Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

Appendix 1. Installation using install4j

This chapter uses install4j (http://www.ej-technologies.com/products/install4;/
overview.html), a cross-platform tool for creating native installers for Java
applications. install4j supports Windows, UNIX, Linux, and the Mac OS, although I'll
only be creating installers for Windows. This is mainly to keep things simple, and
because I only have regular access to Windows machines.

Any kind souls who have written example install4j installers for other platforms
should contact me, and I'll include a link to their work in a future version of this
appendix.

I'll develop installers for two examples from the book: BugRunner and Checkers3D.
BugRunner comes from chapter 6 on 2D sprites; it uses the standard parts of J2SE
and the J3DTimer class from Java 3D. Checkers3D, from chapter 8, is our first Java
3D example.

install4j can create an installer which includes a JRE, either as part of the .exe file or
downloaded automatically from install4j's Web site when the installer first runs.
However, I'll assume that Java is already installed.

It is altogether more tricky to create an installer for an application that requires parts
of Java 3D, an extension which isn't included with J2SE or JRE.

The installers will be built with an evaluation copy of install4j Enterprise Edition
v.2.0.7. It's fully functional, but adds several "this is not a registered copy" messages
to the installation sequence.

Before starting, it's worthwhile to briefly compare install4j and Java Web Start (JWS),
the subject of Appendix 2.

install4j creates a standalone installer for an application, which can be delivered to the
user either on a CD or downloaded via a Web page link. A great advantage is the
familiarity of the installation concept: double click on the .exe file, press a few "yes"
buttons, and the application appears as a menu item and a desktop icon. The fact that
the executable is coded in Java is irrelevant.

JWS is a network solution, which offers better protection from potentially renegade
downloads, and supports application updates. JWS is typically utilized via the Java
Web Start client that comes as part of the J2SE installation. The reliance on a network
model seems overly restrictive, especially when applications are large. The possibility
of being queried about security levels and updates is quite off-putting to novice
computer users.

1. The Java 3D Components

In order to get BugRunner and Checkers3D to compile and run, we will need to
include relevant bits from Java 3D with the applications. On Windows, the core
elements of the OpenGL version of Java 3D consists of four JAR files and three

1 © Andrew Davison 2004

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

DLLs. The JAR files are j3dcore.jar, j3daudio.jar, vecmath.jar, and j3dutils.jar in
<JRE_DIR>\lib\ext\. The DLLs are J3D.dll, j3daudio.dll, and J3DUtils.dll in
<JRE_DIR>\bin\. <JRE DIR> is the directory holding the JRE, typically C:\Program
Files\Java\j2re1.4.2 02\.

If the Java 3D development kit is installed, the files will also be found below the J2SE
home directory, which is usually C:\j2sdk1.4.2 02.

The OS level libraries will vary if the DirectX version of Java 3D is used, or the
platform is Linux or the MacOS. The easiest way of finding out Java 3D's
composition on your machine is to look through the Java 3D readme file, which is
added to the J2SE home directory at installation time.

The BugRunner application only uses the J3DTimer, so which of the JAR and DLL
files are required?

The J3DTimer class is part of the com.sun.j3d.utils.timer package, which is stored in
j3dutils.jar (this can be confirmed by looking inside the JAR with a tool such as
WinZip), as shown in Figure 1.

ﬁi._"l‘u'-’milp [Ewaluation Yersion] - |3dulils. jar

Eile Actions Dpbion: Help
w9 CEv @D
Open Favontes Add Extract Wiew CheckOu “Wizaed

Name ‘%, | Type | Size | Ratio| Packed| Path -]

,!l IndexedT iangleF ardurayState. class CLASS Fie el 0% 1808 com\sun’\j3dwiilshscenagaphhiohstz

il IndesedT iangleStnpdiaus Labe. class CLASS Fie 1814 0 1614 com\guri3dhutls soeneg aphiioste

[58] InberpalstorState. clacs CLASS Fie 1.8 0% 1.9 comhsunii3dwtis\scenegraphiohste

