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For several years I've been teaching geometry to school kids by having them use LEGO 

Technic pieces to build linkages for drawing straight lines, parabolas, ellipses, and more. This 

approach has a long history, notably promoted by Zoltán Kovács (https://matek.hu/zoltan/) 

who uses GeoGebra (https://www.geogebra.org/) to work through the mathematics behind the 

linkages, and implements them using LEGO [5]. His GeoGebra diagrams are available at 

https://www.geogebra.org/u/zoltan and instructions for the LEGO builds are at 

https://github.com/kovzol/lego-linkages. Many videos of people building LEGO linkages can 

be found by searching for "LEGO linkages" at YouTube; three good ones are: 

https://www.youtube.com/watch?v=HsEMJOa7WPk, 

https://www.youtube.com/watch?v=1PX3gEP3ATw, and 

https://www.youtube.com/watch?v=PD2dtqnTJQA. 

These videos tend to restrict themselves to mechanisms which draw straight lines (e.g. Watt's, 

Chebyshev, and the Peaucellier-Lipkin linkages), which are relatively simple to build with 

Technic beams pegged together with rotational joints. One exception is the crank which 

benefits from a sliding (prismatic) joint, as implemented using the green axle below. 

 

Drawing curves mechanically (albeit without the benefits of LEGO) dates back to ancient 

Greece, often for solving famous problems of antiquity: doubling the cube, squaring the 

circle, and trisecting an angle. Examples in Rene Descartes' Geometry (1637) frequently 

show how to draw a curve with an apparatus, and this approach was taken up and extended 

by Frans van Schooten whose A Treatise on Devices for Drawing Conic Sections contains 

numerous mechanical sketches. Incidentally, it's rewarding to use an historical viewpoint like 

this when teaching [7; 6]. 

More 'recent' texts (from the 1950s and 1960s) include Curves and their Properties by Yates 

[8] and chapter 5 of Mathematical Models by Cundy and Rollett (a wonderful book) [1]; both 

are available at the Internet Archive. 

The main problem I had with GeoGebra and LEGO was quickly pointed out by my students – 

the physical builds usually fail to draw the clean, smooth curves rendered by the software. 

Real world issues related to mass, friction, torque, elasticity, and rigidity (kinematics in other 

words) aren't captured by the purely geometric descriptions in GeoGebra. A (simple) tool 

which lets students experiment with linkages that have these properties would help to fill the 

gap between geometry and its implementation. It would also help address the historical 

question of why there are so many different mechanisms for drawing the same curves.  

https://matek.hu/zoltan/
https://www.geogebra.org/
https://www.geogebra.org/u/zoltan
https://github.com/kovzol/lego-linkages
https://www.youtube.com/watch?v=HsEMJOa7WPk
https://www.youtube.com/watch?v=1PX3gEP3ATw
https://www.youtube.com/watch?v=PD2dtqnTJQA
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1. The linkUtils Library 

The download at https://coe.psu.ac.th/ad/curveDraw/ includes many examples using my 

linkUtils Python module, a small collection of functions that utilize Pymunk 

(https://www.pymunk.org/) and Pygame (https://www.pygame.org/) for creating and 

animating 2D linkages. The library is designed around the notion of 'beams' pinned together 

by 'balls' that support rotation. These are 2D shapes, conceptually resting on a sheet of paper, 

allowing the programmer to ignore the issues of gravity and collision detection. Sliding joints 

are supported, as well as constraints on how far beams can rotate around a ball. Several 

functions create composite beams (e.g. t-shapes, frames, and triangles), balls can be enlarged 

into 'wheels', and there is a limited form of gearing to make wheels rotate at the same speeds. 

Pymunk is more powerful than what's offered by linkUtils, but the functional restrictions are 

deliberate. I wanted to make the mechanisms as simple as possible, while retaining realistic 

curve drawing.  

The examples in the download () are divided into four categories: simple examples that 

illustrate the main elements of linkUtils, examples that draw straight lines, code for drawing 

conic section curves, and a collection of other curve mechanisms. The following four sections 

describes each of these. 

 

2. Simple Examples 

circle.py draws a circle using a single ball and beam (see below on the left). 

 

 

The complete code: 

 
import os 

os.environ['PYGAME_HIDE_SUPPORT_PROMPT'] = "hide" 

from pymunk.vec2d import Vec2d 

from linkUtils import * 

 

title = "Circle" 

screen = scrInit(title) 

scrWidth, scrHeight = screen.get_size() 

space = pymunk.Space() 

 

coord0 = Vec2d(scrWidth/2, scrHeight/2) 

https://coe.psu.ac.th/ad/curveDraw/
https://www.pymunk.org/
https://www.pygame.org/
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coordB = coord0 + Vec2d(300, 0) 

 

pt0 = staticBall(space, "0", coord0) 

ballB = ball(space, "B", coordB) 

beam0B = beam(space, pt0, ballB) 

 

# ballB.velocity = (0,-100) # move up 

pts = animate(screen, space, ballB) 

plotPoints(pts, title) 

 

The details of initializing Pymunk and Pygame are hidden by linkUtils.scrInit() and 

linkUtils.animate(). The "0" static ball is the immovable object at the center of the window, 

while the "B" ball can move during the animation. The balls are linked by a beam. 

