
 1 (c) Andrew Davison 2011

Bluetooth Programming Problems
Andrew Davison, 17th February 2011, ad@fivedots.coe.psu.ac.th

Over the last few weeks I’ve been coding using the Java API for Bluetooth (variously
known as JSR-82 or JABWT), encountering problems that make Bluetooth coding a
time-consuming, irritating, and disappointing experience. Some of the issues are due
to my use of Java, some to my choice of Windows XP, but most are inherent in
Bluetooth's specification. I’ll describe these issues under the broad headings of
multiplicity, broadcasting, device and service discovery, and pairing.

Bluetooth initially seemed like a good match for my programming goals – a chat
application for ad-hoc groups. The first version would only support text messages, but
I wanted to add more complex media (e.g. graphics, audio, video) later.

Bluetooth offers plenty of advantages for this kind of software, including letting
devices communicate directly, without the need for Internet infrastructure. Bluetooth
utilizes short-range radio, usually over the 10m range, without requiring line-of-sight
contact. The protocol consumes a small amount of power (ideal for mobile devices),
and is supported by many platforms.

That's the good news, now it's time to turn to the problems.

Multiplicity (of Stacks, Protocols, Profiles, and Versions)
A Bluetooth stack consists of multiple protocols and profiles; some mandatory but
most optional, which allows different vendors' Bluetooth stacks to vary quite
considerably. From a developer's point-of-view, the most important Bluetooth
transport protocols are RFCOMM and L2CAP, which roughly correspond to stream-
based TCP and packet-based UDP in the networking world. L2CAP is a mandatory
protocol, which should make it's presence a safe bet on every manufacturer's stack.
This isn't the case though: Microsoft XP's Bluetooth stack only offers RFCOMM
(although L2CAP is employed in RFCOMM's implementation). It's the 'optional'
RFCOMM protocol that's present on every stack, and Microsoft's decision makes
L2CAP a poor communications choice for software portability.

It’s possible to replace Microsoft's default stack by a more fully-featured one (e.g. the
Widcomm/Broadcom stack), but the process is tricky, and Widcomm isn't free. There
are many more stacks to choose from apart from Microsoft and Widcomm, including
CSR, Toshiba, and BlueSoleil, each offering a different mix of protocols and profiles.
Thankfully, the situation on Linux and the Mac is much simpler – BlueZ is the official
stack for Linux, and part of the kernel (http://www.bluez.org/), while Mac OS X also
comes with an integrated stack

Bluetooth's many protocols are mostly built on top of L2CAP or RFCOMM. For
instance: AVDTP (Audio/Video Distribution Transport Protocol), the Telephony
control protocol, TCP/IP/UDP, and OBEX (Object Exchange Protocol).
Unfortunately, of these, JSR-82 implementations may offer only OBEX, but even
that’s optional. This lack was a deliberate decision, the hope being that the gap would
be filled by third-party developers, which hasn't happened. In practice, a Java
programmer is limited to RFCOMM if he wants his software to stand a good chance
of working across different devices.

Bluetooth Programming Problems

 2 (c) Andrew Davison 2011

Let's not forget the other 'p' word – profiles. Bluetooth profiles support higher level
tasks implemented on top of transport protocols, such as headset connectivity, file
transfer, music management, and printer use. None of these are part of JSR-82, which
offers four core profiles, the important ones being SPP, allowing RFCOMM to be
treated as a serial port link, and SDAP for service discovery (which I’ll talk about
later).

The richness of Bluetooth – its many protocols and profiles – is out of reach to a Java
programmer. The obvious response is to look for a Bluetooth API in another
language, such as Python or C, ignoring that JSR-82 is the most widely supported API
across devices. Possibilities include the Wireless Communication Library
(http://www.btframework.com/bt.htm) and 32feet.NET
(http://inthehand.com/content/32feet.aspx), but neither is much different from JSR-82,
although 32feet.NET can utilize several OBEX-based profiles as an add-on library.

The most serious omission from JSR-82, in programming terms, is support for the
Host Controller Interface (HCI) protocol. HCI specifies how the device (the host)
interacts with the Bluetooth adapter/dongle (the controller). This interaction includes
pairing, when two devices form a communications link, which I'll talk about below.

HCI is represented in the JSR-82 world by the BCC (the Bluetooth Control Center),
which doesn’t have an API. This isn't entirely JSR-82's fault, since most Bluetooth
stacks don't offer a programming interface for the underlying HCI either. One
important exception is Linux's BlueZ stack.

Aside from multiple stacks, and lack of profiles and protocols, there's the issue of
Bluetooth versions. Bluetooth has been around since the mid 1990's, with the first
decent version (v1.1) appearing in the early 2000's. Since then, we've had v1.2 (2004),
v2.0 + EDR (2005), v2.1 + EDR (2007), v3.0 + HS (2009), and v4.0 (2010), which
have improved data transfer rates, simplified device discovery and pairing, and added
new protocols. But there's a problem: JSR-82 is based on v1.1, and hasn't been
updated as the specification has evolved. Useful features like faster device discovery
and simple pairing are unavailable to Java programmers.

