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The Cycloid

Why Study the Cycloid?

As asource of interesting problems. It’s the solution to the brachistochrone
problem (curve of fastest descent), the tautochrone problem (isochronous
motion), and can be used to square the circle.

Historical significance. It played a pivotal role in the development of mod-
ern mathematics through the work of Galileo, Huygens, Bernoulli, Euler, and
others. Most notably, the solution of the brachistochrone problem 'kicked off
the development of the calculus of variations.

Geometric richness. The cycloid pushed mathematicians to refine tools for
cusps, curvature, arc length, involutes, and differentiability.

Exact solvability in mechanics. Motion along a cycloid can be treated ana-
lytically, providing rare closed-form results in classical dynamics.

19.1 The Cycloid

A cycloid is the curve generated by a point on the circumference of a circle rolling
along a straightline [Sim92, GH97]. A cycloid whose generating circle has radius
a is defined by the parametric equations

x = a(t —sint), y =a(l —cost) (19.1)

where ¢ is the circle’s angle of rotation, which starts at t = 0 at the origin. The
equations can be easily obtained by considering the dimensions labeled in Fig.
19.1.
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a cost > X
! »
t=0 a sint (27a, 0)
— (L
Figure 19.1. A Rolling Circle forms a Cycloid
From Equs. (19.1), we obtain the curve’s derivative
.1 1
, dy asintdt sint 2sin Et cos >t 1
= 7 — = = = cot -¢.
dx a(l—cost)dt 1—cost 2sin? ét 2

Note that y" isn’t defined for t = 0, 27, +47, etc, and those rotations correspond
to cusps where the cycloid touches the x-axis, and its tangent becomes vertical.

Rather surprisingly, the area under one arch of a cycloid (e.g. between x = 0
and 27a) is three times the area of the rolling circle:

2ma 27 dx 27
A=/ ydx=f y—dt=[ a(l —cost)a(l —cost)dt
0 0 dt 0

2 27
=a2f (l—cost)zdt=a2/ (1 —2cost+ cos?t)dt
0 0

So we need to evaluate:
o
f (1 —2cost + cos?t) dt
0
Split this into three parts:

2 27 2
/ 1dt—2/ costdt+/ cos? tdt
) 0 )

Consider each part in turn:
27
/ 1dt =27
0
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and
27
f costdt = [sin t]3" = sin(27r) — sin(0) = 0
0

1+cos(2t) |

For the third part, use the power reduction formula, cos?t = >

27 27
1 2t
/ cos?tdt = f 1+ cos(2r) dt
0 0 2

1 1 [sin(zt)]z”
== 27+=
2 21" 2 |,

=n+0=nx

Combining the results:
27
/ (1 —2cost + cos?t)dt = 2w — 2(0) + 7 = 37
0
The complete answer:
2
azf (1 —cost)?dt = 3ma?
0

This result was first approximated by Galileo in 1599 through the comparison
of the weights of circle and cycloid models. It was proved in 1634 by the French
mathematician Roberval.

Another unusual result is that the length of one arch of the cycloid is four
times the diameter of the rolling circle. Since dx = a(l — cost)dt and dy =
asindt, the arc length ds is given by

ds? = dx? + dy* = @?[(1 — cost)? + sin® t] d¢?
= 2a%[1 — cos t] dt? = 4a? sin* %tdtz,
ds = 2asin %t dt.
Therefore, the length of one arch (let’s use t = 0 to 27) is

27
2
L= 2asinltdt:[—4acoslt]ﬂ=8a.
o 2 2 10

This result was first noted in 1658 by the English architect Christopher Wren.
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180

Figure 19.2. Rolling a Circle

19.1.1 Rolling a Circle. rollCycloid.py lets the user adjust the rotation angle
of a circle, and the cycloid is drawn from the origin to a trace point located on the

circle (see Fig. 19.2).

The circle’s radius is a = 1 which explains why the cycloid cusps occur at 27

and 47, and it peaks at y = 2.

The animation is updated by update () which translates the circle along the

x-axis, and plots the cycloid:

def update(val):

theta = math.radians(tSlider.val)

Circle.set_xdata( xsCircleFn(theta))

Cycloid.set_data(xs, ys)
X, y = cycloid(theta, a)
Point.set_data([x], [yl)
fig.canvas.draw_idle()

def cycloid(t, a):
x =

return (x, y)

a * (t - math.sin(t))
y = a * (1 - math.cos(t))

# translate the circle
ts = linspace(0, theta, max(2, int(50 * theta)))
xs, ys = zip( *[cycloid(t, a) for t in ts])

# the tracer dot on the circle

19.1.2 Examining Area and Arc Length. cycloidA.py lets the user change
the rolling circle’s radius (a), and draws the resulting cycloid between t = 0 and
27 radians. It calculates the area and arc length of a single arch of the curve in
two ways - using the expressions 377a? and 8a, and via numerical integration with
Simpson’s rule. Two screenshots are shown in Fig. 19.3.

The areas are produced by calcArea():

def calcArea(a):
analyticalArea =

# For one arch, t goes from O to 2 pi

3 * math.pi * a * a

ts = [i * (2#math.pi)/(nPts-1) for i in range(nPts)]

xs, ys = cycloid(ts, a)

# We need dx values for numerical integration


http://coe.psu.ac.th/~ad/explore/code/cycloid/rollCycloid.py
http://coe.psu.ac.th/~ad/explore/code/cycloid/cycloidA.py
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Cycloid with Adjustable Parameter a

Area (0 to 5,283):
Analytical: 9.425 [Ina’)
4 Numerical: 9.425 (Simpsen)

Arc Len (ane arch):
Analytical: 8.000 (84)
3 Nurerical: 8000 [Simpson]
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Cycloid with Adjustable Parameter a

Area (0 to 3.475):
Analytical: 21,206 (3ma’)
Mumerical: 21,206 {Simpson)

Arc Len (ane arch):
Analytical: 12,600 (8a)
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Figure 19.3. Cycloid Areas and arc lengths for Different Radii

dxVals = [xs[i+1] - xs[i] for i in range(len(xs)-1)]

# integrate y * (dx/dt) * dt, where dx/dt = a(l - cos(t))
dxdt = [a * (1 - math.cos(t)) for t in ts]

integrand = [ys[i] * dxdt[i] for i in range(len(ys))]

dt = (2 * math.pi) / (nPts - 1)

numericalArea = simpson(integrand, dx=dt)

return analyticalArea, numericalArea

Rather than code Simpson’s rule ourselves (see section 6.11.4), we've im-
ported simpson() from the SciPy module. It employs integrand to obtain the
area under the curve as a collection of thin rectangular strips of dimension y X
dx/dt.

