
19
The Cycloid

Why Study the Cycloid?
• As a source of interesting problems. It’s the solution to the brachistochrone
problem (curve of fastest descent), the tautochrone problem (isochronous
motion), and can be used to square the circle.

• Historical significance. It played a pivotal role in the development of mod-
ernmathematics through thework ofGalileo, Huygens, Bernoulli, Euler, and
others. Most notably, the solution of the brachistochrone problem 'kicked off'
the development of the calculus of variations.

• Geometric richness. The cycloid pushed mathematicians to refine tools for
cusps, curvature, arc length, involutes, and differentiability.

• Exact solvability in mechanics. Motion along a cycloid can be treated ana-
lytically, providing rare closed-form results in classical dynamics.

19.1 The Cycloid
A cycloid is the curve generated by a point on the circumference of a circle rolling
along a straight line [Sim92, GH97]. A cycloidwhose generating circle has radius
𝑎 is defined by the parametric equations

𝑥 = 𝑎(𝑡 − sin 𝑡), 𝑦 = 𝑎(1 − cos 𝑡) (19.1)
where 𝑡 is the circle’s angle of rotation, which starts at 𝑡 = 0 at the origin. The
equations can be easily obtained by considering the dimensions labeled in Fig.
19.1.
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768 Chapter 19. The Cycloid

Figure 19.1. A Rolling Circle forms a Cycloid

From Equs. (19.1), we obtain the curve’s derivative

𝑦′ = 𝑑𝑦
𝑑𝑥 = 𝑎 sin 𝑡 𝑑𝑡

𝑎(1 − cos 𝑡) 𝑑𝑡 =
sin 𝑡

1 − cos 𝑡 =
2 sin 1

2
𝑡 cos 1

2
𝑡

2 sin2 1
2
𝑡

= cot 1
2
𝑡.

Note that 𝑦′ isn’t defined for 𝑡 = 0, ±2𝜋,±4𝜋, etc, and those rotations correspond
to cusps where the cycloid touches the x-axis, and its tangent becomes vertical.

Rather surprisingly, the area under one arch of a cycloid (e.g. between 𝑥 = 0
and 2𝜋𝑎) is three times the area of the rolling circle:

𝐴 = ∫
2𝜋𝑎

0
𝑦 𝑑𝑥 = ∫

2𝜋

0
𝑦𝑑𝑥𝑑𝑡 𝑑𝑡 = ∫

2𝜋

0
𝑎(1 − cos 𝑡) 𝑎(1 − cos 𝑡) 𝑑𝑡

= 𝑎2∫
2𝜋

0
(1 − cos 𝑡)2 𝑑𝑡 = 𝑎2∫

2𝜋

0
(1 − 2 cos 𝑡 + cos2 𝑡) 𝑑𝑡

So we need to evaluate:

∫
2𝜋

0
(1 − 2 cos 𝑡 + cos2 𝑡) 𝑑𝑡

Split this into three parts:

∫
2𝜋

0
1 𝑑𝑡 − 2∫

2𝜋

0
cos 𝑡 𝑑𝑡 +∫

2𝜋

0
cos2 𝑡 𝑑𝑡

Consider each part in turn:

∫
2𝜋

0
1 𝑑𝑡 = 2𝜋
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and

∫
2𝜋

0
cos 𝑡 𝑑𝑡 = [sin 𝑡]2𝜋0 = sin(2𝜋) − sin(0) = 0

For the third part, use the power reduction formula, cos2 𝑡 = 1+cos(2𝑡)
2

:

∫
2𝜋

0
cos2 𝑡 𝑑𝑡 = ∫

2𝜋

0

1 + cos(2𝑡)
2 𝑑𝑡

= 1
2 ⋅ 2𝜋 +

1
2 [

sin(2𝑡)
2 ]

2𝜋

0

= 𝜋 + 0 = 𝜋

Combining the results:

∫
2𝜋

0
(1 − 2 cos 𝑡 + cos2 𝑡) 𝑑𝑡 = 2𝜋 − 2(0) + 𝜋 = 3𝜋

The complete answer:

𝑎2∫
2𝜋

0
(1 − cos 𝑡)2 𝑑𝑡 = 𝟑𝝅𝐚𝟐

This resultwas first approximated byGalileo in 1599 through the comparison
of the weights of circle and cycloid models. It was proved in 1634 by the French
mathematician Roberval.

Another unusual result is that the length of one arch of the cycloid is four
times the diameter of the rolling circle. Since 𝑑𝑥 = 𝑎(1 − cos 𝑡)𝑑𝑡 and 𝑑𝑦 =
𝑎 sin 𝑑𝑡, the arc length 𝑑𝑠 is given by

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 = 𝑎2[(1 − cos 𝑡)2 + sin2 𝑡] 𝑑𝑡2

= 2𝑎2[1 − cos 𝑡] 𝑑𝑡2 = 4𝑎2 sin2 1
2
𝑡 𝑑𝑡2,

𝑑𝑠 = 2𝑎 sin 1
2
𝑡 𝑑𝑡.

Therefore, the length of one arch (let’s use 𝑡 = 0 to 2𝜋) is

𝐿 = ∫
2𝜋

0
2𝑎 sin 1

2
𝑡 𝑑𝑡 = [ − 4𝑎 cos 1

2
𝑡]2𝜋0 = 𝟖𝐚.

This result was first noted in 1658 by the English architect Christopher Wren.
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Figure 19.2. Rolling a Circle

19.1.1 Rolling a Circle. rollCycloid.py lets the user adjust the rotation angle
of a circle, and the cycloid is drawn from the origin to a trace point located on the
circle (see Fig. 19.2).

The circle’s radius is 𝑎 = 1which explains why the cycloid cusps occur at 2𝜋
and 4𝜋, and it peaks at 𝑦 = 2.

The animation is updated by update()which translates the circle along the
x-axis, and plots the cycloid:
def update(val):
theta = math.radians(tSlider.val)
Circle.set_xdata( xsCircleFn(theta)) # translate the circle
ts = linspace(0, theta, max(2, int(50 * theta)))
xs, ys = zip( *[cycloid(t, a) for t in ts])
Cycloid.set_data(xs, ys)
x, y = cycloid(theta, a)
Point.set_data([x], [y]) # the tracer dot on the circle
fig.canvas.draw_idle()

def cycloid(t, a):
x = a * (t - math.sin(t))
y = a * (1 - math.cos(t))
return (x, y)

19.1.2 Examining Area and Arc Length. cycloidA.py lets the user change
the rolling circle’s radius (𝑎), and draws the resulting cycloid between 𝑡 = 0 and
27 radians. It calculates the area and arc length of a single arch of the curve in
twoways – using the expressions 3𝜋𝑎2 and 8𝑎, and via numerical integrationwith
Simpson’s rule. Two screenshots are shown in Fig. 19.3.

The areas are produced by calcArea():
def calcArea(a):
analyticalArea = 3 * math.pi * a * a

# For one arch, t goes from 0 to 2 pi
ts = [i * (2*math.pi)/(nPts-1) for i in range(nPts)]
xs, ys = cycloid(ts, a)
# We need dx values for numerical integration

http://coe.psu.ac.th/~ad/explore/code/cycloid/rollCycloid.py
http://coe.psu.ac.th/~ad/explore/code/cycloid/cycloidA.py
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Figure 19.3. Cycloid Areas and arc lengths for Different Radii

dxVals = [xs[i+1] - xs[i] for i in range(len(xs)-1)]
# integrate y * (dx/dt) * dt, where dx/dt = a(1 - cos(t))
dxdt = [a * (1 - math.cos(t)) for t in ts]
integrand = [ys[i] * dxdt[i] for i in range(len(ys))]
dt = (2 * math.pi) / (nPts - 1)
numericalArea = simpson(integrand, dx=dt)
return analyticalArea, numericalArea

Rather than code Simpson’s rule ourselves (see section 6.11.4), we’ve im-
ported simpson() from the SciPy module. It employs integrand to obtain the
area under the curve as a collection of thin rectangular strips of dimension 𝑦 ×
𝑑𝑥/𝑑𝑡.

The arc lengths are calculated by calcArcLen():
def calcArcLen(a):
# arc length of one arch
analyticalLen = 8 * a
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ts = [i * (2*math.pi)/(nPts-1) for i in range(nPts)]
# Arc length numerical integral
# Use cycloidDf() to get values for the derivatives
integrand = []
for t in ts:

dx_dt, dy_dt = cycloidDf(t, a)
integrand.append(math.sqrt(dx_dt**2 + dy_dt**2))

dt = (2 * math.pi) / (nPts - 1)
numericalLen = simpson(integrand, dx=dt)
return analyticalLen, numericalLen

def cycloidDf(t, a):
# Derivative of the cycloid
dx_dt = a * (1 - math.cos(t))
dy_dt = a * math.sin(t)
return (dx_dt, dy_dt)

The numerical arc length is obtained by summingmultiple small steps along
the curve using√(𝑑𝑥/𝑑𝑡)2 + (𝑑𝑦/𝑑𝑡)2.