Even if JSR-82 had kept up with the Bluetooth specification, adapter and dongle
makers have not. For instance, most low-cost Bluetooth dongles offer v2.0 + EDR,
which predates the simplified pairing in v2.1, which would be of great use to
programmers. Notably, Bluetooth versioning impacts Microsoft Windows: Windows
XP SP 2 and SP3 releases natively support Bluetooth 1.1, 2.0, and 2.0+EDR, while
Windows Vista SP2 and Windows 7 offer Bluetooth 2.1+EDR

Broadcasting
Bluetooth is frequently promoted as suitable for peer-to-peer networks, since a
Bluetooth device can be both a server and a client. This wasn't emphasized in the
early days of the specification, when Bluetooth was seen more as a cable replacement
for battery devices.

In fact, Bluetooth inter-device communication programming (after the discovery
phase) is very similar to socket programming over a network. Bluetooth has no API-
level support for dual client/server functionality. It you want a device to be both, then
you'll need to write code to do it, using socket-like programming techniques. Bearing
this in mind, it's not surprising that virtually every Bluetooth coding example is based

Bluetooth Programming Problems

 3 (c) Andrew Davison 2011

on the simpler client/server model. One of the network's device's becomes the
designated server which client devices contact. Client-to-client communication is
implemented by utilizing the server as a central store or clearinghouse for messages.
To say that Bluetooth is a peer-to-peer communication framework is similar to
arguing that sockets are a P2P mechanism, a misleading notion at best.

There's no scalable way in Bluetooth for a device to broadcast to other devices in a
network There is a protocol for the master of a piconet to broadcast a message to all
its slaves using L2CAP packets, but a piconet can only contain at most eight devices.
There's also no way for a device to broadcast its presence to other devices, for
example when a new service wants to announce itself to all the local devices.

Broadcasting is a part of Bluetooth, but only during device discovery.

Device Discovery
A device that wants to look for (i.e. discover) other devices must pass through three
stages: inquiry, selection, and paging. The device starts by broadcasting requests for
local device information over a 10-100m radius. The communication hops through
multiple frequency channels to make these messages harder to intercept, and to avoid
radio congestion. A typical Bluetooth device changes channels every 625
microseconds (1600 times per second).

Bluetooth v1.2, and later, utilize adaptive frequency hopping, which allow devices to
avoid channels with high interference (e.g., one that overlaps a nearby 802.11
network).

Listening devices, that are ready to be contacted, will also hop through the channels in
the hope of receiving an inquiry. Unfortunately, as long as a listener is tuned into a
different channel, then devices will never meet. This has been likened to the whack-a-
mole game, and is why two devices, only inches apart, may take a very long time to
detect each other.

According to the specification (http://www.bluetooth.com/), this inquiring stage may
take 10.24 seconds or more (with 10.24 being an optimistic estimate in practice).
Discovery times can lengthen depending on the amount of radio interference. Possible
sources are other Bluetooth devices, WiFi (which uses the same part of the radio
spectrum, the 2.4 GHz frequency band), microwaves, and even human bodies
(because of their water content). Interference becomes more likely if WiFi and
Bluetooth devices are close together, as they are in mobile devices. It's worth pointing
out that most urban environments where users might consider using Bluetooth to
create ad hoc chatting groups (my application domain, if you recall) are full of such
noisy sources (e.g. office cubicles and coffee shops).

In a noisy environment, there’s no guarantee that an inquiry will succeed even if both
devices happen upon the same frequency at the same time, since packets transmitted
at that time may be corrupted.

One of Bluetooth’s advantages is it's ability to adjust its radio power usage. If two
devices are very close together (within a few feet) then the Bluetooth signal can be
sent at low power, and be less likely to suffer from interference.

All discoverable devices within a 10-100 meter broadcast range may respond to a
device inquiry, thereby generating a very extensive device names list back on the

Bluetooth Programming Problems

 4 (c) Andrew Davison 2011

client. The selection stage typically involves the user in a manual browse of the list,
adding further seconds to the discovery process. However, JSR-82 allows this to be
automated, e.g. by having code search through the list for a suitable choice.

The third discovery stage is paging, where a communication link between the devices
is established. The whack-a-mole game continues: the client device repeatedly sends
out connection request messages as it channel hops through a sequence based on the
chosen server’s address and estimated clock time. The server will also be hopping,
waiting for a connection request. The Bluetooth specification claims that paging may
take 7.68 seconds or longer. When a connection is established, the client and server
will start hopping in unison.

Based on the Bluetooth specification's time estimates, the discovery phase can take
about 20 seconds at best. This will seem like an eternity to a user, and the actual wait
time may be much longer. In my own tests, in a radio-noisy computer lab, device
discovery only became approximately reliable when performed inside a loop that
repeated the discovery search if it failed. A single failed search often took 40 seconds
to complete, resulting in perhaps a wait of 100 seconds or more before a device was
successfully located! Incredibly, the device in question was often less than a meter
away from the searching client.

Lengthy discovery time can be an application-killer when the devices are moving. The
discovery time may exceed the time when the two devices are in range of one another,
effectively making them unable to communicate.