The arc lengths are calculated by calcArcLen():

def calcArcLen(a):
# arc length of one arch
analyticallen = 8 * a
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ts = [i * (2*math.pi)/(nPts-1) for i in range(nPts)]
# Arc length numerical integral
# Use cycloidDf() to get values for the derivatives
integrand = []
for t in ts:
dx_dt, dy_dt = cycloidDf(t, a)
integrand.append(math.sqrt (dx_dt**2 + dy_dt**2))
dt = (2 * math.pi) / (nPts - 1)
numericallen = simpson(integrand, dx=dt)
return analyticallen, numericallen

def cycloidDf(t, a):
# Derivative of the cycloid
dx_dt = a * (1 - math.cos(t))
dy_dt = a * math.sin(t)
return (dx_dt, dy_dt)

The numerical arc length is obtained by summing multiple small steps along
the curve using 1/(dx/dt)? + (dy/dt)2.

19.1.3 Treating the Cycloid Like a Function. Since the cycloid is defined
parametrically:
x = a(t —sint), y =a(l —cost)
there’s no explicit Cartesian form y = f(x). Instead, we recover ¢ from the x
equation by root finding, and plug it into the y equation.
cycloidYT.py implements this approach, assuming that a = 1:
> python cycloidYT.py

Enter x value: 3.14159
y = 2.000000; t = 180.00 deg

> python cycloidYT.py
Enter x value: 1.570796
y = 1.673612; t = 132.35 deg

> python cycloidYT.py
Enter x value: 6.283185
y = 0.000075; t = 359.30 deg

Internally, the x equation is rearranged into zero form
a(t —sint) —x =0

and SciPy’s Brent’s method is used to find the positive root for ¢. Brent is utilized
instead of Newton-Raphson because it doesn’t require derivatives and handles
cycloid cusps where dx/dt = 0.

The relevant code is in cycloidYTfromX ():


http://coe.psu.ac.th/~ad/explore/code/cycloid/cycloidYT.py
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def cycloidYTfromX(x, a):
archIndex = math.floor(x / archWidth)
if archIndex != O:
xArch = x - archIndex * archWidth
# handles negative and large x's
else:
xArch = x
if abs(xArch) < le-12 or abs(xArch - archWidth) < le-12:

return 0, O # cusp handling
else:
tMin = 0

tMax = 2*math.pi

t = brentq(cycloidT, tMin, tMax, args=(xArch, a))
y = a * (1 - math.cos(t))

return y, t + archIndex*2*math.pi

def cycloidT(t, x, a):
return a * (t - math.sin(t)) - x

19.2 The Tautochrone

A tautochrone is the curve for which the time taken by a bead sliding without
friction in uniform gravity along the curve to its lowest point is independent of
its starting point.

The curve was first studied by Huygens after he realized that a pendulum,
which obviously swings in a circular arc, keeps different times depending on how
far the pendulum is initially pulled away from the vertical. He investigated what
would happen if the arc was changed to an inverted cycloid, and discovered that
the pendulum bob would swing down from any starting point to the bottom in
the same amount of time. In other words, an inverted cycloid is a tautochrone.

One way to formalize this is to turn Fig. 19.1 upside down, as in Fig. 19.4.
This points the y-axis in the direction of the gravitational force but makes the
downward y-coordinates positive, conveniently leaving the cycloid equations un-
changed.

The kinetic energy of the bead is initially zero, since it’s at rest. The work
done by gravity in moving the bead from (0, 0) to some point (x, y) is mgy, and
this must equal the change in kinetic energy. That is,

1 1
mgy = zmv2 - Em(O)z.

Thus, the velocity of the bead when it reaches (x, ) is

U =14/2gy.
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0 a 2a Ta 2ma
| | | T 1 | a

Plat —asint, a —acost)

Blam, 2a)

Figure 19.4. An Inverted Cycloid

That is,

ds
a =V

where ds is the arc length differential along the bead’s path, or

i~ 45 _ N1+ (dy/dxP dx
V2gy V2gy

The time T it takes the bead to slide along a curve y = f(x) from O to B(ar, 2a)

1S
XxX=arn 2
- [ [,
x=0 2gy

What curve y = f(x), if any, minimizes the value of this integral? For the
cycloid, Ty takes the form

T loid :f _—
cycloi o 28y

dx = a(1 — cost)dt, dy = asintdt,

T = =T a2(2 —2cost) dt
cycloid = o 2ga(1 — cost)
" Ja a
0 8 8
Thus, the amount of time it takes the friction-less bead to slide down the cycloid
from O to the bottom at B is 74/ a/g.

From Equs. (19.1):

and so
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Suppose that instead of O we start the bead at some lower point, (xy, yo). The
bead’s velocity at (x, y) is now

V= \/Zg(y —Yo) = \/Zga(cos to — cost)

since y = a(1 — cost). Accordingly, the time required for the bead to slide from
(x9,Yo) down to B is

” 2(9 — T —
T=/ \/ a2(2 —2cost) dt=\/§f 1—cost dt
o 2ga(cos ty —cost) g Ji, coSty —cost
_ g/’ﬂ 2sin’(t/2) dt
Vg b (2cos2(ty/2) — 1) — (2 cos?(t/2) — 1)
_ \/E i sin(t/2) dt
8 Jiy 4/cos?(ty/2) — cos?(t/2)
Apply the substitution u = cos(¢/2) (and —2du = sin(¢/2)dt), and set ¢ =

cos(ty/2):
Vil 7

T = 2\/§[— sin”! E]n
8 C e
__1cos(t/2) T°
N 2\[ [_ st cos(ty/2) ]
—2\/7( sin™' 0 + sin” 1)—7r\/t.

This is the same amount of time that it took the bead to slide from O to B,
so beads starting simultaneously from different points on the inverted cycloid in
Fig. 19.4 will all reach the bottom of the curve at B concurrently.

