.

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

18 Andrew Davison 2011

Figure 8. State Diagram for findServicesOnDevice().

The state diagram includes three methods that are utilized in services search:
DiscoveryAgent.searchServices(), DiscoveryListener.servicesDiscovered(), and
DiscoveryListener.serviceSearchCompleted(). The latter two must be implemented by
the application. searchServices() initiates a non-blocking services search on a given
remote device, which means that my code must make itself wait until the search has
finished.

The system communicates its progress by repeatedly calling servicesDiscovered() as
new service records are found, and signals that the search is over by executing
serviceSearchCompleted() (as shown in Figure 8).

A major difference in my code from most implementations of service search is a
‘retry’ mechanism in findServicesOnDevice(). In my tests, a service search would
often fail to find a service the first time it examined a remote device. For that reason,
findServicesOnDevice() can repeat the examination at most MAX_TRIES times
before giving up.

The code for findServicesOnDevice():

// globals
private static final int MAX_TRIES = 4;
 // no of times to try calling searchServices()

private Vector<ServiceRecord> servicesVec;
private javax.bluetooth.UUID[] uuids;
private int[] attrSet;

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

19 Andrew Davison 2011

private DiscoveryAgent agent;

private String devName = null; // name of device being examined
private boolean searchSucceeded;
private final Object serviceSearchCompletedEvent = new Object();
 // used to block execution until searchServices() finishes

private void findServicesOnDevice(RemoteDevice dev)
/* collect all the services on the remote device, dev, that
 match the service specified in the constructor;
 store matches in the servicesVec
*/
{
 devName = DevicesFinder.getDeviceName(dev);
 servicesVec.clear(); // empty Vector before searching

 searchSucceeded = false;
 int numTries = 0;
 while((numTries < MAX_TRIES) && !searchSucceeded) {
 System.out.println("Finding services for device (try " +
 (numTries+1) + "/" + MAX_TRIES + "): " + devName);
 try {
 int searchID = agent.searchServices(attrSet, uuids, dev, this);
 // non-blocking
 // bluecove restriction: searches are executed sequentially
 if (searchID < 1)
 System.out.println("Service search failed to start");
 else {
 System.out.println("Waiting for search to complete...");
 synchronized(serviceSearchCompletedEvent) {
 serviceSearchCompletedEvent.wait(); // time to wait
 }
 }
 }
 catch (BluetoothStateException e) {
 System.out.println("Bluetooth state problem: " + e);
 try {
 System.out.println("Wait before retrying...");
 Thread.sleep(1000); // 1 sec
 }
 catch(InterruptedException ie) {}
 }
 catch (Exception e) // real error so give up on loop
 { System.out.println(e);
 return; // due to failure
 }
 numTries++;
 }
} // end of findServicesOnDevice()

The call to DiscoveryAgent.searchServices() includes the UUIDs and attribute criteria
arrays created in the ServiceFinder() constructor. The fourth argument is a reference
to the DiscoveryListener (this object) whose servicesDiscovered() and
serviceSearchCompleted() methods must be implemented here.

After DiscoveryAgent.searchServices() is started, findServicesOnDevice() blocks
itself by waiting on a ‘wake-up’ signal for the serviceSearchCompletedEvent object.
This is transmitted by my implementation of serviceSearchCompleted():

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

20 Andrew Davison 2011

public void serviceSearchCompleted(int searchID, int respCode)
// Called when the service search has finished
{
 showResponseCode(respCode);
 synchronized (serviceSearchCompletedEvent) {
 serviceSearchCompletedEvent.notifyAll();
 // wake up findServicesOnDevice()
 }
} // end of serviceSearchCompleted()

servicesDiscovered() is called whenever a matching service record is found on the
device. The information is added to servicesVec.

public void servicesDiscovered(int transID,
 ServiceRecord[] servRecords)
{
 if ((servRecords != null) && (servRecords.length > 0)) {
 System.out.println("Services found for " + devName + ":");
 for (ServiceRecord sr : servRecords) {
 if (sr == null)
 System.out.println(" null service");
 else {
 System.out.println(" \"" +
 ServiceFinder.getServiceName(sr) +"\"");
 servicesVec.add(sr);
 }
 }
 }
} // end of servicesDiscovered()

6.2. Concurrent Services Searches
Since DiscoveryAgent.searchServices() is non-blocking, it is possible to write a
concurrent version of findServicesOnDevice() which can search multiple remote
devices at the same time. That's the theory at least, but the reality is less exciting.