When the window appears, it is up to the user to 'grab' a ball or beam with the cursor and drag 

it to start things moving. The ballB reference passed to animate() means that the "B" ball's 

path is drawn as a black line during the animation. The animation can be paused/resumed by 

pressing the space bar, and the currently drawn path can be cleared and reset by pressing "k". 

Clicking on the window's close box causes the animation to terminate.  

In this example, the coordinates making up the path are passed to linkUtils.plotPoints() which 

uses matplotlib (https://matplotlib.org/) to draw the points on a graph (see the right hand 

window above). 

All linkUtils programs have the same structure as circle.py, with ball and beam creation 

sandwiched between scrInit() and animate() calls. Linkage creation typically takes four steps, 

with the first three being: definition of the coordinates, ball creation using those coordinates, 

and beam creation using the balls. The fourth stage, which doesn't appear in circle.py, is the 

addition of joint constraints to limit how the beams move. 

circle.py includes a commented-out line: 

# ballB.velocity = (0,-100) # move up 

This specifies that the "B" ball should start with an upwards velocity, which means that the 

animation will begin with the beam rotating counter-clockwise. The coordinate system used 

by linkUtils is borrowed from Pygame, where the y-axis runs down the window. 

A LEGO Technic implementation: 

 

The "0" static ball is replaced by a beam that the student holds . Alternatively the ball could 

be held static by a blob of putty or a tack, which is arguably better since the red beam stops 

the circle from closing. 

https://matplotlib.org/
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Even something as simple as a circle can illustrate the mismatch between the geometric 

description and reality. If the velocity applied to "B" is too large or directed too far from the 

beam's tangent, then the curve will 'wobble'. 

 

2.1. Cranks 

crank.py and crankRocker.py illustrate a simple use of a groove (a sliding joint). Three 

screenshots of crank.py are shown below: 

 

Most of the code: 

 

coord0 = Vec2d(scrWidth/2, scrHeight/2) 

coordA = coord0 + Vec2d(-120,0) 

coordB = coordA + Vec2d(0,-100) 

coordD = coord0 + Vec2d(120,0) # end of crank shaft 

coordE = coord0 + Vec2d(300,0) 

 

ptA = staticBall(space, "A", coordA) 

ballB = ball(space, "B", coordB) 

ptC = staticBall(space, "C", coord0) 

ballD = ball(space, "D", coordD, color=RED) 

ptE = staticBall(space, "E", coordE) 

 

beamAB = beam(space, ptA, ballB) # rotating arm 

beamBD = beam(space, ballB, ballD) # crank shaft 

beamCE = beam(space, ptC, ptE) # groove 

 

groove(space, beamCE, ballD) 

 

ballB.velocity = (-1000,0) # move left 

 # -5000 or more is too fast 

 



5 
 

animate(screen, space, ballD) 

 

The determination of the coordinates are a little more tricky, and I encourage my students to 

use graph paper, defining the points relative to the center of the window (i.e. to employ 

coord0 in the code).  

The groove is rendered as a black line along the beam CE, and the "D" ball is its 'slider'. 

A line is drawn by the "D" ball as it moves left and right, but the groove obscures it in this 

example. 

Although LEGO doesn't offer a beam with a groove, the standard way of implementing one is 

with an axle, as in the crank on p.1. Two more versions: 

 

 

2.2. Parallelograms 

The parallelogram and contraparallelogram (where the beams cross to form an "X") are the 

building blocks for A.B. Kempe's Universality Theorem 

(https://en.wikipedia.org/wiki/Kempe%27s_universality_theorem), which can be summarized 

by the catch-phrase: 

There is a linkage that signs your name. 

The idea is that any 2D curve can be traced out by a linkage made up of a mix of three basic 

linkages: a translator for translating a motion, an additor for adding two angles, and a 

multiplicator for multiplying an angle by a positive integer. An excellent description can be 

found in chapter 3 of Demaine and O'Rourke's Geometric Folding Algorithms [2]. 

Kempe admitted that "this method would not be practically useful on account of the 

complexity of the linkwork employed, a necessary consequence of the perfect generality of 

the demonstration". For example, it's quite easy for the beams in a parallelogram to 

inadvertently cross to change it into a contraparallelogram. In real-world mechanisms, the 

linkages must be braced, and it's often far from obvious what level of bracing is sufficient. 

parallelogramBraced.py and contraParBraced.py allow the user to experiment with 

different amounts of bracing by commenting in/out a few lines of code: 

https://en.wikipedia.org/wiki/Kempe%27s_universality_theorem
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These examples use a new feature: the pinning of balls to beams. For instance, the "E", "F", 

"G", and "H" balls in the parallelogram are pinned midway along several beams: 

 

pin(space, beamAC, ballE, (coordC-coordA)/2) 

pin(space, beamBD, ballF, (coordD-coordB)/2) 

pin(space, beamAB, ballG, (coordB-coordA)/2) 

pin(space, beamCD, ballH, (coordD-coordC)/2) 

 

Also, in the contraparallelogram, the ON beam is prevented from rotating around O to stop 

the mechanism from turning counterclockwise: 

 

rotary(space, pt0, beam0N, 0,0) # no rotation 

 

The beam is allowed a minimum and maximum rotation around the O ball of 0 degrees (i.e. 

no rotation at all).  