Integrating:

19.2.1 Simple Harmonic Motion (SHM). T is the descent time from O to
the bottom of the cycloid at B. This implies that the oscillation time (or period),
from O to the other extreme, and back to O, is 4 « T = 4my/a/g, which is often

written as
4a
Tose =21, | —.
g

In general, any motion that is simple harmonic relates its period 7, to its angular
frequency w by
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So the cycloid exhibits SHM, and we can equate

-./&
@=)

19.2.2 Animating the Cycloid as a Tautochrone. SHM is also charac-
terized by the differential equation:

d3s

— + w?s = 0,
dt
where s is the object’s displacement from its equilibrium position. With initial

conditions s(0) = s, and s'(0) = 0, this equation has the solution:
s(t) = sy coswt

This gives us a simple way to implement the movement of multiple beads
down an inverted cycloid in tautochrone.py, as shown in Fig. 19.5.

Figure 19.5. A Cycloid as a Tautochrone

Each bead is initialized with a starting ¢ value and color.

beads = [
{'theta':1.0, 'color':'#0000c0'},
{'theta':0.8, 'color':'#c00000'},
{'theta':0.6, 'color':'#00c000'},
{'theta':0.4, 'color':'#c0c000'}
]

Inside animate (), which is called for each animation frame, each bead’s 'theta’
is combined with the current w to calculate its (x, y) position.

def animate(fno):
w = fno/(nFrames-1) # 0 to 1
for i, bead in enumerate(beads):
theta = -bead['theta']*math.pi * math.cos(w * math.pi/2)
xc, yc = cycloid(theta, a)
x = h/2*xc + x0


http://coe.psu.ac.th/~ad/explore/code/cycloid/tautochrone.py
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y = h/2xyc + yO
# (x0,y0) is the top point; h is the window height
beadPts[i] .set_data([x], [y])

return beadPts

19.3 A Cycloid’s Involute

Once Huygens had established the cycloid’s tautochrone property, how could he
arrange for a clock’s pendulum to move along a cycloidal, rather than a circu-
lar, path? One solution is to suspend the pendulum from the cusp between two
inverted cycloids with its rope’s length equal to the cycloid’s semi-arch (see Fig.
19.6). This constrains the pendulum’s path to follow a cycloid.

P

Figure 19.6. An Cycloidal Pendulum

Huygens termed this curve an involute: the locus of the end of a taut string
as it unwraps itself from a cycloid surface (or wraps itself over such as surface).
The equation for the involute is obtained as follows. Start with the parametric
form of the surface curve

C() = (x(®), y(®)).
where C'(t) # 0, and define its arc length between a starting angle ¢, and ¢:

t
() = f /)] du,
to

The unit tangent vector is

c'(®)
el
which allows the involute to be expressed as

1(t) = C(t) — s(t) T().

T(t) =
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This is depicted in Fig. 19.7. The end of the (purple) string initially touches the
surface curve C() at x = ma, the peak of the cycloid’s arch, and is attached at
X = 27a, in the cusp between two arches. Currently, the string has unwrapped
so it’s tangent is at angle ¢, and the tangent segment’s length is s(¢). The involute
traced out by the end of the string is I() (the red curve).

I(t)

Figure 19.7. An Involute of a Cycloid

We can plug cycloid-specific details into I(t):
C(t) = (a(t —sint), a(1 — cost)), C'(t) = a(1 — cost, sint),
and
IC’ ()] = 2asin %

The arc length of the unwrapped string, s(¢), from ¢t = 7 to the current angle, is

t
u u u=t
s(t) = 2asin = du = 2a[—2 cos —]
T 2 2 u=rmw

t T t
= —4acos L — (—4acosZ) = —4acos L.
acos 5 (—4acos 2) acos 5

The unit tangent is

C'(t) _ a(l —cost,sint)

IC' @l 2a sin%

.t t
= (sin 3> cos 5),

by utilizing half angles identities to rewrite the numerator.
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We formulate I(t) = C(¢t) — s(¢)T(¢), by considering its x and y parts sepa-
rately:

L(t) = a(t — sint) — (—4acos %) sin % = a(t —sint) + 4acos % sin %

= a(t —sint) + 2asint = a(t + sin¢),

I,(t) = a(1 — cost) — (—4acos %) cos % = a(1 — cost) + 4acos? %

= a(1 —cost) + 2a(1 + cost) = a(3 + cost).
So:
I(t) = (a(t +sint), a(3 + cost))
How does this compare to the surface cycloid equation, C(¢), with ¢ replaced by
¢:
C(¢) = (a(¢ —sin¢), a(1 —cos $)).
Set ¢ = t + 7, and simplify C():

C(t+ 7)) = a((t + ) — sin(t + 7), 1 — cos(t + 7))

=a(t+ 7 +sint, 1+ cost).
Equate the components of I() and C():
L(t) = a(t +sint) = a(t + 7 + sint) — ar = C,(t + ) — ar,

I,(t) = a(3 + cost) = a(l + cost) + 2a = C),(t + ) + 2a
or,
I(t) = C(t + ) + (—arm, 2a)
This shows that the involute I(t) is a cycloid, with its ¢ angle is rotated by 7 and
translated by (—az, 2a)) away from C(t).

19.3.1 Drawing a Cycloid Involute. involuteCycs.py unwraps two strings
from the crests of adjacent cycloids towards a center line above the intermediate
cusp (see Fig. 19.8). As the strings move, line segments are drawn at their current
tangents with lengths equal to the arc distance from the crests to those tangents.
The coordinates of the ends of the moving segments are collected and plotted,
forming two halves of a new cycloid.

During the animation, update () draws each frame by calling tangentSeg ()
twice to get the coordinates for the ends of the segments. To explain tangentSeg(),
we’ll focus on how (XEnd, yEnd) is calculated for the left-hand string, as shown
in Fig. 19.9.