__J B Intersact class CLASS Fie moE 0 134 combsumi3dhwtishbehaiorsimcking'

JJBd_va:F'amm class CLASE Fie 9483 0% 9538 combsuniyddiloaders\ie3dy

JJB‘DTm‘ﬁH class CLASS File #8000 450 comhsumhididudis timer

!]d SI]TIrne-r daxs CLASS Fie &S {14 E7S comsuntg3d\wubls \timer =

(3] J2dUtsi 18N class CLASS File &4 0% 874 comhsuni3dhinternal

!JHIWSIrearﬁ class CLASE Fie 2083 0% 20053 comdsunhddwitis\scenegaphiichet

EIJE'JEI ulputStrean. clacs CLASS Fie 2045 0% 2045 combsum\3dwbls\cenegraphiiohet

@JHNnFla‘neﬂ.m CLASS Fie 2 0% 2 comsumii3dutishapplets

| JidainFrame. class CLASS Fie B84 0% 6842 comhsumiiddiutishapplet,

!] EBCubicSplineCisve class CLASE Fie 1873 0% 1873 comhsunij3dhwtishbehaviors\imtepal.

!] FEBCubicSplineSegment clazs CLASE Fie 8428 0% 8428 com\sunh3dhutls\behaviors\antepol.

[m] EBK epFrame class CLASS File 242 0% 2742 comaumhjadwtishbehaviors\intepal.

_!] KBRolPosScaleSplinePathinterpolatoe class CLASS File 4,800 oz 4800 com'sunt3dwibls\behaviors\interpol.

ﬂ FERoIPosScaleSplineFathlmepolatoaita, CLASS Fie 3a0e 0% 3902 wn\lsm‘ﬂd‘d.ﬂﬂwwanh\in'ﬁﬂ
Selected 0 files. O bytes Total 370 files, 1236KB PI

Figure 1. A WinZip View of j3dutils.jar

The J3DTimer class (and its inner class) account for about 1K out of the 1.2MB JAR!.

2 © Andrew Davison 2004

Java Prog. Techniques for Games. Appendix 1: install4j

Draft #1 (14th June 04)

A look at the decompiled J3DTimer class, using software such as the DJ Java
decompiler (http://members.fortunecity.com/neshkov/dj.html), shows that it's a very
thin layer of Java over calls to J3DUtils.dll (see Figure 2).

|_""FJHI.'I Tamer_jad - DJ Java Decompiles
Be ER Jewch Yww Selfng: Lenguage ook Hep 00000
DEEG > L WA F | [Coumeticn | -
:‘* i i i i i i i i i i i
T [1 1 [1 1 1 ' 1 T
| P
public static long getWalae()
: 0]
return gecNativeTimner{);
I
i
public ztatic leng getResclutiond)
; L i
return getNativeTizsrResoluticamil ; &
: i
privace zeatic native leng getNativeTime:z(): '
privacs ILacic native leng getNaciveTimerReseluciers() D}
sTaris
{ 2
AccwgssController. doPrivileged{new Privilegedicoionm|) m
public Object rued}
{
Systen. LoadLibrary (= JZIcils"];
return mall;
] p—
Bhi -

4] ¥
peivate J20 Timer] [} =l
pblic slatic long getValuel) [=
o Bk ol ki Lo b el il L

[Line: 30 Cot 59 | Modfied Mumbxk:ON [Copzhock OFF [insest OFF 5

Figure 2. The DJ Java Decompiler View of J3DTimer.

For example, the Java method getValue() calls the J3DUtils.dll function

getNativeTimer().

A decompiler isn't really needed at this stage, since the source code for the Java 3D

classes is available for download.

© Andrew Davison 2004

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

J3DUtils.dll can be examined with HT Editor, a file editor/viewer/analyzer for
Windows executables, available from http://hte.sourceforge.net/index.html (Figure 3).