 

3. Straight Line Linkages 

The first (approximately) straight line drawing mechanism was developed by James Watt in 

the 1780s, for guiding the pistons of steam engines 

(https://en.wikipedia.org/wiki/Watt%27s_linkage). Mathematically perfectly straight line 

linkages weren't devised for nearly another 100 years, with the Peaucellier–Lipkin linkage in 

1864. A great single source for LEGO builds of these mechanisms is chapter 7 of The 

Unofficial LEGO Technic Builder's Guide by P.    e  [4]. 

watts.py utilizes three beams and a pinned "P" ball at the midpoint of the central beam for 

drawing the line: 

https://en.wikipedia.org/wiki/Watt%27s_linkage
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Two crucial rotary restrictions are applied to the AB beam rotating around the "A" ball and 

DC turning around "D": 

 

rotary(space, ptA, beamAB, -45, 45) 

rotary(space, ptD, beamDC, -45, 45) 

 

The beams can move a maximum of 45 degrees left and right of their starting orientation . 

If these two lines are commented out then the linkage generates a complete lemniscate as 

shown in the right hand image above. 

A LEGO implementation: 

 

The LEGO device has drawn a lemniscate because there are no rotary limitations on its 

beams.  

 

chebyshev.py implements the Chebyshev's linkage 

(https://en.wikipedia.org/wiki/Chebyshev_linkage) that converts rotational motion to 

approximately linear motion, while the Chebyshev Lambda linkage 

(https://en.wikipedia.org/wiki/Chebyshev_lambda_linkage) is demonstrated by 

chebLambda.py: 

https://en.wikipedia.org/wiki/Chebyshev_linkage
https://en.wikipedia.org/wiki/Chebyshev_lambda_linkage
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The lambda linkage can be employed as a building block for walking behavior 

(https://en.tcheb.ru/plantigrade-machine/), as demonstrated by plantigrade.py: 

 

Four Chebyshev lambda linkages are driven by the rotating parallelogram EFGH. Each 

linkage makes a 'leg' move forward and back in imitation of a walking step. The two legs on 

opposite diagonals are linked by a "legs pair" shape built from five Pymunk segments. The 

two pairs are pale blue and green in the image above.  

The starting positions for the balls were determined by drawing the device on graph paper. 

The parallelogram starts in a position where E, F, G, and H are collinear, which allows the 

balls initial velocities to be straight up for H and G and down for E and F. 

This example is somewhat misleading since a real-world plantigrade is a 3D machine, as 

illustrated in Nguyen Duc Thang's video at 

https://www.youtube.com/watch?v=ISfVS4mDTKs: 

https://en.tcheb.ru/plantigrade-machine/
https://www.youtube.com/watch?v=ISfVS4mDTKs
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roberts.py implements the Roberts linkage (https://en.wikipedia.org/wiki/Roberts_linkage), 

which utilizes a triangular frame: 

 

CDE is created by calling linkUtils.triangle(), supplying the three balls making up its vertices 

in clockwise order: 

 

triCDE = triangle(space, ballC, ballD, ballE) 

 

As with the Watt's linkage it's necessary to constrain the rotation of the beams to limit the 

curve to a straight line: 

 

rotary(space, ptA, beamAC, -30, 30) 

rotary(space, ptB, beamBD, -30, 30) 

 

Without these, the curve becomes: 

https://en.wikipedia.org/wiki/Roberts_linkage
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The Peaucellier–Lipkin linkage (peaucellier.py) was the first true planar straight line 

mechanism (https://en.wikipedia.org/wiki/Peaucellier%E2%80%93Lipkin_linkage), in the 

sense that the curve can be proven to be a straight line: 

 

Nevertheless, in the real-world, the quality of the line is much improved if the BC beam is 

restricted to rotate 45 degrees around its initial horizontal orientation: 

rotary(space, ptB, beamBC, -45, 45) 

 

Hart's A-frame (hartAFrame.py) is shaped like a capital A constructed from a stacked 

trapezium and triangle (https://en.wikipedia.org/wiki/Hart%27s_inversors). It has the useful 

property that the motion perpendicularly bisects the base points at "A" and "B": 

https://en.wikipedia.org/wiki/Peaucellier%E2%80%93Lipkin_linkage
https://en.wikipedia.org/wiki/Hart%27s_inversors
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The problem with this linkage is that it's easily 'persuaded' to divert into a leaf-based pattern 

when the points momentarily become collinear when the frame passes between "A" and "B". 

The structure can turn left or right rather than head up or down: 

 

This can be mostly avoided by adding rotary constraints to the AC and BD beams: 

 

rotary(space, ptA, beamAC, -30, 140) 

rotary(space, ptB, beamBD, -140, 30) 

 

 

4. Conic Section Curves 

Frans van Schooten (1615-1660), a Dutch professor of mathematics, translated Descartes' La 

Géométrie into Latin and wrote a popular commentary on it. In the process, he devised 

several instruments for drawing conic section curves 

(https://old.maa.org/press/periodicals/convergence/historical-activities-for-calculus-module-

1-curve-drawing-then-and-now). One of his parabola linkages: 

https://old.maa.org/press/periodicals/convergence/historical-activities-for-calculus-module-1-curve-drawing-then-and-now
https://old.maa.org/press/periodicals/convergence/historical-activities-for-calculus-module-1-curve-drawing-then-and-now
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This is implemented in parabolaVS.py:  

 

A major feature is that the termination of the animation (by clicking on the window's close 

box) is followed by a call to scipy's curve_fit() to fit a parabola to the drawn path's data  

points (https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html). 