19.1.3 Treating the Cycloid Like a Function. Since the cycloid is defined
parametrically:

𝑥 = 𝑎(𝑡 − sin 𝑡), 𝑦 = 𝑎(1 − cos 𝑡)
there’s no explicit Cartesian form 𝑦 = 𝑓(𝑥). Instead, we recover 𝑡 from the 𝑥
equation by root finding, and plug it into the 𝑦 equation.

cycloidYT.py implements this approach, assuming that 𝑎 = 1:
> python cycloidYT.py
Enter x value: 3.14159
y = 2.000000; t = 180.00 deg

> python cycloidYT.py
Enter x value: 1.570796
y = 1.673612; t = 132.35 deg

> python cycloidYT.py
Enter x value: 6.283185
y = 0.000075; t = 359.30 deg

Internally, the 𝑥 equation is rearranged into zero form
𝑎(𝑡 − sin 𝑡) − 𝑥 = 0

and SciPy’s Brent’s method is used to find the positive root for 𝑡. Brent is utilized
instead of Newton–Raphson because it doesn’t require derivatives and handles
cycloid cusps where 𝑑𝑥/𝑑𝑡 = 0.

The relevant code is in cycloidYTfromX():

http://coe.psu.ac.th/~ad/explore/code/cycloid/cycloidYT.py
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def cycloidYTfromX(x, a):
archIndex = math.floor(x / archWidth)
if archIndex != 0:

xArch = x - archIndex * archWidth
# handles negative and large x's

else:
xArch = x

if abs(xArch) < 1e-12 or abs(xArch - archWidth) < 1e-12:
return 0, 0 # cusp handling

else:
tMin = 0
tMax = 2*math.pi
t = brentq(cycloidT, tMin, tMax, args=(xArch, a))
y = a * (1 - math.cos(t))
return y, t + archIndex*2*math.pi

def cycloidT(t, x, a):
return a * (t - math.sin(t)) - x

19.2 The Tautochrone
A tautochrone is the curve for which the time taken by a bead sliding without
friction in uniform gravity along the curve to its lowest point is independent of
its starting point.

The curve was first studied by Huygens after he realized that a pendulum,
which obviously swings in a circular arc, keeps different times depending on how
far the pendulum is initially pulled away from the vertical. He investigated what
would happen if the arc was changed to an inverted cycloid, and discovered that
the pendulum bob would swing down from any starting point to the bottom in
the same amount of time. In other words, an inverted cycloid is a tautochrone.

One way to formalize this is to turn Fig. 19.1 upside down, as in Fig. 19.4.
This points the y-axis in the direction of the gravitational force but makes the
downward y-coordinates positive, conveniently leaving the cycloid equations un-
changed.

The kinetic energy of the bead is initially zero, since it’s at rest. The work
done by gravity in moving the bead from (0, 0) to some point (𝑥, 𝑦) is 𝑚𝑔𝑦, and
this must equal the change in kinetic energy. That is,

𝑚𝑔𝑦 = 1
2𝑚𝑣

2 − 1
2𝑚(0)

2.

Thus, the velocity of the bead when it reaches (𝑥, 𝑦) is

𝑣 = √2𝑔𝑦.
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Figure 19.4. An Inverted Cycloid

That is,
𝑑𝑠
𝑑𝑡 = √2𝑔𝑦,

where 𝑑𝑠 is the arc length differential along the bead’s path, or

𝑑𝑡 = 𝑑𝑠
√2𝑔𝑦

= √1 + (𝑑𝑦/𝑑𝑥)2 𝑑𝑥
√2𝑔𝑦

.

The time 𝑇𝑓 it takes the bead to slide along a curve 𝑦 = 𝑓(𝑥) from 𝑂 to 𝐵(𝑎𝜋, 2𝑎)
is

𝑇𝑓 = ∫
𝑥=𝑎𝜋

𝑥=0 √
1+ (𝑑𝑦/𝑑𝑥)2

2𝑔𝑦 𝑑𝑥.

What curve 𝑦 = 𝑓(𝑥), if any, minimizes the value of this integral? For the
cycloid, 𝑇𝑓 takes the form

𝑇cycloid = ∫
𝑥=𝑎𝜋

𝑥=0 √
𝑑𝑥2 + 𝑑𝑦2

2𝑔𝑦 .

From Equs. (19.1):

𝑑𝑥 = 𝑎(1 − cos 𝑡) 𝑑𝑡, 𝑑𝑦 = 𝑎 sin 𝑡 𝑑𝑡,
and so

𝑇cycloid = ∫
𝑡=𝜋

𝑡=0 √
𝑎2(2 − 2 cos 𝑡)
2𝑔𝑎(1 − cos 𝑡) 𝑑𝑡

= ∫
𝜋

0 √
𝑎
𝑔 𝑑𝑡 = 𝜋√

𝑎
𝑔 .

Thus, the amount of time it takes the friction-less bead to slide down the cycloid
from 𝑂 to the bottom at 𝐵 is 𝜋√𝑎/𝑔.
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Suppose that instead of𝑂we start the bead at some lower point, (𝑥0, 𝑦0). The
bead’s velocity at (𝑥, 𝑦) is now

𝑣 = √2𝑔(𝑦 − 𝑦0) = √2𝑔𝑎(cos 𝑡0 − cos 𝑡)
since 𝑦 = 𝑎(1 − cos 𝑡). Accordingly, the time required for the bead to slide from
(𝑥0, 𝑦0) down to 𝐵 is

𝑇 = ∫
𝜋

𝑡0 √
𝑎2(2 − 2 cos 𝑡)

2𝑔𝑎(cos 𝑡0 − cos 𝑡) 𝑑𝑡 = √
𝑎
𝑔 ∫

𝜋

𝑡0 √
1− cos 𝑡

cos 𝑡0 − cos 𝑡 𝑑𝑡

= √
𝑎
𝑔 ∫

𝜋

𝑡0 √
2sin2(𝑡/2)

(2 cos2(𝑡0/2) − 1) − (2 cos2(𝑡/2) − 1) 𝑑𝑡

= √
𝑎
𝑔 ∫

𝜋

𝑡0

sin(𝑡/2) 𝑑𝑡
√cos2(𝑡0/2) − cos2(𝑡/2)

Apply the substitution 𝑢 = cos(𝑡/2) (and −2𝑑𝑢 = sin(𝑡/2) 𝑑𝑡), and set 𝑐 =
cos(𝑡0/2):

𝑇 = √
𝑎
𝑔 ∫

𝜋

𝑡0

−2𝑑𝑢
√𝑐2 − 𝑢2

Integrating:

𝑇 = 2√
𝑎
𝑔 [− sin−1 𝑢𝑐 ]

𝜋

𝑡0

= 2√
𝑎
𝑔 [− sin−1 cos(𝑡/2)

cos(𝑡0/2)
]
𝜋

𝑡0

= 2√
𝑎
𝑔 (− sin−1 0 + sin−1 1) = 𝜋√

𝑎
𝑔 .

This is the same amount of time that it took the bead to slide from 𝑂 to 𝐵,
so beads starting simultaneously from different points on the inverted cycloid in
Fig. 19.4 will all reach the bottom of the curve at 𝐵 concurrently.

19.2.1 Simple Harmonic Motion (SHM). 𝑇 is the descent time from𝑂 to
the bottom of the cycloid at 𝐵. This implies that the oscillation time (or period),
from 𝑂 to the other extreme, and back to 𝑂, is 4 ∗ 𝑇 = 4𝜋√𝑎/𝑔, which is often
written as

𝑇osc = 2𝜋
√

4𝑎
𝑔 .

In general, any motion that is simple harmonic relates its period 𝑇𝑝 to its angular
frequency 𝜔 by

𝑇𝑝 =
2𝜋
𝜔 .
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So the cycloid exhibits SHM, and we can equate

𝜔 =√
𝑔
4𝑎.

19.2.2 Animating the Cycloid as a Tautochrone. SHM is also charac-
terized by the differential equation:

𝑑2𝑠
𝑑𝑡2

+ 𝜔2𝑠 = 0,

where 𝑠 is the object’s displacement from its equilibrium position. With initial
conditions 𝑠(0) = 𝑠0 and 𝑠′(0) = 0, this equation has the solution:

𝑠(𝑡) = 𝑠0 cos 𝜔𝑡
This gives us a simple way to implement the movement of multiple beads

down an inverted cycloid in tautochrone.py, as shown in Fig. 19.5.