Y2 ht 0.8.0prel

EEERY

File Edit Hindowsz Help Analyzer

wiBAa1 883
wiBAa18a87
U1 881 B8R ptr [KERHEL3Z.d1ll:QueryPerformanceCounter]

U1 e B8 20 [data_1BB@ER3IA]

viBAa1813 [data_ 1PBBEE34]

viBgBa1a19 u 14 Bax

viBBa181h and dx

Ui1Baaa1a1d cmp i

Ui BRB1828 Jjnz loc_100@1036

viAaal 22 push

viBae1824 puzh

viBAa1ia26 £ exp__Java_com_sun_jId_utils_timer_JIDTimer_getHativeTime
U1RAAE1HZ b [data_18BB8A38]. 4

11 AAR1 A3 [data_10BRBA34) . edx

Haaa i 51%] ddddaadadddaddasaaddaddaddddadddaddaaasdadadaaaddaaaaad
| fEave Hlopen 4 Hgot Lo d ficeas Lisy

Figure 3. The HT Editor View of J3DUftils.dll

o 5y

getNativeTimer() uses the Windows kernel32.dll functions
QueryPerformanceCounter() and QueryPerformanceFrequency().

In summary, the calls to J3DTimer requires j3dutils.jar and J3DUtils.dll.

It may be worthwhile splitting off the timer code from j3dutils.jar into its own JAR,
thereby saving about 1.2 Mb. The technique involves un-JARing j3dutils.jar using
WinZip or similar. The result is two folders: com/ and meta-inf/. com/ holds the
various classes in j3dutils, which can be deleted aside from the two timer classes in
com/sun/j3d/utils/timer/. Meta-inf/ holds a manifest file, Manifest.mf, which should
be pulled out of the directory and used in the reJARing:

Jar cvmf Manifest.mf j3dutils.jar com
The size of the slimmed down j3dutils.jar is 2K.

The real drawback with this technique may be a legal one, since a Sun-created JAR is
being dismembered. The status of Java 3D is about to change: at Java One at the end
of this month (June 2004), Java 3D will be made open source, with some provisos,
which may make it okay to release modifications.

In the rest of this appendix, we'll use the full version of j3dutils.jar.

4 © Andrew Davison 2004

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)
2. The BugRunner Application

The BugRunner code is unchanged from the example in chapter 6, aside from the
addition of one new method in the BugRunner class, which is explained below.

2.1. Preparing the JARs

Java 3D is not installed on the test machine, instead j3dutils.jar and J3DUtils.dll are
placed in the BugRunner directory (as shown in figure 4).

& BugHunne: | =[O x]

| B E® Yiew Go Favoies | Hep [|
€« =2 Ml d W @i=f

i Badk | Fo Up | Co Copy FPase | Undo i

|ﬁdﬁm|_‘_| C:\WIND DS ADraeskiophnatallation T e\ BisgRiene j

_-I_Imag-es ij Euﬁu‘ml.}dvﬂ E chats

_;I Sourds (M) Chplrfo class | 7] maiCinzs bt

!I BalSpine. class ij Chpirfa java Em&calabal

|:J BalSpite. va) Chpsloads class | Mulinlo clsss

!I BalSpite clazs ij Chpiloads prva _i‘j Ml o s

_'_J‘J BalSpote java _El:m'pdeﬂﬁ.bat | Miksloader class

!I BumgParetil clacs !I Inagasl andar class _i‘; Mkl cader s

| BugPansli? class 1] Imnsgacl cnder javs E Tl o bt

] BugPanel class L I S P | W) Seundsnisteter class

2] BunParel javs [imagpecPiaper janea [%) Soundsw st java

=] BugFiunres bat 3] ImagecPlamin’steher clacs W] Sprite. class

M| BusgFiurew: clats [%] ImagesPlaeitetstchor v [Spite javs

|38] BugRrune jat | 300

1% object(s] 11.58t| =) My Computer 7

Figure 4. The BugRunner Directory.

Since Java 3D isn't installed in a standard location checked by javac and java, the
calls to the compiler and JVM must include additional classpath information.