The resulting equation is plotted over the path points by matplotlib: 

 

pts = animate(screen, space, sliderD) 

 

# collect multiple y-values for each x-coord 

coordsMap = {} 

for (x,y) in pts: 

 coordsMap.setdefault(x, []).append(y) 

 

# average y-values for each x, and sort according to x-values 

vs = [] 

for key, vals in coordsMap.items(): 

 vs.append((key, round(sum(vals)/len(vals)))) 

vs = sorted(vs) 

# print(*vs) 

 

# curve fit to (x,y)'s 

xs, ys = zip(*vs) 

paraArgs, _ = curve_fit(parabolaEqu, xs, ys) 

a, b, c = paraArgs 

equStr = f"y = {a:.5f}*x**2 + {b:.5f}*x + {c:.5f}" 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
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print("Fitted:", equStr) 

 

# plot points and fitted curve 

plt.axis('equal') 

plt.scatter(xs, ys, s=2, label="linkage points") 

yCurve = [ parabolaEqu(x, a, b, c) for x in xs] 

plt.plot(xs, yCurve, '--', color='red', label=equStr) 

plt.legend() 

plt.title(title) 

 

The fitted equation is: 

 y = 0.00139*x**2 + -0.83372*x + 405.04944 

The linkage code in parabolaVS.py utilizes the linkUtils.tBeam() function to create a green t-

beam. It is passed the center point of the T and the length of an arm and its trunk. It returns 

four values – the t-shape beam, and three balls located at its base and the ends of its arms. 

 

tbeam, _, vLeft, vRight = \ 

 tBeam(space, sliderG, 80, 450, name="1", color=LIGHTGREEN) 

 

In the code snippet above, I don't use the ball placed at the t-beam's base. However, the two 

arm balls (labeled "L1" and "R1" in the screenshot on the previous page) are connected to the 

groove running along AC. 

The mustard-colored FK is also grooved, and allows balls "D" and "H" to slide along it: 
 

groove(space, beamFK, ballH) 

groove(space, beamFK, sliderD) 

 

The most complicated groove is the one running along the t-beam's trunk (from "G" to "U1" 

in the screenshot), which further constrains "D": 

groove(space, tbeam, sliderD, (0,0), (0,450)) 

The two coordinate arguments of groove() specify the position of the groove on the t-beam 

relative to its center point at "G". 

LEGO Technic contains several t-shape beams, such as: 

 

I recommend Nguyen Duc Thang's YouTube channel 

(https://www.youtube.com/@thang010146/videos) where he animates 3D models for a large 

range of mechanisms, including drawing devices. His parabola drawing linkage 

(https://www.youtube.com/watch?v=HBMYzPprNGQ) employs two t-beams: 

https://www.youtube.com/@thang010146/videos
https://www.youtube.com/watch?v=HBMYzPprNGQ
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parabolaT.py implements it by calling linkUtils.tBeam() twice: 

 

 

It's more complex than the van Schooten mechanism because it requires two grooves on the 

blue t-beam, and a groove along the trunk of the green t-beam. The relevant code: 

 

# slider along blue t-beam's arm 

groove(space, blueTB, sliderD, (-290,0), (290,0)) 

 

# sliderE along blue t-beam's tip 

groove(space, blueTB, sliderE, (0,20), (0,290)) 

 

# attach sliderD to green t-beam 

groove(space, greenTB, sliderD, (0,-350), (0,0)) 

 

Van Schooten designed several mechanisms for drawing an ellipse; ellipseCT.py and 

ellipseBS.py implement his "congruent triangles" and "bent straw" devices: 
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The disappointing ellipse drawn by ellipseCT.py is due to the "E" ball's instability when the 

AC and BF beams are nearly parallel: 

 

The bent straw mechanism in ellipseBS.py is much better: 

 

 

The most popular ellipse-drawing mechanism is probably the ellipsograph, or trammel of 

Archimedes (https://en.wikipedia.org/wiki/Ellipsograph). It utilizes two balls, linked by a 

beam, which move along perpendicular grooves: 

https://en.wikipedia.org/wiki/Ellipsograph
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trammel.py generates a very respectable ellipse, but has a hard-to-see problem: 

i  

The grooves along AB and CD cross each other, which doesn't matter in the Pymunk code 

since there's no collision detection, but can pose a problem for LEGO: 

 

When a ball passed through the intersection, it may hit one of the brick corners it is 

approaching causing the drawing to wobble or even stop. 

 

Nguyen Duc Thang's videos include several that draw hyperbolae, including one using a 

rectangular frame (https://www.youtube.com/watch?v=iUJmd0_7sGw), and another based 

around an x-shape beam (https://www.youtube.com/watch?v=rQB6abVhLo4): 

https://www.youtube.com/watch?v=iUJmd0_7sGw
https://www.youtube.com/watch?v=rQB6abVhLo4
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hyperbolaFrame.py implements the frame using four Pymunk segments.  

