
Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

1  Andrew Davison 2004

Appendix 1. Installation using install4j

This chapter uses install4j (http://www.ej-technologies.com/products/install4j/
overview.html), a cross-platform tool for creating native installers for Java
applications. install4j supports Windows, UNIX, Linux, and the Mac OS, although I'll
only be creating installers for Windows. This is mainly to keep things simple, and
because I only have regular access to Windows machines.

Any kind souls who have written example install4j installers for other platforms
should contact me, and I'll include a link to their work in a future version of this
appendix.

I'll develop installers for two examples from the book: BugRunner and Checkers3D.
BugRunner comes from chapter 6 on 2D sprites; it uses the standard parts of J2SE
and the J3DTimer class from Java 3D. Checkers3D, from chapter 8, is our first Java
3D example.

install4j can create an installer which includes a JRE, either as part of the .exe file or
downloaded automatically from install4j's Web site when the installer first runs.
However, I'll assume that Java is already installed.

It is altogether more tricky to create an installer for an application that requires parts
of Java 3D, an extension which isn't included with J2SE or JRE.

The installers will be built with an evaluation copy of install4j Enterprise Edition
v.2.0.7. It's fully functional, but adds several "this is not a registered copy" messages
to the installation sequence.

Before starting, it's worthwhile to briefly compare install4j and Java Web Start (JWS),
the subject of Appendix 2.

install4j creates a standalone installer for an application, which can be delivered to the
user either on a CD or downloaded via a Web page link. A great advantage is the
familiarity of the installation concept: double click on the .exe file, press a few "yes"
buttons, and the application appears as a menu item and a desktop icon. The fact that
the executable is coded in Java is irrelevant.

JWS is a network solution, which offers better protection from potentially renegade
downloads, and supports application updates. JWS is typically utilized via the Java
Web Start client that comes as part of the J2SE installation. The reliance on a network
model seems overly restrictive, especially when applications are large. The possibility
of being queried about security levels and updates is quite off-putting to novice
computer users.

1. The Java 3D Components
In order to get BugRunner and Checkers3D to compile and run, we will need to
include relevant bits from Java 3D with the applications. On Windows, the core
elements of the OpenGL version of Java 3D consists of four JAR files and three

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

2  Andrew Davison 2004

DLLs. The JAR files are j3dcore.jar, j3daudio.jar, vecmath.jar, and j3dutils.jar in
<JRE_DIR>\lib\ext\. The DLLs are J3D.dll, j3daudio.dll, and J3DUtils.dll in
<JRE_DIR>\bin\. <JRE_DIR> is the directory holding the JRE, typically C:\Program
Files\Java\j2re1.4.2_02\.

If the Java 3D development kit is installed, the files will also be found below the J2SE
home directory, which is usually C:\j2sdk1.4.2_02.

The OS level libraries will vary if the DirectX version of Java 3D is used, or the
platform is Linux or the MacOS. The easiest way of finding out Java 3D's
composition on your machine is to look through the Java 3D readme file, which is
added to the J2SE home directory at installation time.

The BugRunner application only uses the J3DTimer, so which of the JAR and DLL
files are required?

The J3DTimer class is part of the com.sun.j3d.utils.timer package, which is stored in
j3dutils.jar (this can be confirmed by looking inside the JAR with a tool such as
WinZip), as shown in Figure 1.

Figure 1. A WinZip View of j3dutils.jar

The J3DTimer class (and its inner class) account for about 1K out of the 1.2MB JAR!.

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

3  Andrew Davison 2004

A look at the decompiled J3DTimer class, using software such as the DJ Java
decompiler (http://members.fortunecity.com/neshkov/dj.html), shows that it's a very
thin layer of Java over calls to J3DUtils.dll (see Figure 2).

Figure 2. The DJ Java Decompiler View of J3DTimer.

For example, the Java method getValue() calls the J3DUtils.dll function
getNativeTimer().