The compileBR.bat batch file contains:

javac -classpath "$CLASSPATH%;j3dutils.jar" *.java

The BugRunner.bat batch file contains:
Java -cp "S$CLASSPATHS%;j3dutils.jar" BugRunner

There's no need to mention J3DUtils.dll, which will be found by the JAR so long as
it's in the same directory.

Once the program has been fully tested, the classes and all other application resources
must be packaged up as JARs prior to being passed to install4;.

The BugRunner application consists of various classes, and the two subdirectories
Images/ and Sounds/. These should be thrown together into a single BugRunner.jar
file, along with any DLLs. The makelJar.bat batch file contains the line:

jar cvmf mainClass.txt BugRunner.jar *.class *.dll Images Sounds

The manifest details in mainClass.txt are:

Main-Class: BugRunner
Class-Path: j3dutils.jar

5 © Andrew Davison 2004

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

The manifest specifies the class location of main(), and adds j3dutils.jar to the
classpath used when the BugRunner.jar is executed. We assume it's in the same
directory as BugRunner jar.

The DLL is stored in the JAR because the installation is easier if install4j only has to
deal with JARs. However, after the installation .exe file has been downloaded to the
user's machine, the DLL must be removed from BugRunner.jar, and written to the
new BugRunner directory.

This copying from the JAR to the local directory is achieved by the BugRunner class.
main() in BugRunner calls a new installDLL() method.

public static void main(String argsl(])

{
// DLLs used by Java 3D J3DTimer extension
installDLL("J3DUtils.d1l1l");

long period = (long) 1000.0/DEFAULT FPS;
new BugRunner (period*1000000L) ; // ms —-> nanosecs

private static void installDLL(String dllFnm)
/* Installation of the DLL to the local directory
from the JAR file containing BugRunner. */
{
File £ = new File(dllFnm);
if (f.exists())
System.out.println(dllFnm + " already installed");
else {
System.out.println("Installing " + dllFnm);
// access the DLL inside this JAR
InputStream in = ClassLoader.getSystemResourceAsStream(dllFnm) ;
if (in == null) {
System.out.println(dllFnm + " not found");
System.exit (1) ;
}
try { // write the DLL to a file
FileOutputStream out = new FileOutputStream(dllFnm) ;

// allocate a buffer for reading entry data.

byte[] buffer = new byte[1024];

int bytesRead;

while ((bytesRead = in.read(buffer)) != -1)
out.write (buffer, 0, bytesRead);

in.close();
out.flush ()
out.close();

}

catch (IOException e)

{ System.out.println("Problems installing " + dllFnm); }

}
} // end of installDLL ()

installDLL() will be called every time that BugRunner is executed, and so installDLL
() first checks whether the DLL is already present in the local directory. If not, it is

6 © Andrew Davison 2004

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

installed by being written out to a file. The stream from the DLL file inside the JAR is
created with:

InputStream in = ClassLoader.getSystemResourceAsStream (dllFnm) ;

This works since the DLL is in the same JAR as BugRunner, and so the class loader
for BugRunner can find it. Figure 5 illustrates the technique.

BugRutmer directory
ofuser's machine

T,
""H-\.____‘_'_,_,.,-»-"'
.,; call ingtalDLL()

copied

BugRurmer jar

Figure 5. Installing a DLL Locally.

The result is that the BugRunner application installed on the user's machine will
consist of two JARs, BugRunner.jar and j3dutils.jar. After the first execution of
BugRunner, they will be joined by J3DUtils.dll.

The best testing environment is to move the two JARs to a different machine, one that
doesn't have Java 3D installed (but J2SE or JRE must be present). Double click on
BugRunner jar, and the game should begin. The J3DUltils.dll will magically appear in
the same directory.

Alternatively, the application can be tested with:

java -jar BugRunner.jar

Executing this in a command window, will allow stdout and stderr messages to be
seen on screen, which can be useful for testing and debugging.

We could stop at this point, since the game is nicely wrapped up inside two JARs.
However, an installer will allow a professional veneer to be added, including
installation screens, splash windows, desktop and menu icons, and an uninstaller.
These are essential elements for most users.