 

The frame() function is passed the top-left corner point of the frame as a ball, the desired 

width and height, and returns the structure: 

frame = frame(space, ballS, d, -a-7*b) 

The trickiest parts are determining the starting position of ball "A", which requires a careful 

graph paper diagram, and defining the coordinates of the groove down the right-hand side of 

the frame: 

groove(space, frame, ballK, (d,-a-7*b), (d, 0)) 

LEGO Technic offers a few different frames, such as: 
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However, as with other beams, there's no built-in groove. 

 

hyperbolaX.py utilizes linkUtils.xBeam(), which is called with its center point and its arm 

and trunk lengths: 

xb = xBeam(space, ballB, 200, 200) # arm & trunk lengths 

The animation produces a very wobbly line due to the over extension of OB as the x-beam 

reaches the top and bottom of its swings: 

 

LEGO Technic doesn't have an x-shaped beam, but probably the simplest way to build one is 

to attach two small beams to a long one with L-shaped connectors (part 55615): 
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Another possibility would be to use standard bricks connected by two corner plates or a cross 

plate: 

 

None of these have grooves, which in hyperbolaX.py run all the way up the trunk and 

partially along the left arm: 

 

# sliderP move along the trunk of X 

groove(space, xb, sliderP, (0,-200), (0, 200)) 

 

# ballG moves along left arm of X 

groove(space, xb, ballG, (0,0), (-100,0)) 

 

 

5. Other Curves 

This section is about the drawing of non-conic section curves, such as the conchoid, cycloid, 

Lissajous curves, and spirals. As we'll see, they require two new linkUtils elements: wheels 

(oversized balls with pinned extras and angular velocity), and couplers (two wheels 

constrained to rotate at the same speed and linked by a beam). 

conchoid.py implements the Conchoid of Nicomedes 

(https://en.wikipedia.org/wiki/Conchoid_(mathematics)): 

 

For every position of  line DC rotated through O and intersecting AB at E, the two points F 

and G, always at some fixed distance from E, lie on the conchoid. The image above shows 

the path traced by F. If the code is edited to draw G's path instead, the result is: 

 

https://en.wikipedia.org/wiki/Conchoid_(mathematics)
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cissoid.py uses Newton's carpenter's square construction to draw the upper branch of the 

cissoid of Diocles 

(https://en.wikipedia.org/wiki/Cissoid_of_Diocles#Newton's_construction): 

 

The carpenter's square makes an appearance in several curve drawing mechanisms, so is 

implemented by linkUtils.lBeam(). It takes the corner point (e.g. "S" in the example above), 

and the length of the arm and trunk. In a cissoid, the l-shape is constrained by the balls "R" 

and "B". "R" is fixed to the end of the arm but can slide up and down KJ. "B" is fixed in 

space and constrains the l-beam by being in the groove on its trunk. 

 

limacon.py draws the limaçon of Pascal, by treating it as a pedal curve for a circle 

(https://en.wikipedia.org/wiki/Lima%C3%A7on#Relation_to_other_curves).  

 

The circle is implemented by a t-beam that rotates clockwise. An x-beam is attached to the 

arms of the t-beam, so that RL is a tangent to the t-beam's circle. The x-beam trunk is 

https://en.wikipedia.org/wiki/Cissoid_of_Diocles#Newton's_construction
https://en.wikipedia.org/wiki/Lima%C3%A7on#Relation_to_other_curves
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grooved and holds the static "P" (the pedal point). The center of the x-beam, "B", is used to 

draw the curve. 

The limaçon is more commonly viewed as a roulette curve, which means that it could also be 

drawn using a wheel, in a similar way to the cycloid in section 4.1 below. 

 

quadratrix.py draws the quadratrix of Hippias 

(https://en.wikipedia.org/wiki/Quadratrix_of_Hippias): 

 

 

The curve is traced out by the crossing point "P" on two beams (ST and AE), the former 

falling at a uniform speed, and the other rotating uniformly around "A". The speeds should be 

such that the two beams reach the bottom at the same time. 

Two ways to draw a quadratrix are to use a string/chain mechanism or a cogwheel and rack: 

 

Neither of these would produce good results in Pymunk since they require collision detection, 

either to ensure that the chain stays tight, or the cogwheel stays in the rack. Section 5 

discusses a simple chain drive coded in Pymunk. 

https://en.wikipedia.org/wiki/Quadratrix_of_Hippias
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The only approach that produces reasonable results is to implement the speeds constraint by 

using Pymunk's velocity callback functions. A function is attached to a body at initialization 

time and then called automatically at each time step. 

Before the animation loop is entered, the linear velocities for balls "S" and "T" are set, as well 

as the angular velocity for beam AE: 

 

ballS.velocity = LIN_VEL # move down 

ballS.velocity_func = velPos 

ballT.velocity = LIN_VEL # same as S 

beamAE.angular_velocity = ANG_VEL 

 

The velocity_func field of "S" is assigned the callback function: 

 

def velPos(body, gravity, damping, dt): 

 # attached to ball S 

 # keep velocities and positions in sync 

 pymunk.Body.update_velocity(body, gravity, damping, dt) 

 body.velocity = LIN_VEL # velocity of S 

 ballT.velocity = LIN_VEL 

 beamAE.angular_velocity = ANG_VEL 

 

 # keep y positions of S and T the same  

 _, y = body.position # of S 

 xT, _ = ballT.position 

 ballT.position = (xT, y) 

 

The funct on’s arguments are used to call the standard update_velocity() method for the body 

(i.e. for ball "S"). In addition, "S","T", and AE are re-assigned their initial velocities, and the 

vertical positions of "S" and "T" are kept the same. 