Most devices and stacks (including BlueCove) don't support concurrent services
searches. Attempts to make concurrent calls to searchServices() will either block or
fail.

A device's support for concurrent services searches can be discovered by examining
its "bluetooth.sd.trans.max" property:

int maxConServiceSearches = Integer.parseInt(
 LocalDevice.getProperty("bluetooth.sd.trans.max"));

The value will be 1 on most devices.

Another reason for avoiding concurrent searches is that their coding makes it tricky to
implement search termination.

6.3. Using findServicesOnDevice() in find()
A user doesn't carry out searches by directly calling findServicesOnDevice(), instead
find() or findOn() are utilized. find() uses DevicesFinder to obtain a list of all

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

21 Andrew Davison 2011

discoverable remote devices, and then searches each in turn for a matching service.
The first service record that matches all the search criteria is returned to the user, and
no further searching is performed. This strategy is a simple way of speeding up the
services search stage, and makes sense for this application since the client only
communicates with a single server.

find() is summarized graphically in Figure 9.

Figure 9. Using the find() Method..

The code for find():

public ServiceRecord find()
{
 // find all remote devices
 DevicesFinder devFinder = new DevicesFinder();
 RemoteDevice[] devList = devFinder.getDevicesList();
 System.out.println();
 if ((devList == null) || (devList.length == 0)) {
 System.out.println("No devices found");
 return null;
 }

 // check each device's services in turn
 ServiceRecord sr;
 for (RemoteDevice dev : devList) {
 findServicesOnDevice(dev); // find matching service recs in dev
 if ((sr = lookupServRecName(serviceStr)) != null) {
 // does one of the service rec names match serviceStr?
 return sr;
 }
 }
 return null;
} // end of find()

lookupServRecName() utilizes the service name supplied to the ServiceFinder()
constructor (serviceStr), to search through the list of service records (servicesVec)
retrieved from the current remote device.

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

22 Andrew Davison 2011

// global
private Vector<ServiceRecord> servicesVec;

private ServiceRecord lookupServRecName(String servStr)
// return the first service record whose name contains servStr
{
 if ((servicesVec == null) || (servicesVec.size() == 0)) {
 System.out.println("No services found for device "+devName+"\n");
 return null;
 }

 String servName;
 for (ServiceRecord sr : servicesVec) {
 servName = ServiceFinder.getServiceName(sr);
 if ((servName != null) &&
 (servName.contains(servStr))) {
 System.out.println("Device/service " + devName +
 "/\"" + servName + "\" matches " + servStr);
 return sr;
 }
 }
 System.out.println("No service found for device " + devName +
 " that matches " + servStr + "\n");
 return null;
} // end of lookupServRecName()

6.4. Using findServicesOnDevice() in findOn()
A drawback of find() is the potentially very time-consuming device search at its start.
One simple way to speed this up is to supply the address of the required device so
device discovery can be bypassed. This is shown in Figure 10.

Figure 10. Using the findOn() Method..

The code for findOn():

public ServiceRecord findOn(String btAddress)

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

23 Andrew Davison 2011

{
 // look at remote device at the specified BT address
 RemoteDevice dev = new RemDevice(btAddress);
 System.out.println("Contacting device at BT address " + btAddress);

 findServicesOnDevice(dev); // find matching service recs in dev
 // return service rec whose name matches serviceStr (or null)
 return lookupServRecName(serviceStr);
} // end of findOn()

The RemDevice class overrides RemoteDevice so it can instantiate an object with a
Bluetooth address (the constructor in RemoteDevice is protected):

public class RemDevice extends RemoteDevice
{
 public RemDevice(String btAddress)
 { super(btAddress); }
}

A findOn() call is supplied with a Bluetooth address, such as:
ServiceRecord sr = srvFinder.findOn("001F81000250");

This value for the server's Bluetooth address comes from the output when EchoServer
first starts (see Figure 1).

