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Abstract 

The Cabbage compiler (http://fivedots.coe.psu.ac.th/~ad/cabbage/) translates a BASIC-like 

language into the instruction set created by John Walker for his emulator 

(https://www.fourmilab.ch/babbage/contents.html) of Charles Babbage's Analytical Engine 

[Bromley 1982]. The Cabbage language was developed in two stages: "raw" Cabbage supports 

only those high-level programming features that can be implemented on top of the existing 

engine, which include assignment, expressions, and restricted if and while statements. This 

illustrates in a practical way that Babbage's engine design is equivalent to a modern computer, 

not just an enhanced calculator (i.e. an improved difference engine). The second stage of the 

language, termed "boiled" Cabbage, adds arrays and subroutines which necessitates adding five 

new instructions to the engine. These allow a wide range of programs to be coded, including a 

version of the Countess of Lovelace's Bernoulli numbers algorithm [Kim and Toole 1999]. They 

also offer an opportunity to talk about the early design of hardware and programming languages. 

 

 

1. Introduction 

Cabbage is a BASIC-like language developed for an undergraduate course on compiler design. 

Initially I intended the compiler to generate byte codes for the JVM, but then I came across John 

Walker's Analytical Engine Simulator (https://www.fourmilab.ch/babbage/contents.html). The 

engine is simpler than the JVM (an important consideration for teaching), and also gives me a 

chance to talk about the early history of computingduring the subject. This led to Cabbage being 

designed in "raw" and "boiled" versions. "Raw" Cabbage supports only those high-level features 

that can be compiled down to existing engine instructions, while "boiled" Cabbage adds arrays 

and subroutines which, rather surprisingly (for students), only requires a handful of new 

instructions to be added to the engine. 

Although Charles Babbage never built an analytical engine, he left descriptions spanning some 

30 years [Bromley 1987]. Perhaps the most famous is the article written by the Countess of 

Lovelace [Lovelace 1843] which translates and expands upon an 1842 report of the engine by the 

Italian L. F. Menabrea. 

Walker describes his design choices very clearly on his website (see "Is the Emulator Authentic? 

at https://www.fourmilab.ch/babbage/authentic.html), and his engine's instruction set are 

discussed on a page called "Programming Cards" 

(https://www.fourmilab.ch/babbage/cards.html). 
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Walker's emulator was too complex for my needs, so I stripped away all but the core 

functionality, leaving four classes: 

1. AES.java: the top level of the emulator; 

2. CardReader.java: it reads in a file, storing the instructions (the 'cards') in a list; 

3. Mill.java: the equivalent of an ALU, but only capable of addition, subtraction, multiplication, 

and division, and the left and right shifting of numbers; 

4. Store.java: The emulator's memory, made up of a 'rack' of 1000 'columns'. Each column is a 

memory cell that can hold a 50-digit integer. 

The features removed include: all the Attendant request cards, the curve drawing cards, and GUI 

and Web/applet support. The attendant is a sysops person who manages the cards while they are 

being fed through the engine. His/her job includes switching on (and off) program tracing, 

formatting output, replacing control logic cards by simpler combinatorial cards, inserting library 

functions cards into the user's deck, and converting decimal input into integer form, and integer 

output back into decimals. These features aren't needed in my simplified engine because they're 

(mostly) handled by the Cabbage compiler. 

What remains:  

 Number cards for data;  

 Operation cards for arithmetic (+, -, *, /);  

 Variable cards for transferring data between the store and mill; 

 Stepping Up and Down cards for shifting decimal data left and right (in an analogous way to 

the bitwise shift operators in C); 

 Combinatorial cards for moving forwards and backwards through the cards in the reader; 

 Action cards for ringing the bell, halting execution, and printing the last mill result; 

 Comment cards 

I won't describe these cards in detail since Walker's "Programming Cards" page 

(https://www.fourmilab.ch/babbage/cards.html) does a fine job of that. Instead, I'll explain two 

programs that use most of the cards. 

 

1.1. Two Examples 

The following code divides 10000 by 28 and prints the quotient and remainder: 

 

N001 10000 

N002 28 

 

/ 

L001 

L002 

S003' 

P 

S004 

P 

H 
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The numbers are stored at 'columns' (locations) 1 and 2 by N (Number card) operations, then the 

mill is initialized with the division operation, and the numbers loaded into it with two L 

instructions.  