This approach is far from ideal because it has no obvious physical equivalent that could be 

built using LEGO. Also, it isn't that great a solution anyway since the resulting curve doesn't 

look much like a quadratrix. One issue is that I had to basically guess values for LIN_VEL 

and ANG_VEL: 

 

LIN_VEL = (0, 80) # move down 

ANG_VEL = 0.14*math.pi # cw 

 

If ANG_VEL Is even slightly smaller or larger than the curve changes shape drastically.  

 

 

4.1. Wheels 

Many curves are drawn by tracing out the path when a curve is rolled along another curve 

without slipping. The most common types of these roulette curves are when a circle is rolled 

over a straight line or another circle. This is achieved in linkUtils by using wheels.  

A wheel is a ball with a larger radius, initialized with some angular velocity, and usually with 

a drawing ball attached to its rim. This drawing ball is assigned a very small mass so its 

rotation doesn't affect the wheel. 
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cycloid.py draws a cycloid (https://en.wikipedia.org/wiki/Cycloid) – the curve traced by 

point "E" on the wheel as it rolls along the groove in AB: 

 

The wheel and "E" are defined using: 

 

wheel = ball(space, "W", coordA, radius=r) 

beamAB = beam(space, ptA, ptB) 

groove(space, beamAB, wheel) 

 

ballE = ball(space, "E", coordE, color=RED) 

ballE.mass = 0.00001 # so will not affect wheel when pinned 

pin(space, wheel, ballE, (drawPos, 0))  

# right edge of wheel; will be off the edge if drawPos > r 

 

wheel.velocity = (100,0) # move right 

wheel.angular_velocity = 0.5*math.pi # turns clockwise 

 

It's quite possible to position "E" closer to the wheel's center or beyond its rim. 

cycloidBeam.py uses a DE beam to implement rotation, which produces a similar curve, but 

only with different velocity settings.  

 

The wheel is assigned both linear and angular velocity (see above), while for the beam, the 

linear velocity is assigned to the center point "D", and the angular velocity to DE: 

 

ballD.velocity = (100,0) # move right 

beamDE.angular_velocity = 0.65*math.pi # turns clockwise 

 

The angular speed of DW is greater compared to the value used by the wheel 

 

hypocycloid.py traces a fixed point "B" on a wheel "A" that rolls within a larger circle 

(https://en.wikipedia.org/wiki/Hypocycloid). However, I’ve   ple ented this circle as a 

rotating beam OA, attached to the wheel's center: 

https://en.wikipedia.org/wiki/Cycloid
https://en.wikipedia.org/wiki/Hypocycloid
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The wheel's velocities: 

 

wheel.velocity = (0, -100) # move up, so beam turn ccw 

wheel.angular_velocity = 0.27*math.pi # clockwise 

 

No initial velocity is assigned to OA, but the wheel's upward velocity will make it turn 

counterclockwise anyway. Meanwhile the wheel turns clockwise around "A". 

This is sufficient to almost generate an astroid (https://en.wikipedia.org/wiki/Astroid). 

 

cardioid.py draws an epicycloid with one cusp (https://en.wikipedia.org/wiki/Cardioid). An 

epicycloid (also sometimes called an hypercycloid, somewhat confusingly) traces the path of 

a point "B" on the circumference of a wheel "A" which is rolling over the surface of another 

circle: 

 

Just as in the previous example, I implement the circle as a beam, but now OA rotates 

clockwise (it was counter-clockwise for the hypocycloid), but the wheel still rotates 

clockwise around "A": 

 

wheel.velocity = (0, 100) # move down, so beam turns clockwise 

wheel.angular_velocity = 0.27*math.pi # clockwise 

 

 

4.2. The Coupler 

https://en.wikipedia.org/wiki/Astroid
https://en.wikipedia.org/wiki/Cardioid
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Implementing a quadratrix was problematic because it requires that linear and angular 

velocities stay synchronized. However, if only the angular velocities of two bodies need to be 

linked at some fixed ratio then Pymunk offers the GearJoint constraint 

(https://www.pymunk.org/en/latest/pymunk.constraints.html). linkUtils.py simplifies the 

constraint's creation via a geared() function: 

 

def geared(space, b1, b2, ratio=1): 

 # default is to use the same gearing for both bodies 

 joint = pymunk.GearJoint(b1, b2, 0, ratio) 

 joint.collide_bodies=False 

 space.add(joint) 

 

In practice, what seems more useful is a beam that can move forwards and backwards at a 

constant speed. This can be implemented using two wheels which have synchronized angular 

velocities and are joined by that beam; trainCoupler.py illustrates the idea: 

 

linkUtils.coupler() takes as arguments the centers of the two wheels, their radius, and the 

offset of the pinned beam ball relative to the center. The function returns the linked beam, 

and the balls at its two ends:  

 

ptA = staticBall(space, "A", coordA)  # fix the points 

ptB = staticBall(space, "B", coordB) 

offset = Vec2d(0, -r) # starts above the center 

beam, ball1, ball2 = coupler(space, ptA, ptB, r, offset) 

 

In trainCoupler.py, a drawing point "P" is pinned to the beam's midpoint, and the mechanism 

is set moving by giving the left hand wheel (ball1) an initial velocity. 