Figure 19.5. A Cycloid as a Tautochrone

Each bead is initialized with a starting 𝑡 value and color.
beads = [
{'theta':1.0, 'color':'#0000c0'},
{'theta':0.8, 'color':'#c00000'},
{'theta':0.6, 'color':'#00c000'},
{'theta':0.4, 'color':'#c0c000'}

]

Inside animate(), which is called for each animation frame, each bead’s 'theta'
is combined with the current w to calculate its (𝑥, 𝑦) position.
def animate(fno):
w = fno/(nFrames-1) # 0 to 1
for i, bead in enumerate(beads):

theta = -bead['theta']*math.pi * math.cos(w * math.pi/2)
xc, yc = cycloid(theta, a)
x = h/2*xc + x0

http://coe.psu.ac.th/~ad/explore/code/cycloid/tautochrone.py
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y = h/2*yc + y0
# (x0,y0) is the top point; h is the window height
beadPts[i].set_data([x], [y])

return beadPts

19.3 A Cycloid’s Involute
Once Huygens had established the cycloid’s tautochrone property, how could he
arrange for a clock’s pendulum to move along a cycloidal, rather than a circu-
lar, path? One solution is to suspend the pendulum from the cusp between two
inverted cycloids with its rope’s length equal to the cycloid’s semi-arch (see Fig.
19.6). This constrains the pendulum’s path to follow a cycloid.

Figure 19.6. An Cycloidal Pendulum

Huygens termed this curve an involute: the locus of the end of a taut string
as it unwraps itself from a cycloid surface (or wraps itself over such as surface).
The equation for the involute is obtained as follows. Start with the parametric
form of the surface curve

𝐂(𝑡) = (𝑥(𝑡), 𝑦(𝑡)),
where 𝐂′(𝑡) ≠ 𝟎, and define its arc length between a starting angle 𝑡0 and 𝑡:

𝑠(𝑡) = ∫
𝑡

𝑡0
‖𝐂′(𝑢)‖ 𝑑𝑢,

The unit tangent vector is

𝐓(𝑡) = 𝐂′(𝑡)
‖𝐂′(𝑡)‖ ,

which allows the involute to be expressed as

𝐈(𝑡) = 𝐂(𝑡) − 𝑠(𝑡) 𝐓(𝑡).
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This is depicted in Fig. 19.7. The end of the (purple) string initially touches the
surface curve 𝐂() at 𝑥 = 𝜋𝑎, the peak of the cycloid’s arch, and is attached at
𝑥 = 2𝜋𝑎, in the cusp between two arches. Currently, the string has unwrapped
so it’s tangent is at angle 𝑡, and the tangent segment’s length is 𝑠(𝑡). The involute
traced out by the end of the string is 𝐈() (the red curve).

Figure 19.7. An Involute of a Cycloid

We can plug cycloid-specific details into 𝐈(𝑡):

𝐂(𝑡) = (𝑎(𝑡 − sin 𝑡), 𝑎(1 − cos 𝑡)), 𝐂′(𝑡) = 𝑎(1 − cos 𝑡, sin 𝑡),

and

‖𝐂′(𝑡)‖ = 2𝑎 sin 𝑡
2 .

The arc length of the unwrapped string, 𝑠(𝑡), from 𝑡 = 𝜋 to the current angle, is

𝑠(𝑡) = ∫
𝑡

𝜋
2𝑎 sin 𝑢2 𝑑𝑢 = 2𝑎[−2 cos 𝑢2 ]

𝑢=𝑡

𝑢=𝜋

= −4𝑎 cos 𝑡2 − (−4𝑎 cos 𝜋2 ) = −4𝑎 cos 𝑡2 .

The unit tangent is

𝐓(𝑡) = 𝐂′(𝑡)
‖𝐂′(𝑡)‖ =

𝑎(1 − cos 𝑡, sin 𝑡)
2𝑎 sin 1

2

= (sin 𝑡
2 , cos

𝑡
2),

by utilizing half angles identities to rewrite the numerator.
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We formulate 𝐈(𝑡) = 𝐂(𝑡) − 𝑠(𝑡)𝐓(𝑡), by considering its 𝑥 and 𝑦 parts sepa-
rately:

𝐼𝑥(𝑡) = 𝑎(𝑡 − sin 𝑡) − (−4𝑎 cos 𝑡2) sin
𝑡
2 = 𝑎(𝑡 − sin 𝑡) + 4𝑎 cos 𝑡2 sin

𝑡
2

= 𝑎(𝑡 − sin 𝑡) + 2𝑎 sin 𝑡 = 𝑎(𝑡 + sin 𝑡),

𝐼𝑦(𝑡) = 𝑎(1 − cos 𝑡) − (−4𝑎 cos 𝑡2) cos
𝑡
2 = 𝑎(1 − cos 𝑡) + 4𝑎 cos2 𝑡2

= 𝑎(1 − cos 𝑡) + 2𝑎(1 + cos 𝑡) = 𝑎(3 + cos 𝑡).
So:

𝐈(𝑡) = (𝑎(𝑡 + sin 𝑡), 𝑎(3 + cos 𝑡))
How does this compare to the surface cycloid equation, 𝐂(𝑡), with 𝑡 replaced by
𝜙:

𝐂(𝜙) = (𝑎(𝜙 − sin 𝜙), 𝑎(1 − cos 𝜙)).
Set 𝜙 = 𝑡 + 𝜋, and simplify 𝐂():

𝐂(𝑡 + 𝜋) = 𝑎((𝑡 + 𝜋) − sin(𝑡 + 𝜋), 1 − cos(𝑡 + 𝜋))

= 𝑎(𝑡 + 𝜋 + sin 𝑡, 1 + cos 𝑡).
Equate the components of 𝐈() and 𝐂():

𝐼𝑥(𝑡) = 𝑎(𝑡 + sin 𝑡) = 𝑎(𝑡 + 𝜋 + sin 𝑡) − 𝑎𝜋 = 𝐶𝑥(𝑡 + 𝜋) − 𝑎𝜋,

𝐼𝑦(𝑡) = 𝑎(3 + cos 𝑡) = 𝑎(1 + cos 𝑡) + 2𝑎 = 𝐶𝑦(𝑡 + 𝜋) + 2𝑎
or,

𝐈(𝑡) = 𝐂(𝑡 + 𝜋) + (−𝑎𝜋, 2𝑎)
This shows that the involute 𝐈(𝑡) is a cycloid, with its 𝑡 angle is rotated by 𝜋 and
translated by (−𝑎𝜋, 2𝑎)) away from 𝐂(𝑡).

19.3.1 Drawing a Cycloid Involute. involuteCycs.py unwraps two strings
from the crests of adjacent cycloids towards a center line above the intermediate
cusp (see Fig. 19.8). As the stringsmove, line segments are drawn at their current
tangents with lengths equal to the arc distance from the crests to those tangents.
The coordinates of the ends of the moving segments are collected and plotted,
forming two halves of a new cycloid.

During the animation, update() draws each frame by calling tangentSeg()
twice to get the coordinates for the ends of the segments. To explaintangentSeg(),
we’ll focus on how (xEnd, yEnd) is calculated for the left-hand string, as shown
in Fig. 19.9.

It’s a little hard to see but tangentSeg() implements a version of
𝐈(𝑡) = 𝐂(𝑡) − 𝑠(𝑡) 𝐓(𝑡) ∶

http://coe.psu.ac.th/~ad/explore/code/cycloid/involuteCycs.py
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Figure 19.8. Drawing a Cycloid Involute

Figure 19.9. Calculating a Segment End Coordinate

def tangentSeg(t, a, xOffset, dir):
x, y = cycloid(t, a, xOffset) # C(t)
dxdt, dydt = cycloidDf(t, a) # C'(t)
speed = math.hypot(dxdt, dydt) # |C'(t)|
if speed == 0.0:

return [x, x], [y, y], x, y

ux = dxdt / speed # T(t) for x and y
uy = dydt / speed
if dir < 0:

ux = -ux
uy = -uy

arcLength = 4.0 * a * abs(math.cos(t / 2.0)) # s(t)
xEnd = x + arcLength * ux # I(t) for x and y
yEnd = y + arcLength * uy
return [x, xEnd], [y, yEnd], xEnd, yEnd

𝐂(𝑡) is implemented by cycloid(), while𝐓(𝑡) = 𝐂′(𝑡)/‖𝐂′(𝑡)‖ employscycloidDf()
and math.hypot(). 𝑠(𝑡), the arc length, must be 4𝑎 or less since the unwinding
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string only extends half-way around the cycloid (between 𝑥 = 𝜋𝑎 and 2𝜋𝑎 on the
left hand side).

xOffset and dir are used to generalize the function so it can be employed for
the string wrapped over the right-hand cycloid. The relevant lines in update()
are:

lx, ly, lxEnd, lyEnd = tangentSeg(tLeft, a, 0.0, dir=-1)
rx, ry, rxEnd, ryEnd = tangentSeg(tRight, a, 2.0*math.pi, dir=1)

19.4 The Brachistochrone
In 1696, Johann Bernoulli conceived and solved the brachistochrone problem,
and published the problem (but not the solution) as a challenge to other mathe-
maticians. The problem is this: among all smooth curves in a vertical plane that
join a point 𝑃0 to a lower point 𝑃1, not directly below it, find the curve along which
a particle will slide from 𝑃0 to 𝑃1 in the shortest possible time.