The mill has two output registers called the Egress Axis and Primed Egress Axis; after a 

division, the primed egress axis holds the quotient, which is stored to location 3 (the ' indicates 

the use of the primed axis) and printed. The remainder is in the egress axis, which is copied to 

location 4 and also printed. The output is: 

357 

4 

The next example calculates the factorial of 6 using a conditional loop: 

 

N0 6   . start value, decreases by step 

N1 1   . result 

N2 1   . step 

* 

L1 

L0 

S1 

- 

L0 

L2 

S0 

- 

L2 

L0 

CB?12 

 

*    . done so result is loaded into mill for printing 

L1 

L2 

S1 

P 

H 

 

The text after the "."s are comments. The loop is implemented using the combinatorial card "CB" 

which jumps back 12 cards when the engine's run up lever is set. The card count includes the CB 

card, so the jump will land on the earlier * card.  

The run up lever can be set for a number of reasons including when the mill has just performed a 

subtraction and a change of sign is detected. In the example, the subtraction before the CB card 

is  (- L2 L0). If the result is negative and L2 is positive then the run up lever is set and a jump 

will occur from the CB card.  

L2 loads the step data in location 2 into the mill, while L0 loads the start value from location 0, 

and this value is decremented by 1 on each loop. While the value is 6, 5, 4, etc., the subtraction 

prior to the CB card will be negative and a jump will occur. But when the value reaches 1, the 

subtraction returns 0, and the run up lever is not set. At that point, execution moves forward, 

leaving the loop.  
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1.2. The Importance of the Combinatorial Cards 

The combinatorial cards are essential for implementing conditional jumps, which means that the 

Analytical Engine is a Turing machine [Turing 1936], and so mathematically equivalent to 

modern computer hardware.   

Babbage never built an engine, so it is interesting to consider whether the functionality offered 

by the combinatorial cards is actually possible. For example, 20th Century punch card readers 

could not backup through a deck. 

Babbage envisaged the cards being tied together in a looped chain (as they were in Jacquard's 

looms), so backward movement could be implemented by a forward move around the loop back 

to the beginning of the cards. This would necessitate the reader 'knowing' the length of the deck 

so it could calculate the number of moves. A similar approach was used in the 1950's but in 

paper tape readers. 

An interesting consequence of this mechanical approach is that it isn't necessary for the deck's 

code to be stored in memory in order for execution to utilize loops and branches. In other words, 

stored program hardware isn't a prerequisite for a Turing machine, so long as the reader can 

move forwards and backwards over the program. This, of course, was one of the assumptions in 

Turing's model. The practical downside of this approach is that looping through a chain of cards 

in this way would probably take minutes. Indeed, access speed was one of the reasons for the 

introduction of the stored program idea  [von Neumann 1945]. 

 

 

2. Raw Cabbage 

The BNF for the "raw" version of Cabbage is: 

 

<program> ::=  [ <numdps> ] <stat> { <stat> } 

<numdps> ::= "numdps" "=" <number> ";" 

<stat> ::=  <assign> ";" 

              | if "(" <cond> ")" <stat> [ else <stat> ] 

              | "{" <stat> { <stat> } "}" 

              | while "(" <cond> ")" <stat> 

              | print <expr> ";" 

              | ɛ 

<assign> ::=  <var> "=" <expr>  

              |   "(" <var> "," <var> ")"  "=" <argum> "/" <argum> 

<cond> ::= <expr> ">=" <expr>  

<expr> ::= [ ("+" | "-") ] <term> { ("+" | "-") <term> } 

<term> ::= <factor> { ("*" | "/") <factor> } 

<factor> ::=  <argum> |  "(" <expr> ")" 

<argum> ::= <var> | <number> 

<var> ::= <ident> 

 

Two somewhat non-standard aspects of this definition are the special assignment for division, 

and the limited conditional (which only offers ">="). 

The two programs given earlier can be recoded. The division program becomes: 
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x = 10000; 

y = 28; 

(q, r) = x / y; 

print q; 

print r; 

 

Note: if you try this is the final ("boiled") version of Cabbage, then you must also define at the 

top of the program a value for the built-in numdps variable: 

numdps = 0; 

I'll explain what numdps does in the next section. 