 

A good use for a coupler is to implement Lissajous curves 

(https://en.wikipedia.org/wiki/Lissajous_curve), which combine oscillations in the x- and y- 

directions. lissajous.py utilizes two couplers, one for each axis, and grooves are added to the 

couplers' beams, and a drawing point ("P") placed in both grooves: 

https://www.pymunk.org/en/latest/pymunk.constraints.html
https://en.wikipedia.org/wiki/Lissajous_curve
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The crucial parameters are the speeds of the wheels. The vertical beam is set in motion by 

giving its wheels an upwards velocity, and the horizontal beam is started rocking by 

assigning its wheels the same velocity but to the left: 

 

velCD = -200 # try -100 

ballC.velocity = (velCD, 0) # move up initially 

ballD.velocity = (velCD, 0) 

 

velVW = -200 # try -100 

ballV.velocity = (velVW, 0) # move left initially 

ballW.velocity = (velVW, 0) 

 

This makes the relative frequencies of the two beams the same, resulting in a curve with the 

same number of peaks along both axes. If one of the velocities is changed, the relative 

frequencies change, affecting the curve. For instance, if the upward velocity is halved then 

the outcome is: 

 

 

The "witch of Agnesi" is a curve first studied by Maria Agnesi in 1748 

(https://en.wikipedia.org/wiki/Witch_of_Agnesi). It can be obtained by rotating a line OB 

attached to the origin over a circle of radius a, centered at (0,a), The y-coordinate of the 

https://en.wikipedia.org/wiki/Witch_of_Agnesi
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drawing point "P" is set to be the same as "B"s where it intersects the circle. "P"s x-value 

comes from the point where the extension of OB meets the line y=2a:  

 

The hardest part of implementing agnesi.py is ensuring that BP always stays horizontal. This 

is achieved by adding another wheel of the same radius and linking them as a coupler: 

 

 

The coupler is defined as: 

_, ballV, ballU = coupler(space, ptC, ptT, a, Vec2d(-a, 0)) 

The beam’s endpoints are utilized to create the longer mustard-colored beam (beamWU) 

visible in the screenshot: 

 

coordW = coordC + Vec2d(-300, 0) 

ballW = ball(space, "W", coordW) 

beamWU = beam(space, ballW, ballU, color=MUSTARD) 

 

The line up through "P" must also be kept vertical at all times, and this is done with an orange 

t-beam that slides along AB: 

 

tb, ballUp, ballL, ballR = \ 

 tBeam(space, ballE, 0.5*a, -2*a, color=TANGERINE) 
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ballUp is located at the top of the t-beam, and is attached as a slider to OF. Balls "L" and "R" 

on the arms of the t-beam become sliders on AB: 

 

groove(space, beamF0, ballUp) # the top of the inverted t-beam 

groove(space, beamAB, ballL) 

groove(space, beamAB, ballR) 

 

 

4.3. Spirals 

There are many kinds of spiral (e.g. see https://en.wikipedia.org/wiki/Spiral), but I'll focus 

just on the logarithmic and Archimedean ones. At first glance they look fairly similar but the 

distances between the turns of the logarithmic spiral increase in a geometric progression, 

while the distances in an Archimedean remain constant: 

 

Also, as we’ll see, the r s  ulat on code  s qu te d fferent. 

logSpiral.py employs a long beam OB which rotates around the origin. Drawing ball "P" is 

attached to the beam as a slider, and initially located at the origin. As the beam rotates, "P" 

picks up speed and moves out to the end of the beam: 

 

One issue with this approach is that it takes almost half a rotation of OB before "P" 

noticeably starts sliding away from the origin. Also, it seems almost impossible to 'tighten up' 

the spiral by adjusting the ball mass or velocity.  

The relevant lines of code: 

https://en.wikipedia.org/wiki/Spiral
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beam0B = beam(space, pt0, ballB) 

groove(space, beam0B, ballP) 

ballB.velocity = (0,-100) # move up  

 

Yates [8] employs a carpenter's square rolling over a circle to draw an Archimedean spiral. 

One advantage of this is that by changing the drawing point from "B" to "A" the device can 

trace out the involute of a circle instead: 

 

OT = AB = a, the radius, and "A" start at A', while "B" begins at O. AT is then equal to the 

arc A'T = r = aΘ. Note that the center of rotation is at "T" so TA and TB are normals to the 

paths of "A" and "B". 

The l-beam must turn in such a way that "B" moves away from O at a constant speed along a 

line that also rotates with constant velocity. This requires that these linear and angular speeds 

stay synchronized, posing the same problem that we encountered with the quadratrix. 