2.2. Creating the BugRunner Installer

This is not a book about install4j, so I'll only consider the more important points in
creating the BugRunner installer. install4j has an extensive help facility, and links to a
tutorial at its Web site (http://www.ej-technologies.com/products/install4;j/
overview.html). A good way of understanding things is to browse through the various
screens of the BugRunner installation script, bugRun.install4j.

7 © Andrew Davison 2004

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

A crucial step is to define the distribution tree, the placement of files and directories
in the BugRunner directory created on the user's machine at install time. Our
approach is to include a Executables/ subdirectory to hold the two JAR files. The
directory structure is shown in Figure 6.

" inglaldj E nlesprize Edition [bugRun]

Project Steps Bulld Fles Help
] * Ty
NEE @ 220 ©
7| choose distributed files ‘ ’
General settings I thig sbep, you cobect 8 Fies and drectories you would e bo distribube in your
ks Fibers, koo elvin ared droapy by v enitries in the: defindtion tres,
Il:-::
Flas Outin ol dettasmuee; | SO | Ottt | | Wes | R
[T Trestststion drectory
o | e] Exeeutables
| | ': File C{WINDOWS Deskiop] Irst alation Tests\BugRunnerijddutis. jar (overwrite: shway
Launychars | | L '] Fil CYWINDOWSI Dechiop Iret sl stion Test:\BugRunneriBugRtunnes . jar (ovenwrite: al
| File CWINDCWS| Deskbop Instalation Tests)Uninstall Codecustom. jar {overvribe: sk
—
GUIE Irestader
|
i §)
Media LEl]
e —] Gl
_"ﬁ [=]| | Defines dhstribastion tree [weow resdts |
| Urregistered evabuation vwersion] [5% 1 i

Figure 6. Distribution Tree for the BugRunner Installer.

A moments examination of Figure 6 will reveal three JARs inside Executables:
BugRunner jar, j3dutils.jar, and custom.jar. custom.jar contains Java code deployed
by the uninstaller, which is explained below.

8 © Andrew Davison 2004

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

BugRunner jar is not called directly, but via a .exe file, which is set up on the
"Configure executable" screen during the "Launchers" stage (Figure 7).

" Modify launcher

1. Select type Configure executable
Z. Executable info
Advanced options: Execubables
- Redrection i,
Executable type:
. Service options ¥pe: (@ GUL appiication
+ ‘Windoves varsion info () Console application
+ Menu integration C) Servi
3, Teon :
4. Java invocabion Executable name: |BugRunner (mithow
5. Splagh soreen Directory: Executables |__ _|
6. Finished [] abow onky a single running instance of the application
Change working directory to:
| (relati
| w Advanced options |
| @rep || 4 Bak || nNest » || Foish |

Figure 7. Configuring the BugRunner Executable.

The executable's name is BugRunner.exe, and will be placed in the Executables/
directory along with the JARs.

It is quite important to set the working directory to be ".", so that the JAR will search
for resource in the correct place.

Under the "Advanced Options" button it is possible to redirect stdout and stderr into
log files. This is generally a good idea for testing and debugging.

9 © Andrew Davison 2004

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

The .exe file must be told which JAR file holds the main() method for the application,
and which JARs are involved in the application's execution. This is done through the
"Configure Java Invocation" screen shown in Figure 8.

= Madify launches
L. Select type Configure Java invocation
2. Expcutsbis nfo
3, [oon Gerer sl
4, Java invocation : : i
Adwarend sptiona: Main class: Eraghumnnes [
= Plakhve Bbraries VM Paramsbers: |
= Prefemed ¥M Begumenks: |
$. Bplach saresn [#] Allow Wi passthrough parameters (e.g. -J-moESem)
&, Pinished
Chass path
(3 peckive Exenutables|Eughunnes jor IE
(@ Archive Exnoutablasifdutls. e =
|
| &
| w Advarced options
| @noe | | oo || mew p || mnsh | Conce |

Figure 8. Configuring the Java Invocation.