It’s a little hard to see but tangentSeg () implements a version of

I(t) = C(t) — s(t) T(t)


http://coe.psu.ac.th/~ad/explore/code/cycloid/involuteCycs.py
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Figure 19.8. Drawing a Cycloid Involute

{xEnd,yEnd) arELeng‘rh

w 6Y)

Figure 19.9. Calculating a Segment End Coordinate

def tangentSeg(t, a, x0ffset, dir):
x, y = cycloid(t, a, x0ffset) # C(t)
dxdt, dydt = cycloidDf(t, a) # C'(t)
speed = math.hypot(dxdt, dydt) # [C'(t)]
if speed == 0.0:
return [x, x], [y, yl, x, ¥

ux = dxdt / speed # T(t) for x and y
uy = dydt / speed
if dir < O:
ux = -ux
uy = -uy
arcLength = 4.0 * a * abs(math.cos(t / 2.0)) # s(t)
xEnd = x + arclLength * ux # I(t) for x and y
yEnd = y + arcLength * uy
return [x, xEnd], [y, yEnd], xEnd, yEnd

C(t)isimplemented by cycloid (), while T(¢) = C'(¢)/||C'(t)| employs cycloidDf ()
and math.hypot(). s(t), the arc length, must be 4a or less since the unwinding
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string only extends half-way around the cycloid (between x = a and 27ra on the
left hand side).

x0ffset and dir are used to generalize the function so it can be employed for
the string wrapped over the right-hand cycloid. The relevant lines in update ()
are:

1x, ly, 1xEnd, lyEnd
rx, ry, rxEnd, ryEnd

tangentSeg(tLeft, a, 0.0, dir=-1)
tangentSeg(tRight, a, 2.0*math.pi, dir=1)

19.4 The Brachistochrone

In 1696, Johann Bernoulli conceived and solved the brachistochrone problem,
and published the problem (but not the solution) as a challenge to other mathe-
maticians. The problem is this: among all smooth curves in a vertical plane that
join a point R to a lower point B, not directly below it, find the curve along which
a particle will slide from R, to B, in the shortest possible time.

Following Huygens’ approach, we can think of the particle as a bead of mass
m sliding down a friction-less wire, with mg the only force acting upon it. Locate
R at the origin and set B = (x;, ;) as in Fig. 19.10. Note that B does not need to
be the bottom of the cycloid (i.e. point B in Fig. 19.4).

P=(x,y)

m Pl=(xl’yl)

mg

Figure 19.10. A Brachistochrone Bead at P

The bead is released from rest at Ry, so its initial velocity and kinetic energy
are zero. The work done by gravity in pulling it down to an arbitrary point P =

(x,y) is mgy, which must equal the increase in its kinetic energy. So %mv2
mgy, and therefore

ds
v=% - gy,
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This can be written as

ds _ \dx2+dy? 1+ (dy/dx)?dx

V28y V28 28y
The total time T; required for the bead to slide down the wire from R to B, will
depend on the wire’s shape as specified by y = f(x), so that

X1 N2
T, :fdt:/ L0 o
A 28y

The brachistochrone problem therefore amounts to finding a curve y = f(x) that
passes through Ry and B that minimizes this integral.

We start by considering an apparently unrelated problem in optics. Fig. 19.11
illustrates a ray of light traveling from A to P with constant velocity v;. Upon
entering a denser (gray) medium, it travels from P to B with a smaller velocity v,.

dt

P —— =y
o>

]

Figure 19.11. The Refraction of Light

The total time T required for the journey is

Va2 +x? N Vb2 + (c — x)?

B U1 Uz '

If we assume that the ray of light is able to select its path from A to B in such a
way as to minimize T, then dT/dx = 0. Then the two parts of that derivative can
be equated:

T

X c—X

vivaz+x2  vpVb2+(c— X2
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By referring to Fig. 19.11, the distances ratios can be replaced by sines involving
ay and ay:

U1 o)

sinaq; _ sina,

This is Snell’s law of refraction, and the assumption that light travels from one
point to another along the path requiring the shortest time is Fermat’s principle
of least time.

()

Figure 19.12. Refraction Angles

The velocity of light is constant within a layer in Fig. 19.12, but decreases as
it passes down through each subsequent denser layer, and is refracted more and
more towards the vertical. When Snell’s law is applied at the boundaries between
the layers, we obtain

sina; sina, sinaz sinay
v, vy Uy vy

As we make these layers thinner and more numerous, in the limit the velocity of
light decreases continuously as the ray descends, and we get

sina
=c
v
Returning to the brachistochrone problem, let’s introduce the coordinate
scheme shown in Fig. 19.13 and assume that the bead (like the ray of light) is ca-
pable of selecting the path from R) to B that requires the shortest possible travel
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Figure 19.13. Refraction for the Brachistochrone

time. The argument given above yields the same result for the sliding bead

sin
=c
v

‘We also have
1

1 —_—
sec
p \/1+tan’g
1

Combining these equations, and the earlier velocity equality v = \/E , produces
1+ =k
Replace y’ by dy/dx, and separate the variables

_ /Y
dx = k—ydy’

_ [y
x—f k_ydy.

Employ the substitution u? = y/(k — y) so that

ku? 2ku
ey and dy= At du,

eo [ 2R g
- ) arur

sina =cosf =

SO

y

resulting in
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The trigonometric substitution u = tan ¢, and its derivative du = sec? ¢ d¢, let
us write this as
[ 2k tan® ¢ sec? ¢

*= (1 + tan® ¢)2 a¢

=2k/tan2¢d¢=2k/sin2¢d¢

sec? ¢

= kf(l —cos2¢)d¢o

= %k(2¢ — sin 2¢).

The constant of integration is zero because y = 0 when ¢ = 0, and since B) is at
the origin, we also have x = 0 when ¢ = 0.
The formula for y is
_k tan® ¢

y= sec? = ksin® ¢= %k(l — Ccos2¢).

Simplifying these equations by writing a = %k and 6 = 2¢, leads to
x=a(@—sinb), y=a(l—-cosb).
In other words, the curve that produces the shortest travel time for the Brachis-

tochrone problem is the cycloid

19.4.1 Animating the Brachistochrone. brachAnim.py visualizes and com-
pares three different paths (a straight line, an arc of a circle, and a cycloid) for a
bead sliding under gravity from point (0,0) to an endpoint.