A decompiler isn't really needed at this stage, since the source code for the Java 3D
classes is available for download.

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

4  Andrew Davison 2004

J3DUtils.dll can be examined with HT Editor, a file editor/viewer/analyzer for
Windows executables, available from http://hte.sourceforge.net/index.html (Figure 3).

Figure 3. The HT Editor View of J3DUtils.dll

getNativeTimer() uses the Windows kernel32.dll functions
QueryPerformanceCounter() and QueryPerformanceFrequency().

In summary, the calls to J3DTimer requires j3dutils.jar and J3DUtils.dll.

It may be worthwhile splitting off the timer code from j3dutils.jar into its own JAR,
thereby saving about 1.2 Mb. The technique involves un-JARing j3dutils.jar using
WinZip or similar. The result is two folders: com/ and meta-inf/. com/ holds the
various classes in j3dutils, which can be deleted aside from the two timer classes in
com/sun/j3d/utils/timer/. Meta-inf/ holds a manifest file, Manifest.mf, which should
be pulled out of the directory and used in the reJARing:

jar cvmf Manifest.mf j3dutils.jar com

The size of the slimmed down j3dutils.jar is 2K.

The real drawback with this technique may be a legal one, since a Sun-created JAR is
being dismembered. The status of Java 3D is about to change: at Java One at the end
of this month (June 2004), Java 3D will be made open source, with some provisos,
which may make it okay to release modifications.

In the rest of this appendix, we'll use the full version of j3dutils.jar.

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

5  Andrew Davison 2004

2. The BugRunner Application
The BugRunner code is unchanged from the example in chapter 6, aside from the
addition of one new method in the BugRunner class, which is explained below.

2.1. Preparing the JARs
Java 3D is not installed on the test machine, instead j3dutils.jar and J3DUtils.dll are
placed in the BugRunner directory (as shown in figure 4).

Figure 4. The BugRunner Directory.

Since Java 3D isn't installed in a standard location checked by javac and java, the
calls to the compiler and JVM must include additional classpath information.

The compileBR.bat batch file contains:
javac -classpath "%CLASSPATH%;j3dutils.jar" *.java

The BugRunner.bat batch file contains:
java -cp "%CLASSPATH%;j3dutils.jar" BugRunner

There's no need to mention J3DUtils.dll, which will be found by the JAR so long as
it's in the same directory.

Once the program has been fully tested, the classes and all other application resources
must be packaged up as JARs prior to being passed to install4j.

The BugRunner application consists of various classes, and the two subdirectories
Images/ and Sounds/. These should be thrown together into a single BugRunner.jar
file, along with any DLLs. The makeJar.bat batch file contains the line:
 jar cvmf mainClass.txt BugRunner.jar *.class *.dll Images Sounds
The manifest details in mainClass.txt are:

Main-Class: BugRunner
Class-Path: j3dutils.jar

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

6  Andrew Davison 2004

The manifest specifies the class location of main(), and adds j3dutils.jar to the
classpath used when the BugRunner.jar is executed. We assume it's in the same
directory as BugRunner.jar.

The DLL is stored in the JAR because the installation is easier if install4j only has to
deal with JARs. However, after the installation .exe file has been downloaded to the
user's machine, the DLL must be removed from BugRunner.jar, and written to the
new BugRunner directory.

This copying from the JAR to the local directory is achieved by the BugRunner class.
main() in BugRunner calls a new installDLL() method.

 public static void main(String args[])
 {
 // DLLs used by Java 3D J3DTimer extension
 installDLL("J3DUtils.dll");
 long period = (long) 1000.0/DEFAULT_FPS;
 new BugRunner(period*1000000L); // ms --> nanosecs
 }

 private static void installDLL(String dllFnm)
 /* Installation of the DLL to the local directory
 from the JAR file containing BugRunner. */
 {
 File f = new File(dllFnm);
 if (f.exists())
 System.out.println(dllFnm + " already installed");
 else {
 System.out.println("Installing " + dllFnm);
 // access the DLL inside this JAR
 InputStream in = ClassLoader.getSystemResourceAsStream(dllFnm);
 if (in == null) {
 System.out.println(dllFnm + " not found");
 System.exit(1);
 }
 try { // write the DLL to a file
 FileOutputStream out = new FileOutputStream(dllFnm);