Figure 8 shows that custom.jar (holding the uninstaller code) is not part of the
application, since it isn't included in the "Class path" list.

10 © Andrew Davison 2004

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

The "GUI Installer" stage shown in Figure 9 allows the customization of various
stages of the installation, such as the welcome screen, tasks to be done before
installation, tasks after installation, and the finishing phase. The screen on the right of
Figure 9 is for the installer actions which, rather confusing, also contain uninstallation
actions.

':_ installdj Enterpaise Edftion [bugRun]

Froject Steps Build Help
£ 1 B A5 [
DUE 2 @20 @
@ Configure the GUI installer ‘ "
‘Ganaral petlngs Inithis stap you can configure and oustomize the GUT instaler that vl instal your
apphc ation. Plagse robe that some madis sste da pok support 8 GUT inskallar
=
g
Instaler screems:
Filex = T
) Wakoeme .:‘l}:l et
[3 Liotruse agresment X This i5 & system songen, Bt s not moveabds and canrot
[&0 Iretalstion lcstion Eeir chtbestind,
Launchers [&) Program group This soreen is mandsbory, Bt cannot be deabled.
[& Services
it 4 Eafors and after the actissl inctallstion, & oxbom Sdiion
Ea e can be enecubed, If wour oustom scbons make changes |
i O G Pre-natal infarmation Ehat musst be uningbaled, you can use the uninstal custom | |
B 43 frstaliotion| it '
E' O] & Past- rfor] Pra-inatal sction:
o Finithed -
Pocsteirestiall action:
Meadia =
- = o] e —
__-Lg. 3 | Post-uaninatal action:
Basld
Cuskom code
i file with classes for oushom sermans snd cusbom actiores: [C:{WINDOWS\Deshtoplinat] ... |
i —
o || irotster scroens [Gulloptons |
—

Figure 9. The Installer/Uninstaller Actions for the GUI Installer.

Perhaps the best advantage of using install4; is its close links to Java, most evident in
the way that the installation (and uninstallation) process can be customized. install4;
offers a Java API for implementing many tasks, and the install4j distribution comes
with an example installer that uses the API's capabilities.

The pre-uninstall action is to call the DLLUninstallAction class in custom.jar

2.3. Uninstallation

The default install4j uninstaller will happily delete the JARs that it added to the
Executables/ directory, and all the other files and directories it created at installation
time. However, the installer didn't add J3DUTtils.dll to Executables/; that task was
carried out by the BugRunner class when it first ran.

install4j knows nothing about J3DUtils.dll, and so will not delete it, or the sub-
directory which holds it. The outcome is that a basic BugRunner uninstaller will not
remove the BugRunner/Executables/ directory or the J3DUtils.dll file inside it.

The solution is to define a pre-uninstall operation that removes the DLL, so the main
uninstaller is able to delete everything else.

11 © Andrew Davison 2004

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

custom.jar contains the DLLUninstallAction class, which extends install4j's
UninstallAction class. UninstallAction offers two abstract methods:

public abstract boolean performAction (Context context,
ProgressInterface pi);
public abstract int getPercentOfTotallInstallation();

The uninstallation task (i.e. deleting the DLL) should be placed inside performAction
(). User messages can be sent to the uninstallation screen via the Progressinterface
object. performAction() should return true if the task is successful, false to abort the
uninstallation process.

getPercentOfTotallnstallation() sets the amount of the progress slider assigned to the
task. The number should be between 0 and 100.

performAction() obtains a list of the DLLs in the Executables/ directory, then deletes
each one. This approach is more flexible than just hardwiring "J3DUtils.dll" into the
code, and means that the same DLLUninstallAction class can be employed with the
Checkers3D installer.

private static final String PATH = "../Executables";
// location of the DLLs relative to <PROG_DIR>/.install4j

public boolean performAction (Context context,
ProgressInterface progReport)
// called by install4j to do uninstallation tasks
{
File delDir = new File (PATH) ;