Brachistochrone Problem: Comparing Diftenert Patts

Figure 19.14. The Brachistochrone Race

The animation demonstrates that the cycloid, despite being longer than a
circular arc between the same two points, causes the bead to reach the endpoint
faster than both the straight line and arc. However, the cycloid bead only just
beats the bead sliding along the arc, so it’s not surprising that early investigators,
such as Galileo, concluded that the arc was fastest.


http://coe.psu.ac.th/~ad/explore/code/cycloid/brachAnim.py
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It’s possible to pause/resume the animation by pressing the space bar, which
allows the user to compare the positions of the beads during their journey. One
interesting aspect is that the circular bead (the blue dot) is ahead of the cycloid
bead (the red dot) for much of the trip (see Fig. 19.14).

It’s important to remember that brachAnim.py is not a real-world experi-
ment (e.g. unlike the one at https://mathsmodels.co.uk/2021/06/01/Bra
nchistochrone2/). For example, no account is made of friction or air resistance,
and the course of the bead’s path along the arc is only approximate because the
exact time equation is an elliptic integral of the form

6
1) = \/2E L
8 Jo, \/cos¢ —cos b,
where R is the circle’s radius, and the bead travels from angular position &, to
6. There’s no closed form solution for this expression, so numerical methods
must be used. My code employs time = distance / velocity, where the total dis-
tance is the sum of small segments along the arc, and the current velocity is y/2gh
where h is the vertical drop from the starting point. The details can be found in
calculateCircularArc() in brachAnim.py.

Another issue is what curvature should be used for the arc since it’s only
constrained by two points. My code employs a fixed relationship to transform
the chord length between the start and end points into the circle’s radius.

The bead’s journey time along the cycloid is much simpler; it’s based on

T:n'\/g,
4

_, thetaEnd = cycloidYTfromX(xEnd, a)
t = thetaEnd * math.sqrt(a / G)
brCurveX, brCurveY = cycloidPts(a, thetaEnd, 500)

resulting in:

The difficult part is determining the angle thetaEnd of the endpoint (which is not
necessarily 7r) but I reuse cycloidYTfromX () from section 19.1.3 for that task.

19.5 Epicycloids

An epicycloid is a curve generated by a point on the circumference of a circle
which is rolling on the outside of a fixed circle (see Fig. 19.15). In other words,
it’s the cycloid again but with the flat surface replaced by a circle [Mao020].

More complicated curves can be generated by having a third circle roll on
the second, a fourth on the third, etc. Epicycloids were introduced by the ancient
Greeks and, until the 16th century, formed the basis for ideas about the paths of
the Moon and planets.


https://mathsmodels.co.uk/2021/06/01/Branchistochrone2/
https://mathsmodels.co.uk/2021/06/01/Branchistochrone2/
http://coe.psu.ac.th/~ad/explore/code/cycloid/brachAnim.py
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An epicycloid whose fixed and rolling circles have radii R and r respectively
is described by the parametric equations:

R:rt) y=(R+r)sint—rsin(R:-rt).
t is the angle formed by the x-axis and the ray from the center of the fixed circle

to the point of contact with the rolling circle, as depicted in Fig. 19.15.

x=(R+r)cost —rcos(

Figure 19.15. The Epicycloid Circles

If the radii of the fixed circle and rolling circle are equal (R = r) then a com-
plete tour by the rolling circle around the fixed one will form a single arc. If
R = 2r then the tour will include two arcs, and when R = nr the tour will con-
tain n arcs. Between the arcs, the curve will form cusps when the rolling circle’s
tracer point touches the fixed circle.

epicycloid.py asks the user to enter a float representing R/r, which is used
to calculate the radius of the small circle (r) since the large circle is a fixed size
(R=4).

The plotting uses a (verbose) translation of the maths:
def epicycloidPt(bigR, smallR, t):

x = (bigR + smallR) * math.cos(t) \

- smallR * math.cos((bigR + smallR)/smallR * t)
y = (bigR + smallR) * math.sin(t) \

- smallR * math.sin((bigR + smallR)/smallR * t)
return x, y

Fig. 19.16 shows four runs of epicycloid.py, including a cardioid (one
cusp; R/r = 1) and a nephroid (two cusps; R/r = 2).

19.5.1 From Epicycloid to Epicycle. The parametric equations can be bet-
ter visualized by increasing the size of the fixed circle, as in Fig. 19.17, so the
rotating tracer point (the red dot) on the circumference of the rolling circle can
be specified relative to the circumference of the fixed circle. In this version, the
smaller circle is usually called the epicycle and the larger circle the deferent.


http://coe.psu.ac.th/~ad/explore/code/cycloid/epicycloid.py
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Epicycloid Rir=1.00 Epicycloid Rfr=2.50
10.0 10.0
7.5 7.5
5.0 5.0
2.5 2.5
oo 00
-2.5 -2.5
-5 -5.0
-15 =75
-10.0 =100
-10 -5 o 5 10 -10 -5 o 5 10
Epicycloid Rir=2.00 Epicycloid Rjr=3.00
0.0 1.0
75 15
50 50
25 25
00 o0
-2.5 -25
-5.0 -5.0
-7.5 -5
-10.0 -10.0
-10 -5 [} 5 10 =10 =5 ] 5 0

Figure 19.16. Four Epicycloids

o = NP

Figure 19.17. From Epicycloid to Epicycle

It’s also useful to redefine the epicycle’s equations in terms of angular speed.

Let R
+r
o= (s “2f)

sint - sin( — t)
r
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_ cos wt cos(Qt)
r(0) = Ryer (sin cot) + Tepi <sin(Qt)>

o Ry is the radius of the deferent,

or:

where:

s Tepi is the radius of the epicycle,
« w is the angular speed of the deferent,
« Qis the angular speed of the epicycle relative to the deferent,

The angular velocities are related by:
Q _  R+r

@ r
By adding more epicycles, with varying speeds and sizes, we can formulate
increasingly complex curves:

x(t) = ZRi cos(w;t + ¢;)
y(8) = D Rysin(w;t + ¢;)

¢; is how much circle i is initially rotated, and is called a phase offset. If
we don’t utilize phase offsets, then we can only describe epicycles where all the
circles start neatly aligned.