Following Huygens’ approach, we can think of the particle as a bead of mass
𝑚 sliding down a friction-less wire, with𝑚𝑔 the only force acting upon it. Locate
𝑃0 at the origin and set 𝑃1 = (𝑥1, 𝑦1) as in Fig. 19.10. Note that 𝑃1 does not need to
be the bottom of the cycloid (i.e. point 𝐵 in Fig. 19.4).

Figure 19.10. A Brachistochrone Bead at 𝑃

The bead is released from rest at 𝑃0, so its initial velocity and kinetic energy
are zero. The work done by gravity in pulling it down to an arbitrary point 𝑃 =
(𝑥, 𝑦) is 𝑚𝑔𝑦, which must equal the increase in its kinetic energy. So 1

2
𝑚𝑣2 =

𝑚𝑔𝑦, and therefore

𝑣 = 𝑑𝑠
𝑑𝑡 = √2𝑔𝑦.
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This can be written as

𝑑𝑡 = 𝑑𝑠
√2𝑔𝑦

= √𝑑𝑥2 + 𝑑𝑦2
√2𝑔𝑦

= √1 + (𝑑𝑦/𝑑𝑥)2 𝑑𝑥
√2𝑔𝑦

.

The total time 𝑇1 required for the bead to slide down the wire from 𝑃0 to 𝑃1, will
depend on the wire’s shape as specified by 𝑦 = 𝑓(𝑥), so that

𝑇1 = ∫𝑑𝑡 = ∫
𝑥1

0 √
1+ (𝑦′)2
2𝑔𝑦 𝑑𝑥.

The brachistochrone problem therefore amounts to finding a curve 𝑦 = 𝑓(𝑥) that
passes through 𝑃0 and 𝑃1 that minimizes this integral.

We start by considering an apparently unrelated problem in optics. Fig. 19.11
illustrates a ray of light traveling from 𝐴 to 𝑃 with constant velocity 𝑣1. Upon
entering a denser (gray) medium, it travels from 𝑃 to 𝐵 with a smaller velocity 𝑣2.

Figure 19.11. The Refraction of Light

The total time 𝑇 required for the journey is

𝑇 = √𝑎2 + 𝑥2
𝑣1

+ √𝑏2 + (𝑐 − 𝑥)2
𝑣2

.

If we assume that the ray of light is able to select its path from 𝐴 to 𝐵 in such a
way as to minimize 𝑇, then 𝑑𝑇/𝑑𝑥 = 0. Then the two parts of that derivative can
be equated:

𝑥
𝑣1√𝑎2 + 𝑥2

= 𝑐 − 𝑥
𝑣2√𝑏2 + (𝑐 − 𝑥)2

,
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By referring to Fig. 19.11, the distances ratios can be replaced by sines involving
𝛼1 and 𝛼2:

sin 𝛼1
𝑣1

= sin 𝛼2
𝑣2

.

This is Snell’s law of refraction, and the assumption that light travels from one
point to another along the path requiring the shortest time is Fermat’s principle
of least time.

Figure 19.12. Refraction Angles

The velocity of light is constant within a layer in Fig. 19.12, but decreases as
it passes down through each subsequent denser layer, and is refracted more and
more towards the vertical. When Snell’s law is applied at the boundaries between
the layers, we obtain

sin 𝛼1
𝑣1

= sin 𝛼2
𝑣2

= sin 𝛼3
𝑣3

= sin 𝛼4
𝑣4

.

As we make these layers thinner and more numerous, in the limit the velocity of
light decreases continuously as the ray descends, and we get

sin 𝛼
𝑣 = 𝑐

Returning to the brachistochrone problem, let’s introduce the coordinate
scheme shown in Fig. 19.13 and assume that the bead (like the ray of light) is ca-
pable of selecting the path from 𝑃0 to 𝑃1 that requires the shortest possible travel



784 Chapter 19. The Cycloid

Figure 19.13. Refraction for the Brachistochrone

time. The argument given above yields the same result for the sliding bead
sin 𝛼
𝑣 = 𝑐

We also have

sin 𝛼 = cos 𝛽 = 1
sec 𝛽 = 1

√1 + tan2 𝛽

= 1
√1 + (𝑦′)2

.

Combining these equations, and the earlier velocity equality 𝑣 = √2𝑔𝑦, produces
𝑦[1 + (𝑦′)2] = 𝑘.

Replace 𝑦′ by 𝑑𝑦/𝑑𝑥, and separate the variables

𝑑𝑥 = √
𝑦

𝑘 − 𝑦 𝑑𝑦,

so
𝑥 = ∫√

𝑦
𝑘 − 𝑦 𝑑𝑦.

Employ the substitution 𝑢2 = 𝑦/(𝑘 − 𝑦) so that

𝑦 = 𝑘𝑢2
1 + 𝑢2 and 𝑑𝑦 = 2𝑘𝑢

(1 + 𝑢2)2 𝑑𝑢,

resulting in

𝑥 = ∫ 2𝑘𝑢2
(1 + 𝑢2)2 𝑑𝑢.
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The trigonometric substitution 𝑢 = tan𝜙, and its derivative 𝑑𝑢 = sec2 𝜙𝑑𝜙, let
us write this as

𝑥 = ∫ 2𝑘 tan2 𝜙 sec2 𝜙
(1 + tan2 𝜙)2

𝑑𝜙

= 2𝑘∫ tan2 𝜙
sec2 𝜙 𝑑𝜙 = 2𝑘∫sin2 𝜙𝑑𝜙

= 𝑘∫(1 − cos 2𝜙) 𝑑𝜙

= 1
2𝑘(2𝜙 − sin 2𝜙).

The constant of integration is zero because 𝑦 = 0 when 𝜙 = 0, and since 𝑃0 is at
the origin, we also have 𝑥 = 0 when 𝜙 = 0.

The formula for 𝑦 is

𝑦 = 𝑘 tan2 𝜙
sec2 𝜙 = 𝑘 sin2 𝜙 = 1

2𝑘(1 − cos 2𝜙).

Simplifying these equations by writing 𝑎 = 1
2
𝑘 and 𝜃 = 2𝜙, leads to

𝑥 = 𝑎(𝜃 − sin 𝜃), 𝑦 = 𝑎(1 − cos 𝜃).
In other words, the curve that produces the shortest travel time for the Brachis-
tochrone problem is the cycloid

19.4.1 Animating the Brachistochrone. brachAnim.py visualizes and com-
pares three different paths (a straight line, an arc of a circle, and a cycloid) for a
bead sliding under gravity from point (0,0) to an endpoint.

Figure 19.14. The Brachistochrone Race

The animation demonstrates that the cycloid, despite being longer than a
circular arc between the same two points, causes the bead to reach the endpoint
faster than both the straight line and arc. However, the cycloid bead only just
beats the bead sliding along the arc, so it’s not surprising that early investigators,
such as Galileo, concluded that the arc was fastest.

http://coe.psu.ac.th/~ad/explore/code/cycloid/brachAnim.py
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It’s possible to pause/resume the animation by pressing the space bar, which
allows the user to compare the positions of the beads during their journey. One
interesting aspect is that the circular bead (the blue dot) is ahead of the cycloid
bead (the red dot) for much of the trip (see Fig. 19.14).

It’s important to remember that brachAnim.py is not a real-world experi-
ment (e.g. unlike the one at https://mathsmodels.co.uk/2021/06/01/Bra
nchistochrone2/). For example, no account ismade of friction or air resistance,
and the course of the bead’s path along the arc is only approximate because the
exact time equation is an elliptic integral of the form

𝑡(𝜃) =
√

𝑅
2𝑔 ∫

𝜃

𝜃0

𝑑𝜙
√cos 𝜙 − cos 𝜃0

,

where 𝑅 is the circle’s radius, and the bead travels from angular position 𝜃0 to
𝜃. There’s no closed form solution for this expression, so numerical methods
must be used. My code employs time = distance / velocity, where the total dis-
tance is the sum of small segments along the arc, and the current velocity is√2𝑔ℎ
where ℎ is the vertical drop from the starting point. The details can be found in
calculateCircularArc() in brachAnim.py.