Factorial is coded a little differently from the engine version, due to the restrictions on the while 

loop's conditional: 

 

// 6! example 

n = 6; 

result = 1; 

step = 1; 

while (n >= step) { 

  result = result * step; 

  step = step + 1; 

} 

print result; 

 

The only conditional form is x >= y, which is translated into a subtraction at the engine level (- x 

y). As before, the run up lever will be set when the subtraction result is negative, and the left-

hand operand (i.e. x) is positive. This means that a Cabbage programmer must ensure that the 

expression on the left of the ">=" is positive or the run up lever will not be set.  

 

2.1. From Integer to Fixed-Point Arithmetic 

The engine supports 50-digit integers only, but Babbage was well aware that decimal point 

calculations were necessary. His solution was to have the engine's attendant translate numbers 

with fractional parts into integers before passing them to the engine by multiplying through by a 

sufficient power-of-10. For example, the equation: 

(4000 * 2.5) / 2.8 

could have its numbers multiplied by 10
6
: 

(4000000000 * 2500000) / 2800000 

Instead of 3571 the result is 3571428571, which can be reported by the attendant as 

3571.428571, a result with 6 decimal places. 

Unfortunately, the attendant will have to modify almost every multiplication and division so the 

result stays scaled by the correct power-of-10. For example, each multiplication will need an 

excess 10
6
 removed from the answer, and a divisor will need another 10

6
 multiplied to it so the 

result is scaled correctly.  



6 
 

For example, 1/3 as 1000000/3000000 would still produce the integer 0; its divisor needs to 

multiplied by another 10
6
 so the result is scaled in the same way as the two inputs, as 333333. 

The attendant reports this as 0.333333. 

The good news is that Cabbage does this scaling automatically by judiciously inserting calls to 

the engine's stepping up and down (shift) instructions. By default, Cabbage assumes that 8 

decimal places are required, so all numbers are stored after being multiplied by 10
8
. The number 

of decimal places can be adjusted by including a numdps statement at the start of the program. 

For example: 

numdps = 0; 

switches off scaling. 

Since "raw" Cabbage adds nothing to the engine's instruction set, it's not possible to print 

numbers with a correctly placed decimal point; only as integers. 

 

2.2. Dealing With Expressions 

The BNF sports a familiar set of rules for defining an expression using terms and factors which 

define the precedence for the arithmetic operations: 

<expr> ::= [ ("+" | "-") ] <term> { ("+" | "-") <term> } 

<term> ::= <factor> { ("*" | "/") <factor> } 

<factor> ::=  <argum> |  "(" <expr> ")" 

 

Most virtual machine's evaluate an expression using a stack, pushing the operator and two 

operands onto it before popping the three elements to calculate the result. One advantage is that 

an operand can be a sub-expression, and the stack 'remembers' the enclosing expression while the 

sub-part is evaluated.  

Unfortunately, the engine hasn't got a stack. The only solution which doesn't extend the engine's 

instruction set is to have the compiler rewrite expressions as multiple assignments. For example: 

result = (4000 * 2.5) / (28 – 3); 

is treated as: 

 

temp1 = 4000 * 2.5; 

temp2 =  28 – 3; 

result = temp1 / temp2; 

 

The drawback is the additional variables (e.g. temp1 and temp2), which may become a problem 

since the store only has space for 1000 variables.  

 

2.3. Limits on Assignment 

The S card (for storing a value in a variable) assumes that the value is in one of the mill's output 

registers. This means that a high-level assignment such as: 

x = result; 
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cannot be encoded directly at the engine level since the value on the right-hand side must be 

generated by a mill calculation. The solution is to perform a dummy calculation equivalent to: 

x = result + 0; 

The Cabbage compiler adds these extra calculations as necessary. 

 

 

3. Boiled Cabbage 

The "boiled" version of Cabbage adds arrays and functions to the language.  

As mentioned above, my intention is to use Cabbage and the simplified emulator in a compiler 

construction subject, and so I wanted to make the smallest number of changes to the engine's 

instruction set as possible when extending Cabbage. 

It turns out that array support requires the engine's load and store instructions (L, Z, and S) to be 

joined by indirect versions (called "l", "z", and "s"). Functions needs two additional instructions 

("v" and "J") for accessing the program counter and performing a jump using a distance 

computed at run time. 

I also added some basic IO features, and the ability to call Java functions. My aim with the latter 

was to allow the use of functions external to the engine, such as those in Java's Math class so I 

didn't have to re-implement every function in Cabbage. 