19.5.2 From Epicycles to Discrete Fourier Transforms. Instead of think-
ing about points along the x and y axes, imagine them as complex numbers using
the real and imaginary axes:

pj=xj+1y;
N
z(t) = x(t) + iy(t) = Y R;(cos(w;t + ¢;) + isin(w;t + ¢;))
Jj

Now make use of Euler’s formula:

N
z(t) = ) R;e! e
J
Even better, permit X; be a complex number:

N
z(t) = ) X;eit
J
This form almost matches the Discrete Fourier Transform (DFT) [KrelO]. This

shouldn’t be too surprising since DFTs essentially allows us to split any periodic
function into a series of connected sinusoidal functions.
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19.6 Hypocycloids

A hypocycloid is a curve generated by a point on the circumference of a circle
rolling on the inside of a fixed circle [Ma020]. A hypocycloid whose fixed and
rolling circles have the radii R and r respectively has the parametric equations

R—vr R-—

p t) y=(R—r)sint —rsin( rt).

x=(R—r)cost —rcos(

Once again, ¢ is the angle formed by the x-axis and the ray from the center of the
fixed circle to the point of contact with the rolling circle, as in Fig. 19.18.

Figure 19.18. The Hypocycloid Circles

In a similar manner to the epicycloid, the hypocycloid has a cusp where its
tracer point meets the fixed circle, and describes two arcs when the radius of the
fixed circle is twice the length of the radius of the rolling circle (R = 2r), and n
arcs when R = nr.

hypocycloid.py asks the user to enter a float representing R/r, which is used
to calculate the radius of the small circle (r) since the large circle is a fixed size
(R =)5).

The code based on the maths:

def hypocycloidPt(bigR, smallR, t):
x = (bigR - smallR) * math.cos(t) \
+ smallR * math.cos((bigR - smallR) / smallR * t)
y = (bigR - smallR) * math.sin(t) \
- smallR * math.sin((bigR - smallR) / smallR * t)
return x, y

Fig. 19.19 shows six runs of hypocycloid.py, and illustrates a few interest-
ing cases: a straight line when R/r = 2, and a deltoid and astroid. Note that an
astroid appears when R/r = 4 (as expected) and also when R/r = 4/3.


http://coe.psu.ac.th/~ad/explore/code/cycloid/hypocycloid.py
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Hypocycloid Rir=1,33 . Hypocycloid Rir=2.00 B Hypoeyeloid Rfr=2.50

6

a 4 4

2 H 2

] o \_/, o
-2 -2 -2
-4 -4 -4
-6 -6 -6

- -4 -2 o H a 6 - -4 -z o 2 4 6 - -4 =2 o 2 4 6
. Hypocycloid Rir=3.00 . Hypocycloid Rir=4.50 B Hypocycloid R/r=4.00

- -6 -6

Figure 19.19. Six Hypocycloids

<

roll

(x,¥)

Figure 19.20. The Astroid

19.6.1 The Astroid. The astroid is a hypocycloid whose rolling circle has a
diameter one-fourth that of the fixed circle (see Fig. 19.20).
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The formula for the astroid sets R = 4r in the equations for the hypocycloid:

4r —r
x = (4r —r)cost + rcos( t) = r(3cost + cos 3t),

Ar —
y=(4"—r)sint—rsin( 4 rt):r(Ssint—sin3t).

With the help of
cos3t =4cos’t —3cost; sin3t = 3sint — 4sin’ t,
we find

x =r(3cost + cos3t) = 4rcos’ t
y =r(3sint —sin3t) = 4r sin’ f,
or
Xx = Rcos’t, y = Rsin’ t.
These equations are implemented in astroid.py as:

def astroid(a, nPts):
ts = [2 * math.pi * i / nPts for i in range(nPts + 1)]
xs = [a * (math.cos(t) **x 3) for t in ts]
ys = [a * (math.sin(t) ** 3) for t in ts]
return xs, ys

astroid.py generates the same shape as the one shown in the bottom right of
Fig. 19.19. But what about the top-left example, where R/r = 4/3? This only
changes the very last step of the equation’s derivation given above since now 3R =
4r. This affects the drawing behavior, but its only noticeable in the animation -
the rolling circle for R/r = 4/3 takes 3 tours around the fixed circle to complete
the astroid, whereas when R/r = 4 the much smaller rolling circle needs just a
single tour. In general, a hypocycloid with ratio R/r (in reduced form) completes
its pattern after the rolling circle has made r tours around the fixed circle.

The astroid has some remarkable properties. For example, all of its tangent
lines are the same length R between the x and y axes. Conversely, if a line segment
of fixed length R with its endpoints on the x- and y-axes is allowed to assume all
possible positions, then the envelope formed by all of the line segments is an
astroid (see Fig. 19.21(a)).

The astroid is also the envelope of the family of ellipses of the form Z—j +

2
(;—)2 = 1, where the sum of their semi-major and semi-minor axes is R (see Fig.
—-a

19.21(b)).


http://coe.psu.ac.th/~ad/explore/code/cycloid/astroid.py
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(a) Using Tangent Lines (b) Using Ellipses
Figure 19.21. Drawing Astroids

19.7 Linking Hypocycloids and Epicycloids

The parametric equations for the hypocycloid and the epicycloid only differ in

the sign associated with r. When the two radii are combined using R + r then a
epicycloid results. When its R—r, then an hypocycloid is created. The connection

becomes clear is we think of the meaning of —r in terms of the position of the

rolling circle. A positive radius places it on the outside of the fixed circle while a

negative moves it inside.

ehcycloid.py relaxes the constraints imposed by epicycloid.py and hypocycloid.py

that R/r be positive, which makes it possible for one program to produce both

types of cycloid. To keep the code short, only the cycloid curve is drawn without

the circles or the animation (see Fig. 19.22).

Rir=-3.00 Rir=3.00

-4

Figure 19.22. Hypocycloids and Epicycloids


http://coe.psu.ac.th/~ad/explore/code/cycloid/ehcycloid.py
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19.8 Squaring the Circle

The problem of squaring the circle, namely constructing a square with the same
area as a given circle using a straight edge and compass alone, is one of the classic
problems of Greek mathematics. In 1882, Ferdinand von Lindemann proved that
it wasn’t possible if only those tools were available. However, it’s quite straight-
forward if other mechanisms are permitted, such as a circle rolling along a line,
to produce a cycloid as in Fig. 19.23.
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Figure 19.23. Squaring the Circle with a Cycloid

The (red) tracer point on the circle’s circumference, moving from A to C de-
scribes a cycloid, meaning that the length of the straight line from A to C is equal
to the circumference of the circle - that is, 27r.