JSR-82 tries to improve matters by having two types of predefined devices: pre-
known and cached. Pre-known devices are those that communicate frequently with
the device, but it's not possible to install a list of these programmatically, since it
requires access to the HCI. Cached device names are stored as a byproduct of
previous inquiries.

Service Discovery
Twenty seconds have passed (if we're very lucky), and the devices are now connected,
but discovery isn't over yet. The client must now select a service on the server by
choosing a service channel identifier. In socket programming terms, the server address
has been determined, but not a port number. Unfortunately, services channel IDs are
assigned dynamically by Bluetooth, and so there's no reliable way to have a client
contact a service directly. Instead the client must communicate with a Service
Discovery Protocol (SDP) service on the server, in order to lookup the desired
channel ID.

Faster Discovery?
Are there ways to speed up discovery? One pleasing solution is to ditch the entire
device discovery mechanism, replacing it with infrared (IrDa): now the user brings his
device into close proximity with the server to perform a fast, direct infrared link.

More recently, Bruce Hopkins has suggested a similar idea using JSR-257, the
Contactless Communication API. JSR-257 relies upon device-to-device Near-Field
Communication (NFC) to create a direct link, employing smart cards, RFIDs, or
barcodes (http://java.sun.com/developer/technicalArticles/javame/nfc_bluetooth/). He

Bluetooth Programming Problems

 5 (c) Andrew Davison 2011

reported impressive speed-ups – a reduction in running time of his test application
from 90 to 11 seconds.

A drawback with Hopkin's approach is that JSR-257 and NFC aren't present on many
devices as yet. There's an easy-ish solution, which is to implement your own version,
using a webcam and barcode libraries. I'll explain how to do this in a later chapter.

Direct device linkage is an excellent way of avoiding 20+ second device discovery,
and the Bluetooth designers have responded. Version 2.1 features Near Field Pairing
which automatically pairs two devices when they are held close together, the problem
being that most devices don't support v2.1.

Near Field Pairing doesn’t impact service discovery, which still requires a SDP
service on the server. Since a service's channel ID is assigned dynamically at run time,
there’s no reliable way to store its value ahead of time inside a smart card, barcode or
RFID chip.

Pairing
A device’s services typically expose it to change by its clients, so those clients must
pass some security checks beforehand. These checks begin with pairing, which is
triggered when a device receives a connection request from an unknown client. The
client sends a PIN number (also called a passkey), which is checked on the server-
side. If the number is correct then the service is made available. After pairing is
completed, Bluetooth may carry out additional security measures, including
authentication, encryption, and authorization.

Pairing adds some problems to the client/server programming model. The user must
enter a PIN on the client-side, and the server must check it. Pairing is a security
feature, so is handled by the HCI. As I mentioned earlier, JSR-82 doesn't have a
programming interface to HCI, so there's no way to automate these two tasks from
within Java.

This isn't too bad for the client because the device only displays a dialog box, which
most users can deal with (if they can remember the PIN number). The problems are
more serious on the server since a dialog box appears there whenever a client wants to
connect. This means that a fully automated server application cannot be written in
JSR-82 because a person is needed to respond to the dialog boxes.

There are solutions, but they employ non-standard features offered by some stacks
and JSR-82 extensions. On the client-side, the BlueCove implementation of JSR-82
(http://bluecove.org/) offers a RemoteDeviceHelper.authenticate() method for sending
a PIN number to a server, so the user isn't bothered by a dialog box. On the server-
side, it's necessary to use the BlueZ stack on Linux which can create an 'agent' process
to accept all pairing requests. It's also possible in the Widcomm stack to configure the
server to accept predefined clients without requesting a PIN number.

These problems are a little less severe in Bluetooth v2.1. It introduced Simple Pairing,
which lets the client device generate a PIN rather than requiring the user to type one.
Depending on the device type, a dialog box may not appear at all.

Bluetooth Programming Problems

 6 (c) Andrew Davison 2011

Summary and Recommendations
Programming client/server applications in Bluetooth is a tricky process due to the
wide variety of stacks, protocols, profiles, and versions. Bluetooth suffers from long
discovery times, which become worse in the presence of radio interference (which is
common). JSR-82's lack of access to the HCI makes it impossible to write a server
application which can be fully automated.

The solution isn't to ditch JSR-82, which still offers the best chance of writing
portable Bluetooth code. Instead, it's necessary to make a careful choice of stacks and
protocol. The server side should utilize BlueZ on Linux (http://www.bluez.org/) so it's
HCI agent capabilities can automate the server's part of the pairing process. The
communication protocol should be RFCOMM, to maximize the choice of client-side
stacks. My client coding is aimed at laptops and netbooks, which makes the BlueCove
implementation of JSR-82 a good choice (http://bluecove.org/), and it includes
extensions for performing automatic pairing from the client-side.

The treacle-like speeds of Bluetooth device discovery can be replaced by direct device
discovery using the client's Webcam to read a barcode attached to the side of the
server device. Admittedly, it's a bit low-rent, but works across multiple platforms,
until JSR-257 and NFC become more commonplace.