The BNF for "boiled" Cabbage is given below. The new and changed rules are highlighted in 

bold: 

 

<program> ::=  [ <numdps> ] <main> { <func> } 

<numdps> ::= "numdps" "=" <number> ";" 

<main> ::= <stat> { <stat> } 

<func> ::= "func" <ident> "(" [ <ident> { "," <ident> } ] ")"  

           "{" <stat> { <stat> } "}" 

 

<stat> ::=  <assign> ";" 

              | if "(" <cond> ")" <stat> [ else <stat> ] 

              | "{" <stat> { <stat> } "}" 

              | while "(" <cond> ")" <stat> 

              | read <var> ";" 

              | print ( <expr> | <string> )  

                    { "," ( <expr> | <string> ) } ";" 

              | dim <ident> "[ <number> "]" ";" 

              | <call> ";" 

              | return <expr> ";" 

              | ɛ 

<call> ::= ( "call" | "ext" )  

               <ident> "(" [ <expr> { "," <expr> } ] ")" 

<assign> ::=  <var> "=" <call> | <expr>  

              |   "(" <var> "," <var> ")"  "=" <argum> "/" <argum> 

<cond> ::= <expr> ">=" <expr>  

<expr> ::= [ ("+" | "-") ] <term> { ("+" | "-") <term> } 
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<term> ::= <factor> { ("*" | "/") <factor> } 

<factor> ::=  <argum> |  "(" <expr> ")" 

<argum> ::= <var> | <number> 

<var> ::= <ident> [ "[" ( <ident> | <number> ) "]" ] 

 

The syntax is standard for a BASIC-like language, although simplified. For example, an array 

index cannot be an expression (e.g. A[i+2] is not allowed), and a function cannot be called inside 

an expression. 

 

3.1. Adding Arrays 

Having a way to store a sequence of data is a natural language extension for two reasons. First, 

sequences are a common occurrence in mathematics, based around subscripted variables, so 

adding them to Cabbage would be useful for math programming. Secondly, once a language has 

looping capabilities, then it becomes useful to iterate over a sequential data structure. It should 

be noted that I've been talking about sequences rather than arrays, since lists would fit the bill 

just as easily.  

Array manipulation was seen as necessary from the start of modern computing – it is present in 

John von Neumann's Draft report on the EDVAC [von Neumann. 1945], but implemented using 

instruction modification. This approach was utilized for a range of features including conditional 

branching and subroutines, and was another reason for employing the "stored program" concept 

– if the code is in memory then it's easier to change. 

However, index registers and indirect addressing eventually won out due to their simplicity. The 

first index register mechanism was the B-line in the Manchester Mark 1 (so-named because the 

letters A, and C had already been used) [Lavington, 1980]. The B-line utilized the Willliams-

Kilburn tube, a cathode-ray device, as random-access memory. It was lighter, cheaper, and 

offered more flexible access than  J. Presper Eckert's mercury delay line utilized in the EDVAC. 

The fundamental change for the engine is the realization that variables are able to store two kinds 

of data: numerical values (as before) and addresses of other variables. This distinction wasn't 

needed in the original engine since combinatorial cards make jumps relative to the current card.  

The engine's indirect addressing relies on the compiler representing an array by two variables in 

the store. The first is a contiguous block of cells for the elements of the array (e.g. A[], starting at 

address 9), and the second is a variable that stores the start address of that array (e.g. an A_start 

variable is assigned 9). In a Cabbage program, a reference to an array (e.g. A[2]) is converted 

into an addition of 2 to A_start (e.g. 2 + 9). Indirect addressing means that the result (11) is 

treated as an address (the third cell of the A array), not a number. 

 

3.2. Coding Bernoulli Numbers 

An array capability makes it relatively easy to implement (and extend) Lovelace's Note G for 

generating the fourth Bernoulli number [Lovelace, 1843]. This was translated into engine 

instructions (with some errors corrected) by Simon Wright in 2012 as an example for his Ada 

version of Walker's emulator (https://github.com/simonjwright/analytical-

engine/blob/master/bernouilli.ae). Lovelace's pseudo-code and Wright's program do not use 
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loops since there's no way to iterate over subscripted variables. Instead the loop is essentially 

partially evaluated, to become a sequence. A good modern description of Lovelace's approach 

can be found at https://enigmaticcode.wordpress.com/tag/bernoulli-numbers/. 