Thus, if B is the midpoint of AC, then BC = 7zr. Hence, if CD = r, the area
of the rectangle BCDE is 7rr X r = 7rr?, which is also the area of the rolling circle.
'Squaring’ this rectangle yields the square with the side PC. Thus the circle is also
squared.

How is rectangle BCDE created? Extend BC rightwards. Construct a circle
with center C and radius r through D; it intersects BC at E. Find the midpoint
F of BE. Construct a circle with diameter BE and center F. Extend the line CD
until it meets that big circle at P. Construct a square on the segment CP, which
we’ll call CPQR.
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How do we know that Area(BCDE) = Area(CPQR)? Consider:
Area(CPQR) =CP-CR
= CP? = FP? — FC?
= (FP — FC)(FP + FC)
= (FE — FC)(BF + FC) because FP = FE = BF
=CE-BC=CD-BC
= Area(BCDE).

This means that the rolling circle, rectangle, and square in Fig. 19.23 all have
the same area, 7r2, and we have successfully squared the circle.

Exercises

(1) Determine a x = f(y) equation for the cycloid by eliminating 6 from the
parametric equations in Equs. 19.1.

(2) Show that the second derivative of the cycloid is y” = dy'/dx = —a/y>.
Observe that this implies that the cycloid is concave down between the cusps.

(3) Show that the tangent to the cycloid at the point P in Fig. 19.24 passes through
the top of the rolling circle.

Figure 19.24. Cycloid Normal

(4) Assume that the circle in Fig. 19.24 rolls to the right along the x-axis at a
constant speed, with the center C moving at v, units per second.

(a) Find the rates of change of the coordinates x and y of the point P.
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(b) What is the greatest rate of increase of x, and where is P when this oc-
curs?

(c) What is the greatest rate of increase of y, and for what value of 6 is this
attained?

(5) Find the area inside an astroid.
(6) Find the total length of an astroid.

(7) A hypocycloid with three cusps, R = 3r, is called a deltoid (see the lower left
of Fig. 19.19). Find its parametric equations, and the total length of the curve.

Answers

(1) P=(x,y)isx = a(6 —sinO) and y = a(1 — cos 0). Expressing 6 and sin 6 in
terms of y:

cos@zl—X
a

sin@ = 1—(1—X)2

a
_\/Z_y_y_z_\/Zaty—y2
"NV oa a2~ a

\2ay — 2

G:Sin_l<%>

Substituting for 6 and sin 6 in the expression for x:

_1{+2ay —y?
x = a(sin ! (M) — %\/Zay —y2>

a

_1[V2ay—y?
asinl(—ay 4

= — 2
a )x+2ayy

(2) The slope of the tangent to the cycloid: y’ = cot g.

=>dl—dcote)/dx— 1,06, dx

dx ~ a6 2" a8 = 2% 2'q8
“Lesc2® —1/(2sin* 9)
__ 2 2 _ 2
" a(l—cosB)  a(l—cosb)
_ —1/(1 =cosB) 1
" al—cosf)  a(l—cos6)?

= _)% because y = a(l — cos 6)
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Asy > 0 throughout, then y’ < 0 wherever y # 0, which is at the cusps.

(3) The point at the top of the circle has coordinates (a6, 2a). The slope of the
tangent at P is given by y' = cot ét. The equation of the tangent at P is
therefore

y—a(l —cosf) = T sin 0

m(x —af + asin 9)

We substitute x = a6 in this equation and solve for y, which gives

B sin & . a(l—cos0)?+asin’6
y=a(l COS@)+1_COSe asin® = T oo d = 2a.

This shows that the tangent at P does indeed pass through the point (a8, 2a)
at the top of the circle.

(4) (a) The rate of change of x and y can be expressed as:

dx

— = vy(1 — cos 6) = v, sind

dy
dt dt
where 0 is the angle turned by C after time ¢.
Let the center of C be O. Without loss of generality, let P be at the origin at
time t = t,. By definition, P traces out a cycloid. P = (x, y) is
x = a(@ —sin 6), y=a(l—cosH)

Let (x;,y.) be the coordinates of O at time t. We have that y, = a, which
means that x, = vgt. X, is equal to the length of the arc of C that has rolled

along the x-axis, so x, = af. So 6 = %t which implies Z—f = %" Thus:
Vot
xX=a (i —sin 6)
a

substituting for 6:
X = vyt —asinf

dx do Vg
= a5 = Yo —acos@a = Uy —acos@;
= v(1 — cos 0)
and:
y =a(l—cosb)
= d_y = asin@d—6 = asing2®
dt dt a

= Uy sin 6
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(b) The maximum rate of change of x is 2v,, which happens when P is at the
top of the circle C. The rate of change of x is given by:

dx

— = vg(1 —cosb

dt 0( )
This is a maximum when 1 — cos 0 is a maximum, so when cos 6 is at a min-
imum. That happens when cos8 = —1, so 6 = 7,37, .... That is, when

6 = (2n + 1) where n € Z. That is, when P is at the top of the circle C.
When cos 6 = —1 we have:

B vy~ (1)) = 20,

(c) The maximum rate of change of y is vy, which happens when 6 = g +2nm
where n € Z. The rate of change of y is given by % = Vg sin 6.
This is a maximum when sin 6 is a maximum, when sin 6 = 1. That happens

. d
when 6 = % + 2n7r where n € Z. When sin 6 = 1 we have d—)t) = vyp.

(5) We’ll show that the area inside an astroid constructed within a circle of radius
2
a(see Fig.19.25)is A = SﬂTa. Locate the astroid H with its center at the origin
and its cusps positioned on the axes.