 // allocate a buffer for reading entry data.
 byte[] buffer = new byte[1024];
 int bytesRead;
 while ((bytesRead = in.read(buffer)) != -1)
 out.write(buffer, 0, bytesRead);

 in.close();
 out.flush();
 out.close();
 }
 catch (IOException e)
 { System.out.println("Problems installing " + dllFnm); }
 }
 } // end of installDLL()

installDLL() will be called every time that BugRunner is executed, and so installDLL
() first checks whether the DLL is already present in the local directory. If not, it is

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

7  Andrew Davison 2004

installed by being written out to a file. The stream from the DLL file inside the JAR is
created with:
 InputStream in = ClassLoader.getSystemResourceAsStream(dllFnm);

This works since the DLL is in the same JAR as BugRunner, and so the class loader
for BugRunner can find it. Figure 5 illustrates the technique.

Figure 5. Installing a DLL Locally.

The result is that the BugRunner application installed on the user's machine will
consist of two JARs, BugRunner.jar and j3dutils.jar. After the first execution of
BugRunner, they will be joined by J3DUtils.dll.

The best testing environment is to move the two JARs to a different machine, one that
doesn't have Java 3D installed (but J2SE or JRE must be present). Double click on
BugRunner.jar, and the game should begin. The J3DUtils.dll will magically appear in
the same directory.

Alternatively, the application can be tested with:
java -jar BugRunner.jar

Executing this in a command window, will allow stdout and stderr messages to be
seen on screen, which can be useful for testing and debugging.

We could stop at this point, since the game is nicely wrapped up inside two JARs.
However, an installer will allow a professional veneer to be added, including
installation screens, splash windows, desktop and menu icons, and an uninstaller.
These are essential elements for most users.

2.2. Creating the BugRunner Installer
This is not a book about install4j, so I'll only consider the more important points in
creating the BugRunner installer. install4j has an extensive help facility, and links to a
tutorial at its Web site (http://www.ej-technologies.com/products/install4j/
overview.html). A good way of understanding things is to browse through the various
screens of the BugRunner installation script, bugRun.install4j.

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

8  Andrew Davison 2004

A crucial step is to define the distribution tree, the placement of files and directories
in the BugRunner directory created on the user's machine at install time. Our
approach is to include a Executables/ subdirectory to hold the two JAR files. The
directory structure is shown in Figure 6.

Figure 6. Distribution Tree for the BugRunner Installer.

A moments examination of Figure 6 will reveal three JARs inside Executables:
BugRunner.jar, j3dutils.jar, and custom.jar. custom.jar contains Java code deployed
by the uninstaller, which is explained below.

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

9  Andrew Davison 2004

BugRunner.jar is not called directly, but via a .exe file, which is set up on the
"Configure executable" screen during the "Launchers" stage (Figure 7).

Figure 7. Configuring the BugRunner Executable.

The executable's name is BugRunner.exe, and will be placed in the Executables/
directory along with the JARs.

It is quite important to set the working directory to be ".", so that the JAR will search
for resource in the correct place.

Under the "Advanced Options" button it is possible to redirect stdout and stderr into
log files. This is generally a good idea for testing and debugging.

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

10  Andrew Davison 2004

The .exe file must be told which JAR file holds the main() method for the application,
and which JARs are involved in the application's execution. This is done through the
"Configure Java Invocation" screen shown in Figure 8.

Figure 8. Configuring the Java Invocation.

Figure 8 shows that custom.jar (holding the uninstaller code) is not part of the
application, since it isn't included in the "Class path" list.