FilenameFilter dllFilter = new FilenameFilter () ({
public boolean accept(File dir, String name)
{ return name.endsWith ("d1l1l"); }

}s

String[] fNms = delDir.list(dllFilter); // list of dl1 filenames
if (fNms.length == 0)
System.out.println("Uninstallation: No DLLs found");
else
deleteDLLs (fNms, progReport);
return true;
} // end of performAction ()

12 © Andrew Davison 2004

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

The tricky aspect of the code is the use of PATH. The uninstaller is executed in the
.install4j/ directory which is at the same level as Executables/. Both of them are
located in the BugRunner/ directory installed on the user's machine (see Figure 10.)

=10} %]

& Executables M= B

o I'-' | o i = : g_?_j); =
| fAgdvess |) C:\Puc) | Hack Ernennd T [
[mstaldj]I -ﬁ-ﬂd'ml_i C:A\Prageam Files\BugRurne\E xecutables ﬂ

lT.J Exfacubahles 8% BugRunner exe
5 urinstall e & .EI e
E’I cusdonm. jal

18] erree.log

%] JA0UkEs.di

E) jdutils jar

=) outputleg

Figure 10. The Installed BugRunner Directories.

The PATH string redirects the File object to refer to Executables/. A list of filenames
ending in ".dIl" is collected by using a FileFilter anonymous class, and the list is

passed to deleteDLLs().

private void deleteDLLs (String[] fNms, ProgressInterface progReport)
// delete each DLL file, and report the progress

{
progReport.setStatusMessage ("Deleting installed DLLs");

int numFiles = fNms.length;
String msg;
for (int 1=0; i < numFiles; 1i++) {
msg = new String("" + (i+1) + "/" 4+ numFiles + ": " +
fNms[i] + "... ");

deleteFile (fNms[i], progReport, msqg);
progReport.setPercentCompleted(((i+1)*100)/numFiles);

try {
Thread.sleep (500) ; // 0.5 sec to see something

}

catch (InterruptedException e) {}

deleteDLLs() loops through the filenames, calling deleteFile() for each one. The
ProgressInterface object informs the user of the progress of the deletions. deleteFile()
creates a File object for the named file, then calls delete().

The DLLUninstallAction class must be compiled with the install4j API classes added
to the classpath:

13 © Andrew Davison 2004

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

javac -classpath "$CLASSPATH%;d:\install4j\resource\id4jruntime.jar"
DLLUninstallAction.java

The creation of the JAR file is standard:

jar cvf custom.jar *.class

2.4. The BugRunner Installer

The resulting installer, called BR 1.0.exe, takes a few seconds to generate, and is
about 1.4 Mb large; the size drops to 950 Kb if the timer-specific version of
j3dutils.jar is employed. A version bundled with JRE 1.4.2 comes in at 12 Mb.

3. Checkers3D

The Checkers3D code is unchanged from the example in chapter 8, aside from the
addition of the installDLL() method in the Checkers3D class.

3.1. Preparing the JARs

Java 3D is not installed on the test machine, instead all of its JARs and DLLs (seven
files) are copied to the Checkers3D directory (see Figure 11).

= Checkers3D
| File Edt View Go Favoiles Help
© L9 W) ¥
Back Foanyend Up Cut
| Address [€ \WINDOWS Desktopnstalation Tests\C 7] |
/JimairClass. b 3] Checkeloor java
E_rwﬂai.bat 3] WiapCheckers3D. class
5] Checkers2D bat 1#)wWiapCheckers3D java
=1 compileChik bat 2] J 2D Utilsdl
5] makel ar bal 2]J30.dl
_!l ColouredTiles.class E Checkers3D.jar
3] ColouredTiles. java %] j3daudio.d
5] custom jar] vecmath s
gﬂmwdﬂﬁmchu §h3mumm
3] Checkers3D.java £ j3daudio.jar
|8 CheckeFloor.class] i2dooejar
22 abject(s) B MyCar

Figure 11. The Checkers3D Application Directory.