Figure 19.25. Astroid Area

By symmetry, it’s sufficient to evaluate the area shaded yellow and to multiply
it by 4. The astroid equation is:

.3
X = acos’ 6, y = asin’ 6.
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Thus:

a xXx=a dx
A= 4f ydx = 4f y——db
0 x=0 dé

Differentiate x with respect to 6:

dx 2 .
b= 3a cos” B(—sin 6)

Substitute into A to give:

X=a
A= 4f asin’ 6 - 3acos? 6(— sin 6) d6
x=0

When x = a, acos’6 = a; whenx = 0,6 = g;whenx =aqa,6 =0.
Simplifying

6=m/2
A= 4/ asin’ 6 - 3a cos? 6(— sin 6) d6
6=0

/2
= 12a? f sin* 6 cos? 6do
()

Simplifying the integrand:

_ (2 sin 8 cos 6)? sin? 6
4
sin”20 1 — cos20
4 T2
sin® 26 — sin”® 26 cos 26
8
1—cos46 sin®26cos20
16 8

.2
sin“26 . ,
= ——s5i

n“ 6

. 4
sin” 6 cos? 8
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Thus:

/2 . 2
A= 12a2/ (1—00549 _sin 26c0526)de
0

16 8
5 pml2 o2 /2
= 3% f (1 —cos46)d6 — 37 sin® 26 cos 20 d6
0 0
/2
3a2 46 T23g2 (7
= % [6 _ sin - — sin” 26 cos 26 d6
0

/2
sin 46 7
0 —

.3 /2
sin” 26
6

0

|
3a? 2(

_ T sin2m 3a? sin37r

T4 \2 7 >_ 2 6

= 3ma - 3i sin 27w — 302 2 sindr= 3za’
8 16 12

(6) We'll show that the total length of the four arcs of an astroid constructed
within a deferent of radius a (see Fig. 19.26) is L = 6a. Once again the astroid
H has its center at the origin and its cusps positioned on the axes.

Figure 19.26. Length of an Arc of an Astroid



Answers 801

L is 4 times the length of one arc of the astroid, and the arc length is defined

as:
6=m/2 2 2
_ dx dy
rea [ (Y (G e
where, from the equation for the astroid:
X =acos? 0, y = asin’ 0
we have:
dx 2 A dy .2
90 = 3acos“ 6sin b, de—3asm Ocosb
Thus:

2 2
A/ (3—;) + (%) = \/9a2(sin4 6 cos? 6 + cos* O sin” 0)

= 3a\/ sin” 6 cos? O(sin” 0 + cos? 0)

= 3a\/ sin? 6 cos? 6 = 3asin 6 cos O

_ 3asin20
- 2

Thus:

/2 3a
L=4/ —sin26d6
o 2

/2

- 6a _ cos28 _6a(_cos7r 4 cosO)
h 2 1y 2 2

_ 1) 1) _

—6a( 5 t3 = 6a

(7) By definition, a deltoid is a hypocycloid with 3 cusps.

Let H be the deltoid generated by the epicycle C; of radius b rolling without
slipping around the inside of a deferent C, of radius a = 3b (see Fig. 19.27).
Let C, have its center located at the origin. Let P be a point on the circum-
ference of C;. Let C; be initially positioned so that P is its point of tangency
to C,, located at point A = (a, 0) on the x-axis. Let (x, y) be the coordinates
of P as it travels over the plane. The point P = (x,y) is described by the
parametric equation:

X = 2bcos 6 + b cos 26, y = 2bsin @ — bsin 20

where 0 is the angle between the x-axis and the line joining the origin to the
center of C;.



802 Chapter 19. The Cycloid

Figure 19.27. A Deltoid

Using the hypocycloid equation, H is given by:

X = (a—b)cos6+bcos(a;b9)

y= (a—b)sin@—bsin(a;b6>

This can be generated by an epicycle C; of radius % the radius of the deferent.
Thus a = 3b and the equation of H is now given by:

X = 2bcos 6 + b cos 26, y =2bsin 6 — bsin 26

We’ll now show that the total length of the arcs of a deltoid constructed within

. . 16a
a deferent of radius ais L = P

Let one of H’s cusps be positioned at (a,0), and note that L is 3 times the
length of one arc of the deltoid. The arc length equation is:

L_3/.9=27T/3 (d_x>2+<d_yz
- ae) *\ae

where, the deltoid is:

x = 2bcos 8 + b cos 26, y = 2bsin @ — bsin 20
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and so:

dx _ . . dy
6= —2bsin 6 — 2bsin 26, 8= 2bcos 6 — 2bcos 26

Thus:

2 2
(@) + (d_y) = (—2bsin 8 — 2bsin 26)? + (2b cos & — 2b cos 26)?
dé dé

= 4b* ((—sin 6 — sin 26)* + (cos 6 — cos 26)?)

= 4b*(sin” 6 + 2 sin O sin 26 + sin® 26 + cos? 6 — 2 cos O cos 26 + cos? 26)

Using the sum of squares for sine and cosine:
= 4b%(2 + 2 sin Osin 26 — 2 cos O cos 20)
= 8b%(1 + sin Osin 26 — cos 6 cos 26)
and the double angle formula for sine
= 8b%(1 + 2sin” 6 cos 6 — cos § cos 26)
and then the double angle formula for cosine:
= 8b2(1 + 2sin’ 6 cos O — cos (1 — 2 sin” 0))
Simplifying
= 8b2(1 — cos O + 4sin” 6 cos §)
= 8b2(1 — cos O + 4 cos B(1 — cos? 6))

Use the sum of squares for sine and cosine again, and the difference of two
squares:

= 8b%*(1 — cos 8 + 4 cos 8(1 + cos 8)(1 — cos 0))
= 8b%(1 — cos 6)(1 + 4 cos (1 + cos B))

= 8b%(1 — cos 9)(1 + 4 cos O + 4 cos? )

= 8b%(1 — cos 8)(1 + 2 cos 6)?

Use the half angle formula for sine:
= 8b? (2 sin” g) (14 2cos 8)?
= 16b?sin’ g(l + 2 cos 6)?

Thus:

dx\>  (dy)’ .0
(d_6> +<d_6> _4bs1n§|1+2c056|
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In the range 0 to 2?”, 1 + 2 cos @ is not less than 0, and so:

27/3 )
L:3/ 4bsin§(1+200s6)d6
0

6 du . 6 . 27T
Put u = cos 3 SO 25 = —sin > As 0 increases from 0 to > u decreases

from 1 to é Then with the half angle formula for cosine
1+2cos6 = 1+2(200$2§—1) =4u? -1
Substituting 23—2 = —sin g and change the limits of integration from 6 = 0 -
2?”, tou=1-u= é, and after dealing with the sign:
1/2
L= 12b/ (1 —4u®)(2)du
1
1/2

_ _4.3
—24b[u 3u ]1

-0((3-3-)-(-2)