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

11  Andrew Davison 2004

The "GUI Installer" stage shown in Figure 9 allows the customization of various
stages of the installation, such as the welcome screen, tasks to be done before
installation, tasks after installation, and the finishing phase. The screen on the right of
Figure 9 is for the installer actions which, rather confusing, also contain uninstallation
actions.

Figure 9. The Installer/Uninstaller Actions for the GUI Installer.

Perhaps the best advantage of using install4j is its close links to Java, most evident in
the way that the installation (and uninstallation) process can be customized. install4j
offers a Java API for implementing many tasks, and the install4j distribution comes
with an example installer that uses the API's capabilities.

The pre-uninstall action is to call the DLLUninstallAction class in custom.jar

2.3. Uninstallation
The default install4j uninstaller will happily delete the JARs that it added to the
Executables/ directory, and all the other files and directories it created at installation
time. However, the installer didn't add J3DUtils.dll to Executables/; that task was
carried out by the BugRunner class when it first ran.

install4j knows nothing about J3DUtils.dll, and so will not delete it, or the sub-
directory which holds it. The outcome is that a basic BugRunner uninstaller will not
remove the BugRunner/Executables/ directory or the J3DUtils.dll file inside it.

The solution is to define a pre-uninstall operation that removes the DLL, so the main
uninstaller is able to delete everything else.

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

12  Andrew Davison 2004

custom.jar contains the DLLUninstallAction class, which extends install4j's
UninstallAction class. UninstallAction offers two abstract methods:

 public abstract boolean performAction(Context context,
 ProgressInterface pi);
 public abstract int getPercentOfTotalInstallation();

The uninstallation task (i.e. deleting the DLL) should be placed inside performAction
(). User messages can be sent to the uninstallation screen via the ProgressInterface
object. performAction() should return true if the task is successful, false to abort the
uninstallation process.

getPercentOfTotalInstallation() sets the amount of the progress slider assigned to the
task. The number should be between 0 and 100.

performAction() obtains a list of the DLLs in the Executables/ directory, then deletes
each one. This approach is more flexible than just hardwiring "J3DUtils.dll" into the
code, and means that the same DLLUninstallAction class can be employed with the
Checkers3D installer.

 private static final String PATH = "../Executables";
 // location of the DLLs relative to <PROG_DIR>/.install4j

 public boolean performAction(Context context,
 ProgressInterface progReport)
 // called by install4j to do uninstallation tasks
 {
 File delDir = new File(PATH);

 FilenameFilter dllFilter = new FilenameFilter() {
 public boolean accept(File dir, String name)
 { return name.endsWith("dll"); }
 };

 String[] fNms = delDir.list(dllFilter); // list of dll filenames
 if (fNms.length == 0)
 System.out.println("Uninstallation: No DLLs found");
 else
 deleteDLLs(fNms, progReport);
 return true;
 } // end of performAction()

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

13  Andrew Davison 2004

The tricky aspect of the code is the use of PATH. The uninstaller is executed in the
.install4j/ directory which is at the same level as Executables/. Both of them are
located in the BugRunner/ directory installed on the user's machine (see Figure 10.)

Figure 10. The Installed BugRunner Directories.

The PATH string redirects the File object to refer to Executables/. A list of filenames
ending in ".dll" is collected by using a FileFilter anonymous class, and the list is
passed to deleteDLLs().

 private void deleteDLLs(String[] fNms,ProgressInterface progReport)
 // delete each DLL file, and report the progress
 {
 progReport.setStatusMessage("Deleting installed DLLs");

 int numFiles = fNms.length;
 String msg;
 for (int i=0; i < numFiles; i++) {
 msg = new String("" + (i+1) + "/" + numFiles + ": " +
 fNms[i] + "... ");
 deleteFile(fNms[i], progReport, msg);
 progReport.setPercentCompleted(((i+1)*100)/numFiles);
 try {
 Thread.sleep(500); // 0.5 sec to see something
 }
 catch (InterruptedException e) {}
 }
 }

deleteDLLs() loops through the filenames, calling deleteFile() for each one. The
ProgressInterface object informs the user of the progress of the deletions. deleteFile()
creates a File object for the named file, then calls delete().