Another issue is what curvature should be used for the arc since it’s only
constrained by two points. My code employs a fixed relationship to transform
the chord length between the start and end points into the circle’s radius.

The bead’s journey time along the cycloid is much simpler; it’s based on

𝑇 = 𝜋√
𝑎
𝑔 ,

resulting in:
_, thetaEnd = cycloidYTfromX(xEnd, a)
t = thetaEnd * math.sqrt(a / G)
brCurveX, brCurveY = cycloidPts(a, thetaEnd, 500)

The difficult part is determining the angle thetaEnd of the endpoint (which is not
necessarily 𝜋) but I reuse cycloidYTfromX() from section 19.1.3 for that task.

19.5 Epicycloids
An epicycloid is a curve generated by a point on the circumference of a circle
which is rolling on the outside of a fixed circle (see Fig. 19.15). In other words,
it’s the cycloid again but with the flat surface replaced by a circle [Mao20].

More complicated curves can be generated by having a third circle roll on
the second, a fourth on the third, etc. Epicycloids were introduced by the ancient
Greeks and, until the 16th century, formed the basis for ideas about the paths of
the Moon and planets.

https://mathsmodels.co.uk/2021/06/01/Branchistochrone2/
https://mathsmodels.co.uk/2021/06/01/Branchistochrone2/
http://coe.psu.ac.th/~ad/explore/code/cycloid/brachAnim.py


19.5. Epicycloids 787

An epicycloid whose fixed and rolling circles have radii 𝑅 and 𝑟 respectively
is described by the parametric equations:

𝑥 = (𝑅 + 𝑟) cos 𝑡 − 𝑟 cos(𝑅 + 𝑟
𝑟 𝑡) 𝑦 = (𝑅 + 𝑟) sin 𝑡 − 𝑟 sin(𝑅 + 𝑟

𝑟 𝑡).
𝑡 is the angle formed by the x-axis and the ray from the center of the fixed circle
to the point of contact with the rolling circle, as depicted in Fig. 19.15.

Figure 19.15. The Epicycloid Circles

If the radii of the fixed circle and rolling circle are equal (𝑅 = 𝑟) then a com-
plete tour by the rolling circle around the fixed one will form a single arc. If
𝑅 = 2𝑟 then the tour will include two arcs, and when 𝑅 = 𝑛𝑟 the tour will con-
tain 𝑛 arcs. Between the arcs, the curve will form cusps when the rolling circle’s
tracer point touches the fixed circle.

epicycloid.py asks the user to enter a float representing 𝑅/𝑟, which is used
to calculate the radius of the small circle (𝑟) since the large circle is a fixed size
(𝑅 = 4).

The plotting uses a (verbose) translation of the maths:
def epicycloidPt(bigR, smallR, t):
x = (bigR + smallR) * math.cos(t) \

- smallR * math.cos((bigR + smallR)/smallR * t)
y = (bigR + smallR) * math.sin(t) \

- smallR * math.sin((bigR + smallR)/smallR * t)
return x, y

Fig. 19.16 shows four runs of epicycloid.py, including a cardioid (one
cusp; 𝑅/𝑟 = 1) and a nephroid (two cusps; 𝑅/𝑟 = 2).

19.5.1 From Epicycloid to Epicycle. The parametric equations can be bet-
ter visualized by increasing the size of the fixed circle, as in Fig. 19.17, so the
rotating tracer point (the red dot) on the circumference of the rolling circle can
be specified relative to the circumference of the fixed circle. In this version, the
smaller circle is usually called the epicycle and the larger circle the deferent.

http://coe.psu.ac.th/~ad/explore/code/cycloid/epicycloid.py
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Figure 19.16. Four Epicycloids

Figure 19.17. From Epicycloid to Epicycle

It’s also useful to redefine the epicycle’s equations in terms of angular speed.
Let

𝐫(𝑡) = (𝑅 + 𝑟) (cos 𝑡sin 𝑡) + 𝑟 (
− cos(𝑅+𝑟

𝑟
𝑡)

− sin(𝑅+𝑟
𝑟
𝑡)
)
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or:
𝐫(𝑡) = 𝑅def (

cos 𝜔𝑡
sin𝜔𝑡) + 𝑟epi (

cos(Ω𝑡)
sin(Ω𝑡))

where:
• 𝑅def is the radius of the deferent,

• 𝑟epi is the radius of the epicycle,
• 𝜔 is the angular speed of the deferent,

• Ω is the angular speed of the epicycle relative to the deferent,
The angular velocities are related by:

Ω
𝜔 = −𝑅 + 𝑟

𝑟
By adding more epicycles, with varying speeds and sizes, we can formulate

increasingly complex curves:
𝑥(𝑡) = ∑

𝑖
𝑅𝑖 cos(𝜔𝑖𝑡 + 𝜙𝑖)

𝑦(𝑡) = ∑
𝑖
𝑅𝑖 sin(𝜔𝑖𝑡 + 𝜙𝑖)

𝜙𝑖 is how much circle 𝑖 is initially rotated, and is called a phase offset. If
we don’t utilize phase offsets, then we can only describe epicycles where all the
circles start neatly aligned.

19.5.2 From Epicycles to Discrete Fourier Transforms. Instead of think-
ing about points along the 𝑥 and 𝑦 axes, imagine them as complex numbers using
the real and imaginary axes:

𝑝𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗

𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡) =
𝑁
∑
𝑗
𝑅𝑗(cos(𝜔𝑗𝑡 + 𝜙𝑗) + 𝑖 sin(𝜔𝑗𝑡 + 𝜙𝑗))

Now make use of Euler’s formula:

𝑧(𝑡) =
𝑁
∑
𝑗
𝑅𝑗𝑒𝑖 𝜔𝑗𝑡+𝜙𝑗

Even better, permit 𝑋𝑗 be a complex number:

𝑧(𝑡) =
𝑁
∑
𝑗
𝑋𝑗𝑒𝑖𝜔𝑗𝑡

This form almost matches the Discrete Fourier Transform (DFT) [Kre10]. This
shouldn’t be too surprising since DFTs essentially allows us to split any periodic
function into a series of connected sinusoidal functions.
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19.6 Hypocycloids
A hypocycloid is a curve generated by a point on the circumference of a circle
rolling on the inside of a fixed circle [Mao20]. A hypocycloid whose fixed and
rolling circles have the radii 𝑅 and 𝑟 respectively has the parametric equations

𝑥 = (𝑅 − 𝑟) cos 𝑡 − 𝑟 cos(𝑅 − 𝑟
𝑟 𝑡) 𝑦 = (𝑅 − 𝑟) sin 𝑡 − 𝑟 sin(𝑅 − 𝑟

𝑟 𝑡).

Once again, 𝑡 is the angle formed by the x-axis and the ray from the center of the
fixed circle to the point of contact with the rolling circle, as in Fig. 19.18.

Figure 19.18. The Hypocycloid Circles

In a similar manner to the epicycloid, the hypocycloid has a cusp where its
tracer point meets the fixed circle, and describes two arcs when the radius of the
fixed circle is twice the length of the radius of the rolling circle (𝑅 = 2𝑟), and 𝑛
arcs when 𝑅 = 𝑛𝑟.

hypocycloid.py asks the user to enter a float representing 𝑅/𝑟, which is used
to calculate the radius of the small circle (𝑟) since the large circle is a fixed size
(𝑅 = 5).

The code based on the maths:

def hypocycloidPt(bigR, smallR, t):
x = (bigR - smallR) * math.cos(t) \

+ smallR * math.cos((bigR - smallR) / smallR * t)
y = (bigR - smallR) * math.sin(t) \

- smallR * math.sin((bigR - smallR) / smallR * t)
return x, y

Fig. 19.19 shows six runs of hypocycloid.py, and illustrates a few interest-
ing cases: a straight line when 𝑅/𝑟 = 2, and a deltoid and astroid. Note that an
astroid appears when 𝑅/𝑟 = 4 (as expected) and also when 𝑅/𝑟 = 4/3.

http://coe.psu.ac.th/~ad/explore/code/cycloid/hypocycloid.py
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Figure 19.19. Six Hypocycloids

Figure 19.20. The Astroid

19.6.1 The Astroid. The astroid is a hypocycloid whose rolling circle has a
diameter one-fourth that of the fixed circle (see Fig. 19.20).
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The formula for the astroid sets 𝑅 = 4𝑟 in the equations for the hypocycloid:

𝑥 = (4𝑟 − 𝑟) cos 𝑡 + 𝑟 cos (4𝑟 − 𝑟
𝑟 𝑡) = 𝑟(3 cos 𝑡 + cos 3𝑡),

𝑦 = (4𝑟 − 𝑟) sin 𝑡 − 𝑟 sin (4𝑟 − 𝑟
𝑟 𝑡) = 𝑟(3 sin 𝑡 − sin 3𝑡).