7. The Client
The GUI part of EchoClient consists of a text field for entering a message, and a
second text field for the server's response (see Figure 2 for an illustration).

The networking part of the client is started by makeContact():

// global
private StreamConnection conn; // for the server
private InputStream in; // stream from server
private OutputStream out; // stream to server

private boolean isClosed = true;
 // is the connection to the server closed?

private void makeContact(ServiceRecord servRecord)
{
 // get a URL for the service
 String servURL = servRecord.getConnectionURL(
 ServiceRecord.NOAUTHENTICATE_NOENCRYPT, false);
 if (servURL == null) {
 System.out.println("No service available");
 return;
 }

 System.out.println("\nConnecting to service " + servURL + " .");
 try {
 // connect to the server, and extract IO streams
 conn = (StreamConnection) Connector.open(servURL);

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

24 Andrew Davison 2011

 out = conn.openOutputStream();
 in = conn.openInputStream();

 System.out.println("Opened I/O streams to service");
 isClosed = false; // i.e. the connection is open
 }
 catch (Exception ex)
 { System.out.println(ex);
 System.exit(1);
 }
} // end of makeContact()

makeContact() gets its service record from the find() (or findOn()) service search
carried out before the creation of the EchoClient object.

The first argument of ServiceRecord.getConnectionURL() specifies the level of
security for the connection; I've opted for no security. The second argument relates to
the master-slave communications protocol at the Bluetooth level, and should usually
be set to false.

Once the connection URL has been extracted from the service record, a stream
connection is obtained with Connector.open(), and an InputStream and OutputStream
are layered on top of it.

I use InputStream and OutputStream for the same reason as in the server – additional
message passing functionality is easily implemented with read() and write().

7.1. Sending a Message
A message is sent out using echoMessage(), which waits for an response.

// global
private TimeOutTimer timer;
 // used to prevent infinite blocking of message reply waiting

private String echoMessage(String msg)
{
 if (isClosed) {
 System.out.println("No Connection to Server");
 System.exit(1);
 }

 if ((msg == null) || (msg.trim().equals("")))
 return "??"; // empty message
 else {
 if (sendMessage(msg)) { // message sent ok
 timer.startTimer(TIME_OUT);
 String response = readData();
 // wait for response for up to TIME_OUT ms
 timer.stopTimer();

 if (response == null) {
 System.out.println("Server Terminated Link");
 System.exit(1);
 }
 else // there was a response
 return response;

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

25 Andrew Davison 2011

 }
 else { // unable to send message
 System.out.println("Connection Lost");
 System.exit(1);
 }
 }
 return null;
} // end of echoMessage()

The readData() and sendMessage() methods employed in echoMessage() are the same
as the ones used in ThreadedEchoHandler.

A serious problem with echoMessage() is its waiting for a reply. In my tests,
messages were occasionally lost, which prevents readData() from returning an
answer, thereby blocking echoMessage() and the client indefinitely.

I fixed the problem by adding a reply time-out with the help of a TimeOutTimer
object.

TimeOutTimer timer = new TimeOutTimer():
 :
timer.startTimer(TIME_OUT);
String response = readData();
 // wait for response for up to TIME_OUT ms
timer.stopTimer();

TimeOutTimer.startTime() starts a separate thread which causes the client to exit if
the specified time limit is exceeded. TimeOutTimer is based on code from the article
"Handling Network Timeouts in Java"
(http://www.javacoffeebreak.com/articles/network_timeouts/).

7.2. Closing Down
closeDown() sends a "bye$$" message to the server, then closes the connection.

public void closeDown()
{
 if (!isClosed) {
 sendMessage("bye$$"); // tell server that client is leaving
 try {
 if (conn != null) {
 in.close();
 out.close();
 conn.close();
 }
 }
 catch (IOException e)
 { System.out.println(e); }
 isClosed = true;
 }
} // end of closeDown();

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

26 Andrew Davison 2011

8. The Problems of Pairing
I talk about pairing problems in Chapter B3, "Bluetooth Programming Problems"
(http://fivedots.coe.psu.ac.th/~ad/jg/blue3/), but I'll briefly recap the issues here, and
describe some BlueCove-related solutions.