The DLLUninstallAction class must be compiled with the install4j API classes added
to the classpath:

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

14  Andrew Davison 2004

 javac -classpath "%CLASSPATH%;d:\install4j\resource\i4jruntime.jar"
 DLLUninstallAction.java

The creation of the JAR file is standard:
 jar cvf custom.jar *.class

2.4. The BugRunner Installer
The resulting installer, called BR_1.0.exe, takes a few seconds to generate, and is
about 1.4 Mb large; the size drops to 950 Kb if the timer-specific version of
j3dutils.jar is employed. A version bundled with JRE 1.4.2 comes in at 12 Mb.

3. Checkers3D
The Checkers3D code is unchanged from the example in chapter 8, aside from the
addition of the installDLL() method in the Checkers3D class.

3.1. Preparing the JARs
Java 3D is not installed on the test machine, instead all of its JARs and DLLs (seven
files) are copied to the Checkers3D directory (see Figure 11).

Figure 11. The Checkers3D Application Directory.

Since Java 3D isn't installed in the a standard location, the calls to the compiler and
JVM must include additional classpath information.

javac -classpath "%CLASSPATH%;vecmath.jar;j3daudio.jar;
 j3dcore.jar;j3dutils.jar" *.java

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

15  Andrew Davison 2004

java -cp "%CLASSPATH%;vecmath.jar;j3daudio.jar;
 j3dcore.jar;j3dutils.jar" Checkers3D

There's no need to mention the three DLLs (J3D.dll, j3daudio.dll, and J3DUtils.dll),
which will be found by the JARs so long as they're in the same directory.

The Checkers3D classes should be collected into a single Checkers3D.jar file, along
with all the DLLs:
 jar cvmf mainClass.txt Checkers3D.jar *.class *.dll
The manifest information in mainClass.txt is:

Main-Class: Checkers3D
Class-Path: vecmath.jar j3daudio.jar j3dcore.jar j3dutils.jar

The manifest specifies the class location of main(), and adds all the Java 3D JARs to
the classpath used by Checkers3D.jar.

Checkers3D contains the same installDLL() method as found in BugRunner, but calls
it three times.

 public static void main(String[] args)
 {
 // DLLs used by Java 3D extensions
 installDLL("J3D.dll");
 installDLL("j3daudio.dll");
 installDLL("J3DUtils.dll");
 new Checkers3D();
 }

The Checkers3D application installed on the user's machine will consist of five JARs,
Checkers3D.jar, j3dcore.jar, j3daudio.jar, vecmath.jar, and j3dutils.jar. After the first
execution, they'll be joined by the three DLLs, J3D.dll, j3daudio.dll, and J3DUtils.dll.

Java Prog. Techniques for Games. Appendix 1: install4j Draft #1 (14th June 04)

16  Andrew Davison 2004

3.2. Creating the Checkers3D Installer
The distribution tree for the installer has the same shape as the one for BugRunner: a
Executables/ subdirectory holds the JARs. The directory structure is shown in Figure
12.

Figure 12. Distribution Tree for the Checkers3D Installer.

The five JARs required by the application are there, and custom.jar for uninstallation.
It is the same one as used in BugRunner, no changes are necessary.

Most of the other installer configuration tasks are quite similar to those carried out for
BugRunner, such as configuring the executable and Java invocation, and the
definition of the pre-uninstall action using the DLLUninstallAction class in
custom.jar.

3.3. The Checkers3D Installer

The resulting installer, called C3D_1.0.exe, takes around 8 seconds to generate, and is
about 3.6 Mb large. A version bundled with JRE 1.4.2 comes in at 14.3 Mb.