With the help of

cos 3𝑡 = 4 cos3 𝑡 − 3 cos 𝑡; sin 3𝑡 = 3 sin 𝑡 − 4 sin3 𝑡,

we find

𝑥 = 𝑟(3 cos 𝑡 + cos 3𝑡) = 4𝑟 cos3 𝑡
𝑦 = 𝑟(3 sin 𝑡 − sin 3𝑡) = 4𝑟 sin3 𝑡,

or
𝑥 = 𝑅 cos3 𝑡, 𝑦 = 𝑅 sin3 𝑡.

These equations are implemented in astroid.py as:

def astroid(a, nPts):
ts = [2 * math.pi * i / nPts for i in range(nPts + 1)]
xs = [a * (math.cos(t) ** 3) for t in ts]
ys = [a * (math.sin(t) ** 3) for t in ts]
return xs, ys

astroid.py generates the same shape as the one shown in the bottom right of
Fig. 19.19. But what about the top-left example, where 𝑅/𝑟 = 4/3? This only
changes the very last step of the equation’s derivation given above since now 3𝑅 =
4𝑟. This affects the drawing behavior, but its only noticeable in the animation –
the rolling circle for 𝑅/𝑟 = 4/3 takes 3 tours around the fixed circle to complete
the astroid, whereas when 𝑅/𝑟 = 4 the much smaller rolling circle needs just a
single tour. In general, a hypocycloid with ratio 𝑅/𝑟 (in reduced form) completes
its pattern after the rolling circle has made 𝑟 tours around the fixed circle.

The astroid has some remarkable properties. For example, all of its tangent
lines are the same length𝑅 between the𝑥 and 𝑦 axes. Conversely, if a line segment
of fixed length 𝑅 with its endpoints on the x- and y-axes is allowed to assume all
possible positions, then the envelope formed by all of the line segments is an
astroid (see Fig. 19.21(a)).

The astroid is also the envelope of the family of ellipses of the form 𝑥2

𝑎2
+

𝑦2

(𝑅−𝑎)2
= 1, where the sum of their semi-major and semi-minor axes is 𝑅 (see Fig.

19.21(b)).

http://coe.psu.ac.th/~ad/explore/code/cycloid/astroid.py
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Figure 19.21. Drawing Astroids

19.7 Linking Hypocycloids and Epicycloids
The parametric equations for the hypocycloid and the epicycloid only differ in
the sign associated with 𝑟. When the two radii are combined using 𝑅 + 𝑟 then a
epicycloid results. When its𝑅−𝑟, then an hypocycloid is created. The connection
becomes clear is we think of the meaning of −𝑟 in terms of the position of the
rolling circle. A positive radius places it on the outside of the fixed circle while a
negative moves it inside.

ehcycloid.py relaxes the constraints imposed by epicycloid.py andhypocycloid.py
that 𝑅/𝑟 be positive, which makes it possible for one program to produce both
types of cycloid. To keep the code short, only the cycloid curve is drawn without
the circles or the animation (see Fig. 19.22).

Figure 19.22. Hypocycloids and Epicycloids

http://coe.psu.ac.th/~ad/explore/code/cycloid/ehcycloid.py
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19.8 Squaring the Circle
The problem of squaring the circle, namely constructing a square with the same
area as a given circle using a straight edge and compass alone, is one of the classic
problems of Greekmathematics. In 1882, Ferdinand von Lindemann proved that
it wasn’t possible if only those tools were available. However, it’s quite straight-
forward if other mechanisms are permitted, such as a circle rolling along a line,
to produce a cycloid as in Fig. 19.23.

Figure 19.23. Squaring the Circle with a Cycloid

The (red) tracer point on the circle’s circumference, moving from 𝐴 to 𝐶 de-
scribes a cycloid, meaning that the length of the straight line from 𝐴 to 𝐶 is equal
to the circumference of the circle – that is, 2𝜋𝑟.

Thus, if 𝐵 is the midpoint of 𝐴𝐶, then 𝐵𝐶 = 𝜋𝑟. Hence, if 𝐶𝐷 = 𝑟, the area
of the rectangle 𝐵𝐶𝐷𝐸 is 𝜋𝑟× 𝑟 = 𝜋𝑟2, which is also the area of the rolling circle.
'Squaring' this rectangle yields the square with the side 𝑃𝐶. Thus the circle is also
squared.

How is rectangle 𝐵𝐶𝐷𝐸 created? Extend 𝐵𝐶 rightwards. Construct a circle
with center 𝐶 and radius 𝑟 through 𝐷; it intersects 𝐵𝐶 at 𝐸. Find the midpoint
𝐹 of 𝐵𝐸. Construct a circle with diameter 𝐵𝐸 and center 𝐹. Extend the line 𝐶𝐷
until it meets that big circle at 𝑃. Construct a square on the segment 𝐶𝑃, which
we’ll call 𝐶𝑃𝑄𝑅.
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How do we know that Area(𝐵𝐶𝐷𝐸) = Area(𝐶𝑃𝑄𝑅)? Consider:
Area(𝐶𝑃𝑄𝑅) = 𝐶𝑃 ⋅ 𝐶𝑅

= 𝐶𝑃2 = 𝐹𝑃2 − 𝐹𝐶2

= (𝐹𝑃 − 𝐹𝐶)(𝐹𝑃 + 𝐹𝐶)
= (𝐹𝐸 − 𝐹𝐶)(𝐵𝐹 + 𝐹𝐶) because 𝐹𝑃 = 𝐹𝐸 = 𝐵𝐹
= 𝐶𝐸 ⋅ 𝐵𝐶 = 𝐶𝐷 ⋅ 𝐵𝐶
= Area(𝐵𝐶𝐷𝐸).

This means that the rolling circle, rectangle, and square in Fig. 19.23 all have
the same area, 𝜋𝑟2, and we have successfully squared the circle.

Exercises
(1) Determine a 𝑥 = 𝑓(𝑦) equation for the cycloid by eliminating 𝜃 from the

parametric equations in Equs. 19.1.

(2) Show that the second derivative of the cycloid is 𝑦″ = 𝑑𝑦′/𝑑𝑥 = −𝑎/𝑦2.
Observe that this implies that the cycloid is concave down between the cusps.

(3) Show that the tangent to the cycloid at the point𝑃 in Fig. 19.24 passes through
the top of the rolling circle.

Figure 19.24. Cycloid Normal

(4) Assume that the circle in Fig. 19.24 rolls to the right along the x-axis at a
constant speed, with the center 𝐶 moving at 𝑣0 units per second.

(a) Find the rates of change of the coordinates 𝑥 and 𝑦 of the point 𝑃.
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(b) What is the greatest rate of increase of 𝑥, and where is 𝑃 when this oc-
curs?

(c) What is the greatest rate of increase of 𝑦, and for what value of 𝜃 is this
attained?

(5) Find the area inside an astroid.

(6) Find the total length of an astroid.

(7) A hypocycloid with three cusps, 𝑅 = 3𝑟, is called a deltoid (see the lower left
of Fig. 19.19). Find its parametric equations, and the total length of the curve.

Answers
(1) 𝑃 = (𝑥, 𝑦) is 𝑥 = 𝑎(𝜃 − sin 𝜃) and 𝑦 = 𝑎(1 − cos 𝜃). Expressing 𝜃 and sin 𝜃 in

terms of 𝑦:
cos 𝜃 = 1 − 𝑦

𝑎

sin 𝜃 = √1 − (1 − 𝑦
𝑎)

2

=√
2𝑦
𝑎 − 𝑦2

𝑎2 =
√2𝑎𝑦 − 𝑦2

𝑎

𝜃 = sin−1 (√2𝑎𝑦 − 𝑦2
𝑎 )

Substituting for 𝜃 and sin 𝜃 in the expression for 𝑥:

𝑥 = 𝑎(sin−1 (√2𝑎𝑦 − 𝑦2
𝑎 ) − 1

𝑎√2𝑎𝑦 − 𝑦2)

𝑎 sin−1 (√2𝑎𝑦 − 𝑦2
𝑎 ) = 𝑥 + √2𝑎𝑦 − 𝑦2

(2) The slope of the tangent to the cycloid: 𝑦′ = cot 𝜃
2
.