Since Java 3D isn't installed in the a standard location, the calls to the compiler and
JVM must include additional classpath information.

"%CLASSPATHS; vecmath.jar; j3daudio.jar;
j3dcore.jar;j3dutils.jar" *.java

javac -classpat

14 © Andrew Davison 2004

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

jJava -cp "S$CLASSPATHS%;vecmath.jar;j3daudio.jar;
j3dcore.jar;j3dutils.jar" Checkers3D

There's no need to mention the three DLLs (J3D.dll, j3daudio.dll, and J3DUtils.dll),
which will be found by the JARs so long as they're in the same directory.

The Checkers3D classes should be collected into a single Checkers3D.jar file, along
with all the DLLs:

jar cvmf mainClass.txt Checkers3D.jar *.class *.dll

The manifest information in mainClass.txt is:

Main-Class: Checkers3D
Class-Path: vecmath.jar j3daudio.jar j3dcore.jar j3dutils.jar

The manifest specifies the class location of main(), and adds all the Java 3D JARs to
the classpath used by Checkers3D.jar.

Checkers3D contains the same installDLL() method as found in BugRunner, but calls
it three times.

public static void main(String[] args)
{
// DLLs used by Java 3D extensions
installDLL("J3D.d1l1l");
installDLL ("j3daudio.dll"™);
installDLL("J3DUtils.d11");
new Checkers3D();

The Checkers3D application installed on the user's machine will consist of five JARs,
Checkers3D.jar, j3dcore.jar, j3daudio.jar, vecmath.jar, and j3dutils.jar. After the first
execution, they'll be joined by the three DLLs, J3D.dll, j3daudio.dll, and J3DUtils.dll.

15 © Andrew Davison 2004

Java Prog. Techniques for Games. Appendix 1: install4j

3.2. Creating the Checkers3D Installer

Draft #1 (14th June 04)

The distribution tree for the installer has the same shape as the one for BugRunner: a
Executables/ subdirectory holds the JARs. The directory structure is shown in Figure

12.

':_ installdj Enterpaize Edition [checkess30)]

Project Steps Bulld Files Help

2 4 B A2 [TF
NDEE 2 850 @
- [=]
Q | Choose distributed files . *
Genersl seltings [y this she, yos ooliect o fls and direchoris you would e b distribute
i wour seds e, e dr ag and doop bo move anbries im the dehindion
T = e
oid
=
Filas | -
H Defintion of dutrbution ree: | B8 AddFles {5 B Feldler L
F- 150] 1= [restallstion directony
’ {| | & (] Exmcutables
L - | ‘ File W IND WS Desitopl Installation Tests| Checkers 2304 3doone, jar {oreerw
‘_ Filn o YWTNDO S DaekbinT] ek sl asticr) Weesste | Chascksr M vacmath, jor (oveey |
Y Pl CH{WINDOWS| DesbopTInst alation TestslCheckers 304 Chedkens 30 jar (o |
| L Pl oW INDOAS Desbbop Inst sllation Tests1Checker 304 3daudio. jor (oven)
| Fili WMDY S Do b Trst i stion Teests'| rintad sl cusstom, jar (onoee |
G [eestaler Y Fille CyWiNEOWE beskboplinst alation Tests\Checker 304 aduts jar {owerm |
e [41 :
¥t
Hedis (| [51 o
[=]| | Detine dstrinticntron [Ve resits |

Figure 12. Distribution Tree for the Checkers3D Installer..

The five JARs required by the application are there, and custom.jar for uninstallation.
It is the same one as used in BugRunner, no changes are necessary.

Most of the other installer configuration tasks are quite similar to those carried out for
BugRunner, such as configuring the executable and Java invocation, and the
definition of the pre-uninstall action using the DLLUninstallAction class in

custom.jar.

3.3. The Checkers3D Installer

The resulting installer, called C3D_1.0.exe, takes around 8 seconds to generate, and is
about 3.6 Mb large. A version bundled with JRE 1.4.2 comes in at 14.3 Mb.

16

© Andrew Davison 2004