A device’s services typically expose it to change by its clients, so those clients must
pass some security checks beforehand. These checks begin with pairing, which is
triggered when a device receives a connection request from an unknown client. The
client sends a PIN number (also called a passkey), which is checked on the server-
side. If the number is correct then the service is made available.

Pairing adds some problems to the client/server programming model used in my Echo
application. The user must enter a PIN on the client-side, and the server must check it.
Pairing is a security feature, so is handled by the Host Controller Interface (HCI).
Unfortunately, JSR-82 doesn't have a programming interface to HCI, so there's no
way to automate these two tasks from within Java code.

This isn't too bad for the client because the device only displays a dialog box, which
most users can deal with (if they can remember the PIN number). The problems are
more serious on the server since a dialog box appears there whenever a client wants to
connect. This means that a fully automated server application cannot be written in
JSR-82 because a person is needed to respond to the dialog boxes.

There are solutions in BlueCove, but they employ non-standard features and JSR-82
extensions. On the client-side, BlueCove offers a RemoteDeviceHelper.authenticate()
method for sending a PIN number to a server, so the user isn't bothered by a dialog
box. This can be done inside a modified version of makeContact():

// global
private static final String PASS_KEY = "1234";

private void makeContact(ServiceRecord servRecord)
// modified to carry out pairing
{
 // get a URL for the service
 String servURL = servRecord.getConnectionURL(
 ServiceRecord.NOAUTHENTICATE_NOENCRYPT, false);
 if (servURL == null) {
 System.out.println("No service available");
 return;
 }

 System.out.println("\nConnecting to service " + servURL + " .");
 try {
 // client-side pairing code
 RemoteDevice dev = servRecord.getHostDevice();
 boolean authRes = RemoteDeviceHelper.authenticate(dev, PASS_KEY);
 System.out.println("Pairing response: " + authRes);

 // connect to the server, and extract IO streams
 conn = (StreamConnection) Connector.open(servURL);
 out = conn.openOutputStream();
 in = conn.openInputStream();

 System.out.println("Openned I/O streams to service");
 isClosed = false; // i.e. the connection is open

Java Prog. Techniques for Games. Chapter B4. BlueCove Echo Draft #1 (28th February 2011)

27 Andrew Davison 2011

 }
 catch (Exception ex)
 { System.out.println(ex);
 System.exit(1);
 }
} // end of makeContact()

On the server-side, it's necessary to use the BlueZ stack on Linux.

In BlueZ version 3, it was possible to set a passkey in the /etc/bluetooth/hcid.conf
configuration file (e.g. see
http://www.developershome.com/sms/gnokiiExamples.asp).

This feature was removed in BlueZ version 4, being considered a security risk (see
https://bugs.launchpad.net/ubuntu/+source/bluez-utils/+bug/365779). Now you need
to use "simple-agent" (a Python script), which is in the /test directory of the BlueZ
source (for more details see the post by gattschardo in
https://bbs.archlinux.org/viewtopic.php?pid=505425). There's also a C version in
test/agent.c.

A reasonable summary of ways to do BlueZ server-side pairing can be found in the
"Pair" section of the Bluetooth openmoko wiki
(http://wiki.openmoko.org/wiki/Manually_using_Bluetooth#Pair).

9. More Information
The BlueCove website (http://bluecove.org/) is a great source of information on such
matters as which stacks to use on different platforms, installation details,
programming examples, a wiki
(http://code.google.com/p/bluecove/wiki/Documentation), and Java documentation
for BlueCove's implementation of JSR-82 (http://bluecove.org/bluecove/apidocs/).
Another very useful resource is the bluecove-users forum at
http://groups.google.com/group/bluecove-users

There are many other development kits for Java and Bluetooth – see the list at
http://www.javabluetooth.com/development_kits.html. General Bluetooth information
can be found at https://www.bluetooth.org/ and http://www.bluetooth.com.