It’s interesting to note that both the quadratrix and the Archimedean spiral have been used to 

solve the classical problem of squaring the circle. Another link between them are the 

possibility of using chains/strings to generate their curves. Two approaches [1; 3] for drawing 

the Archimedean: 

 

The answer to the speeds synchronization problem is the same as for the quadratrix – a 

velocity callback function. archSpiralL.py generates the curve: 
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The inner circle is encoded as a t-beam that rotates counter-clockwise around O, and a 

mustard-colored l-beam is attached to its arms, acting as a tangent.  

The callback needs to maintain the speed of ball "B" (which gradually pulls the l-beam along 

the t-beam's arms) and the t-bea ’s angular velocity. 

These two velocities are initialized before the animation begins: 

 

# set the linear and angular velocities 

ballB.velocity = (LIN_VEL,0) # move right 

ballB.velocity_func = limit_velocity 

tangentBeam.angular_velocity = ANG_VEL 

 

tangentBeam is the name of the t-beam.  

The velocity function is: 

 

def limit_velocity(body, gravity, damping, dt): 

 # keep velocities near to their initial values 

 pymunk.Body.update_velocity(body, gravity, damping, dt) 

 vMag = body.velocity.length # for ball B 

 tangentBeam.angular_velocity = ANG_VEL 

 if vMag > LIN_VEL: 

 scale = LIN_VEL / vMag 

 body.velocity = body.velocity * scale 

 

This callback is more complex than the function used for the quadratrix since "B" isn’t 

moving in a constant direction; it's velocity is directed along the long edge of the l-beam 

which is rotating. The standard Pymunk solution is to ensure that the linear velocity's 

magnitude stays close to its initial value, while allowing its trajectory to change. 

 

 

5. Chains 
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A mechanism that keeps turning up in curve drawing is the chain or string. Unfortunately, it's 

unsuitable for linkUtils since it requires collision detection. But even if this restriction is 

lifted, it's still very time-consuming and tricky to create a viable chain simulation. This is 

illustrated by chain.py, which implements a chain rotating around two wheels: 

 

Ball "O" is the drawing point, and its erratic path can be partially seen behind the chain. 

One difficulty is determining the initial coordinates for the balls that make the beams in the 

chain. They should all be about the same length and also tightly fit around the wheels.  

The simplest way to handle the collision detection is to only switch it on for the two wheels. 

Indeed, if collision detection is enabled between the beams then it becomes impossible to link 

them together into a tight chain. 

Another issue is that the presence of collision detection causes the velocity of the chain to 

decrease rapidly, so we need to add a callback function to maintain the speed. 

 

 

6. Some Thoughts 

The aim of this work was to develop a simple library for building simulations of curve 

drawing mechanisms which better reflect the kinematic issues when these mechanisms are 

built in the real-world. In my case, this means having high-school kids, and younger, 

construct linkages using LEGO Technic pieces.  

There’s a functional mismatch between the tools that Pymunk and my linkUtils module offer 

and the capabilities of LEGO. The most obvious difference on the LEGO side is the lack of a 

simple prismatic joint. Using an axle, as below, is usually adequate but results in a beam that 

is twice as thick as normal: 

 

It would be much easier to construct sliding mechanisms if there was a LEGO beam with a 

built-in groove down one side. It could be designed to accept the existing LEGO door rail as 

a slider: 
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The issue with the thickness of slider beams is a symptom of a larger problem – while 

linkUtils beams and balls can happily pass through each other without colliding, this is 

obviously not the case with LEGO pieces.  

I’m not suggesting that collision detection be added to linkUtils. It would needlessly 

complicate most simulations, and this mismatch between simulation and reality is actually a 

useful opportunity to discuss the differences between the two approaches during a class. 

LEGO Technic offers a wide range of tools based around gears and chains which would 

make some curve drawing devices easier to build. While Pymunk simulations of these is 

possible, their implementation is tricky and the resulting simulations quite poor. Pymunk 

needs to offer something less complex than a chain made from segments as I employed in 

chain.py. My current opinion is that something like a LEGO string might be easier to work 

with: 

 

6.1. An Implementation Hierarchy? 

The most interesting outcome of this work is the beginnings of a hierarchy of shapes and 

joints required for building curve drawing linkages. 

Kempe's universality theorem 

(https://en.wikipedia.org/wiki/Kempe%27s_universality_theorem) implies that beams and 

balls (rotational joints) are sufficient for any problem, but this is akin to saying that the 

control flow of any program can be implemented with conditional GOTOs only.  

The addition of sliders (prismatic joints) simplifies most designs, and rotary constraints and 

composite beams (e.g. T, L, and X- shapes) improve the quality of the generated curves. 

The next step up in complexity are mechanisms that need speed synchronization between 

their elements. This requires a form of gearing constraint, as in linkUtils' geared() and 

coupler() functions. Pymunk's GearJoint() constraint only synchronizes angular velocity, but 

it can be used to build linear constraints, albeit in a rather indirect way. A simpler approach is 

to use Pymunk's velocity callback functions, but these have no obvious real-world 

equivalents. 

The fourth stage of functionality seems to require collision detection to implement the 

movement of string and chains around cogwheels and/or pulleys. My view is that the addition 

of a LEGO-like string to Pymunk may be sufficient for these use cases. 

 

https://en.wikipedia.org/wiki/Kempe%27s_universality_theorem
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