⟹ 𝑑𝑦′
𝑑𝑥 = 𝑑

𝑑𝜃 (cot
𝜃
2 )/

𝑑𝑥
𝑑𝜃 = −12 csc

2 𝜃
2 /
𝑑𝑥
𝑑𝜃

=
− 1

2
csc2 𝜃

2
𝑎(1 − cos 𝜃) =

−1/(2 sin2 𝜃
2
)

𝑎(1 − cos 𝜃)

= −1/(1 − cos 𝜃)
𝑎(1 − cos 𝜃) = − 1

𝑎(1 − cos 𝜃)2

= − 𝑎
𝑦2 because 𝑦 = 𝑎(1 − cos 𝜃)
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As 𝑦 ≥ 0 throughout, then 𝑦′ < 0 wherever 𝑦 ≠ 0, which is at the cusps.

(3) The point at the top of the circle has coordinates (𝑎𝜃, 2𝑎). The slope of the
tangent at 𝑃 is given by 𝑦′ = cot 1

2
𝑡. The equation of the tangent at 𝑃 is

therefore

𝑦 − 𝑎(1 − cos 𝜃) = sin 𝜃
1 − cos 𝜃 (𝑥 − 𝑎𝜃 + 𝑎 sin 𝜃).

We substitute 𝑥 = 𝑎𝜃 in this equation and solve for 𝑦, which gives

𝑦 = 𝑎(1 − cos 𝜃) + sin 𝜃
1 − cos 𝜃 ⋅ 𝑎 sin 𝜃 = 𝑎(1 − cos 𝜃)2 + 𝑎 sin2 𝜃

1 − cos 𝜃 = 2𝑎.

This shows that the tangent at 𝑃 does indeed pass through the point (𝑎𝜃, 2𝑎)
at the top of the circle.

(4) (a) The rate of change of 𝑥 and 𝑦 can be expressed as:
𝑑𝑥
𝑑𝑡 = 𝑣0(1 − cos 𝜃) 𝑑𝑦

𝑑𝑡 = 𝑣0 sin 𝜃

where 𝜃 is the angle turned by 𝐶 after time 𝑡.
Let the center of 𝐶 be 𝑂. Without loss of generality, let 𝑃 be at the origin at
time 𝑡 = 𝑡0. By definition, 𝑃 traces out a cycloid. 𝑃 = (𝑥, 𝑦) is

𝑥 = 𝑎(𝜃 − sin 𝜃), 𝑦 = 𝑎(1 − cos 𝜃)

Let (𝑥𝑐, 𝑦𝑐) be the coordinates of 𝑂 at time 𝑡. We have that 𝑦𝑐 = 𝑎, which
means that 𝑥𝑐 = 𝑣0𝑡. 𝑥𝑐 is equal to the length of the arc of 𝐶 that has rolled
along the 𝑥-axis, so 𝑥𝑐 = 𝑎𝜃. So 𝜃 = 𝑣0𝑡

𝑎
, which implies 𝑑𝜃

𝑑𝑡
= 𝑣0

𝑎
. Thus:

𝑥 = 𝑎 (𝑣0𝑡𝑎 − sin 𝜃)

substituting for 𝜃:
𝑥 = 𝑣0𝑡 − 𝑎 sin 𝜃

⟹ 𝑑𝑥
𝑑𝑡 = 𝑣0 − 𝑎 cos 𝜃𝑑𝜃𝑑𝑡 = 𝑣0 − 𝑎 cos 𝜃𝑣0𝑎

= 𝑣0(1 − cos 𝜃)

and:
𝑦 = 𝑎(1 − cos 𝜃)

⟹ 𝑑𝑦
𝑑𝑡 = 𝑎 sin 𝜃𝑑𝜃𝑑𝑡 = 𝑎 sin 𝜃𝑣0𝑎

= 𝑣0 sin 𝜃
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(b) The maximum rate of change of 𝑥 is 2𝑣0, which happens when 𝑃 is at the
top of the circle 𝐶. The rate of change of 𝑥 is given by:

𝑑𝑥
𝑑𝑡 = 𝑣0(1 − cos 𝜃)

This is a maximum when 1 − cos 𝜃 is a maximum, so when cos 𝜃 is at a min-
imum. That happens when cos 𝜃 = −1, so 𝜃 = 𝜋, 3𝜋,…. That is, when
𝜃 = (2𝑛 + 1)𝜋 where 𝑛 ∈ ℤ. That is, when 𝑃 is at the top of the circle 𝐶.
When cos 𝜃 = −1 we have:

𝑑𝑥
𝑑𝑡 = 𝑣0(1 − (−1)) = 2𝑣0

(c) Themaximum rate of change of 𝑦 is 𝑣0, which happenswhen 𝜃 =
𝜋
2
+2𝑛𝜋

where 𝑛 ∈ ℤ. The rate of change of 𝑦 is given by 𝑑𝑦
𝑑𝑡

= 𝑣0 sin 𝜃.
This is a maximumwhen sin 𝜃 is a maximum, when sin 𝜃 = 1. That happens
when 𝜃 = 𝜋

2
+ 2𝑛𝜋 where 𝑛 ∈ ℤ. When sin 𝜃 = 1 we have 𝑑𝑦

𝑑𝑡
= 𝑣0.

(5) We’ll show that the area inside an astroid constructedwithin a circle of radius
𝑎 (see Fig. 19.25) is𝐴 = 3𝜋𝑎2

8
. Locate the astroid𝐻with its center at the origin

and its cusps positioned on the axes.

Figure 19.25. Astroid Area

By symmetry, it’s sufficient to evaluate the area shaded yellow and tomultiply
it by 4. The astroid equation is:

𝑥 = 𝑎 cos3 𝜃, 𝑦 = 𝑎 sin3 𝜃.
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Thus:

𝐴 = 4∫
𝑎

0
𝑦 𝑑𝑥 = 4∫

𝑥=𝑎

𝑥=0
𝑦𝑑𝑥𝑑𝜃 𝑑𝜃

Differentiate 𝑥 with respect to 𝜃:

𝑑𝑥
𝑑𝜃 = 3𝑎 cos2 𝜃(− sin 𝜃)

Substitute into 𝐴 to give:

𝐴 = 4∫
𝑥=𝑎

𝑥=0
𝑎 sin3 𝜃 ⋅ 3𝑎 cos2 𝜃(− sin 𝜃) 𝑑𝜃

When 𝑥 = 𝑎, 𝑎 cos3 𝜃 = 𝑎; when 𝑥 = 0, 𝜃 = 𝜋
2
; when 𝑥 = 𝑎, 𝜃 = 0.

Simplifying

𝐴 = 4∫
𝜃=𝜋/2

𝜃=0
𝑎 sin3 𝜃 ⋅ 3𝑎 cos2 𝜃(− sin 𝜃) 𝑑𝜃

= 12𝑎2∫
𝜋/2

0
sin4 𝜃 cos2 𝜃 𝑑𝜃

Simplifying the integrand:

sin4 𝜃 cos2 𝜃 = (2 sin 𝜃 cos 𝜃)2
4 sin2 𝜃 = sin2 2𝜃

4 sin2 𝜃

= sin2 2𝜃
4 ⋅ 1 − cos 2𝜃

2

= sin2 2𝜃 − sin2 2𝜃 cos 2𝜃
8

= 1 − cos 4𝜃
16 − sin2 2𝜃 cos 2𝜃

8



800 Chapter 19. The Cycloid

Thus:

𝐴 = 12𝑎2∫
𝜋/2

0
(1 − cos 4𝜃

16 − sin2 2𝜃 cos 2𝜃
8 ) 𝑑𝜃

= 3𝑎2
4 ∫

𝜋/2

0
(1 − cos 4𝜃) 𝑑𝜃 − 3𝑎2

2 ∫
𝜋/2

0
sin2 2𝜃 cos 2𝜃 𝑑𝜃

= 3𝑎2
4 [𝜃 − sin 4𝜃

4 ]
𝜋/2

0
− 3𝑎2

2 ∫
𝜋/2

0
sin2 2𝜃 cos 2𝜃 𝑑𝜃

= 3𝑎2
4 [𝜃 − sin 4𝜃

4 ]
𝜋/2

0
− 3𝑎2

2 [sin
3 2𝜃
6 ]

𝜋/2

0

= 3𝑎2
4 (𝜋2 − sin 2𝜋

4 ) − 3𝑎2
2 ⋅ sin

3 𝜋
6

= 3𝜋𝑎2
8 − 3𝑎2

16 sin 2𝜋 − 3𝑎2
12 sin3 𝜋 = 𝟑𝝅𝐚𝟐

𝟖

(6) We’ll show that the total length of the four arcs of an astroid constructed
within a deferent of radius 𝑎 (see Fig. 19.26) is 𝐿 = 6𝑎. Once again the astroid
𝐻 has its center at the origin and its cusps positioned on the axes.

Figure 19.26. Length of an Arc of an Astroid



Answers 801

𝐿 is 4 times the length of one arc of the astroid, and the arc length is defined
as:

𝐿 = 4∫
𝜃=𝜋/2

𝜃=0 √(𝑑𝑥𝑑𝜃 )
2
+ (𝑑𝑦𝑑𝜃)

2
𝑑𝜃

where, from the equation for the astroid:

𝑥 = 𝑎 cos3 𝜃, 𝑦 = 𝑎 sin3 𝜃
we have:

𝑑𝑥
𝑑𝜃 = −3𝑎 cos2 𝜃 sin 𝜃, 𝑑𝑦

𝑑𝜃 = 3𝑎 sin2 𝜃 cos 𝜃

Thus:

√(𝑑𝑥𝑑𝜃 )
2
+ (𝑑𝑦𝑑𝜃)

2
= √9𝑎2(sin4 𝜃 cos2 𝜃 + cos4 𝜃 sin2 𝜃)

= 3𝑎√sin2 𝜃 cos2 𝜃(sin2 𝜃 + cos2 𝜃)

= 3𝑎√sin2 𝜃 cos2 𝜃 = 3𝑎 sin 𝜃 cos 𝜃

= 3𝑎 sin 2𝜃
2

Thus:

𝐿 = 4∫
𝜋/2

0

3𝑎
2 sin 2𝜃 𝑑𝜃

= 6𝑎 [−cos 2𝜃2 ]
𝜋/2

0
= 6𝑎 (−cos 𝜋2 + cos 0

2 )

= 6𝑎 (−(−1)2 + 1
2) = 𝟔𝐚

(7) By definition, a deltoid is a hypocycloid with 3 cusps.
Let 𝐻 be the deltoid generated by the epicycle 𝐶1 of radius 𝑏 rolling without
slipping around the inside of a deferent 𝐶2 of radius 𝑎 = 3𝑏 (see Fig. 19.27).
Let 𝐶2 have its center located at the origin. Let 𝑃 be a point on the circum-
ference of 𝐶1. Let 𝐶1 be initially positioned so that 𝑃 is its point of tangency
to 𝐶2, located at point 𝐴 = (𝑎, 0) on the 𝑥-axis. Let (𝑥, 𝑦) be the coordinates
of 𝑃 as it travels over the plane. The point 𝑃 = (𝑥, 𝑦) is described by the
parametric equation:

𝑥 = 2𝑏 cos 𝜃 + 𝑏 cos 2𝜃, 𝑦 = 2𝑏 sin 𝜃 − 𝑏 sin 2𝜃
where 𝜃 is the angle between the 𝑥-axis and the line joining the origin to the
center of 𝐶1.
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Figure 19.27. A Deltoid

Using the hypocycloid equation, 𝐻 is given by:

𝑥 = (𝑎 − 𝑏) cos 𝜃 + 𝑏 cos (𝑎 − 𝑏
𝑏 𝜃)

𝑦 = (𝑎 − 𝑏) sin 𝜃 − 𝑏 sin (𝑎 − 𝑏
𝑏 𝜃)

This can be generated by an epicycle𝐶1 of radius
1
3
the radius of the deferent.

Thus 𝑎 = 3𝑏 and the equation of 𝐻 is now given by:

𝑥 = 2𝑏 cos 𝜃 + 𝑏 cos 2𝜃, 𝑦 = 2𝑏 sin 𝜃 − 𝑏 sin 2𝜃

We’ll now show that the total length of the arcs of a deltoid constructedwithin
a deferent of radius 𝑎 is 𝐿 = 16𝑎

3
.

Let one of 𝐻’s cusps be positioned at (𝑎, 0), and note that 𝐿 is 3 times the
length of one arc of the deltoid. The arc length equation is:

𝐿 = 3∫
𝜃=2𝜋/3

𝜃=0 √(𝑑𝑥𝑑𝜃 )
2
+ (𝑑𝑦𝑑𝜃)

2
𝑑𝜃

where, the deltoid is:

𝑥 = 2𝑏 cos 𝜃 + 𝑏 cos 2𝜃, 𝑦 = 2𝑏 sin 𝜃 − 𝑏 sin 2𝜃
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and so:
𝑑𝑥
𝑑𝜃 = −2𝑏 sin 𝜃 − 2𝑏 sin 2𝜃, 𝑑𝑦

𝑑𝜃 = 2𝑏 cos 𝜃 − 2𝑏 cos 2𝜃

Thus:

(𝑑𝑥𝑑𝜃 )
2
+ (𝑑𝑦𝑑𝜃)

2
= (−2𝑏 sin 𝜃 − 2𝑏 sin 2𝜃)2 + (2𝑏 cos 𝜃 − 2𝑏 cos 2𝜃)2

= 4𝑏2 ((− sin 𝜃 − sin 2𝜃)2 + (cos 𝜃 − cos 2𝜃)2)
= 4𝑏2(sin2 𝜃 + 2 sin 𝜃 sin 2𝜃 + sin2 2𝜃 + cos2 𝜃 − 2 cos 𝜃 cos 2𝜃 + cos2 2𝜃)

Using the sum of squares for sine and cosine:

= 4𝑏2(2 + 2 sin 𝜃 sin 2𝜃 − 2 cos 𝜃 cos 2𝜃)
= 8𝑏2(1 + sin 𝜃 sin 2𝜃 − cos 𝜃 cos 2𝜃)

and the double angle formula for sine

= 8𝑏2(1 + 2 sin2 𝜃 cos 𝜃 − cos 𝜃 cos 2𝜃)
and then the double angle formula for cosine:

= 8𝑏2(1 + 2 sin2 𝜃 cos 𝜃 − cos 𝜃(1 − 2 sin2 𝜃))

Simplifying

= 8𝑏2(1 − cos 𝜃 + 4 sin2 𝜃 cos 𝜃)
= 8𝑏2(1 − cos 𝜃 + 4 cos 𝜃(1 − cos2 𝜃))

Use the sum of squares for sine and cosine again, and the difference of two
squares:

= 8𝑏2(1 − cos 𝜃 + 4 cos 𝜃(1 + cos 𝜃)(1 − cos 𝜃))
= 8𝑏2(1 − cos 𝜃)(1 + 4 cos 𝜃(1 + cos 𝜃))
= 8𝑏2(1 − cos 𝜃)(1 + 4 cos 𝜃 + 4 cos2 𝜃)
= 8𝑏2(1 − cos 𝜃)(1 + 2 cos 𝜃)2

Use the half angle formula for sine:

= 8𝑏2 (2 sin2 𝜃2) (1 + 2 cos 𝜃)2

= 16𝑏2 sin2 𝜃2 (1 + 2 cos 𝜃)2

Thus:

√(𝑑𝑥𝑑𝜃 )
2
+ (𝑑𝑦𝑑𝜃)

2
= 4𝑏 sin 𝜃2 |1 + 2 cos 𝜃|
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In the range 0 to 2𝜋
3
, 1 + 2 cos 𝜃 is not less than 0, and so:

𝐿 = 3∫
2𝜋/3

0
4𝑏 sin 𝜃2 (1 + 2 cos 𝜃) 𝑑𝜃

Put 𝑢 = cos 𝜃
2
so 2𝑑𝑢

𝑑𝜃
= −sin 𝜃

2
. As 𝜃 increases from 0 to 2𝜋

3
, 𝑢 decreases

from 1 to 1
2
. Then with the half angle formula for cosine

1 + 2 cos 𝜃 = 1 + 2 (2 cos2 𝜃2 − 1) = 4𝑢2 − 1

Substituting 2𝑑𝑢
𝑑𝜃

= −sin 𝜃
2
and change the limits of integration from 𝜃 = 0 –

2𝜋
3
, to 𝑢 = 1 – 𝑢 = 1

2
, and after dealing with the sign:

𝐿 = 12𝑏∫
1/2

1
(1 − 4𝑢2)(2) 𝑑𝑢

= 24𝑏 [𝑢 − 4
3𝑢

3]
1/2

1

= 24𝑏 ((12 −
4
3 ⋅

1
8) − (1 − 4

3))

= 24𝑏 (23) = 16𝑏 = 𝟏𝟔𝐚
𝟑