Generating Bernoulli numbers is a popular coding task, and is represented at the Rosetta Code 

website (https://rosettacode.org/wiki/Bernoulli_numbers) and the Code Golf section of 

StackExchange (https://codegolf.stackexchange.com/questions/65382/bernoulli-numbers/65393). 

The best approaches report their results as rationals rather than as rounded decimals, which 

requires something like the Apache Commons Maths BigFraction library in Java 

(http://commons.apache.org/proper/commons-math). The Cabbage solution uses 15dp fixed 

decimals, and generates all the non-zero values up to the 58th Bernoulli number: 

 

numdps = 15; 

 

maxBerns = 30;   

 

dim a[61];     //  2*maxBerns+1 

dim bs[61]; 

 

bs[1] = 1/6; 

 

n = 2; 

while (maxBerns >= (n+1)) {     // n < MAX_BERNS 

  a[0] = 1/2 * (2*n-1)/(2*n+1); 

  a[1] = n; 

 

  i = 2; 

  while ((2*n-3) >= i) {   

    previ = i-1; 

    a[i] = a[previ] * (2*n - (i-1))/(i+1); 

    i = i+1; 

  } 

   

  sum = a[0]; 

  j = 3; 

  while ((2*n-1) >= j) { 

    prevj2 = j-2; 

    sum = sum - (a[prevj2] * bs[prevj2]); 

    j = j+2; 

  } 

 

  bsVal = 2*n-1; 

  bs[bsVal] = sum;  

  print "B(", 2*n, ") = ", bs[bsVal]; 

  n = n+1; 

} 

 

Two arrays are used: bs[] for the Bernoulli numbers and a[] for the coefficient in the equation: 

a[0] + a[1]*bs[1] + a[3]*bs[3] + ... + a[2n-3]*bs[2n-3] + bs[2n-1] = 0 

The values of the a[] coefficients are defined as follows: 

 

    a[0] = (1/2)(2n − 1)/(2n + 1) 
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    a[1] = 2n/2 = n 

    a[3] = 2n(2n − 1)(2n − 2) / (2.3.4) 

    a[5] = 2n(2n − 1)(2n − 2)(2n − 3)(2n − 4) / (2.3.4.5.6) 

    ... 

 

For k > 1, each a[k] is derived from a[k − 2] by multiplying the next two decreasing terms into 

the numerator, and the next two increasing terms into the denominator. Note that the n refers to 

the nth Bernoulli number so is different for each number. 

Given the already computed a[] values and  bs[1], bs[3], …, bs[2n − 3], then the first equation 

can be used to obtain bs[2n-1]. 

The output from the program begins like so: 

 

B(4) = -0.033333333333332 

B(6) = 0.023809523809519 

B(8) = -0.033333333333306 

B(10) = 0.075757575757331 

 

As rationals these are -1/30, 1/42, -1/30, and 5/66. Even with 15 decimal place accuracy, 

rounding errors start to accumulate, and the results become noticeably incorrect by around 

bs[26]. For example, the output is: 

B(26) = 1425516.8684888291 

The correct answer is 1425517.16666… (8553103/6). 

The rounding problem with fixed point numbers was a major motivation for the development of 

floating point arithmetic in the 1950s, first in software and later in hardware. Floating point 

hardware actually predates the advent of electronic digital machines: it appeared to be fairly 

'easy' to build into the early relay calculators of Konrad Zuse (1936), George Stibitz (1939), and 

Aiken's Mark II (1944). However, it wasn't utilized in the ENIAC (1946) since John Mauchly 

and J. Presper Eckert decided that floating point circuitry was too hard to implement with tubes, 

and consume too much memory since exponents had to be stored [Knuth 1997]. 

The first floating point subroutine libraries were coded by David Wheeler and others for the 

EDSAC, and were widely disseminated through the first programming textbook: "The 

Preparation of Programs for an Electronic Digital Computer" by Wilkes, Wheeler, and Gill 

[1951]. Floating decimal subroutines were described, although EDSAC was a binary computer. 

Another widely discussed problem illustrated by my Bernoulli Cabbage code is the bloated 

translation from high-level notation to engine instructions. My compiled code weighs in at 448 

lines compared to Wright's lean 274 lines, although his program only computes a single 

Bernoulli number. Until the mid 1950's high-level notations such as Glennie's AUTOCODE 

(1952) for the Manchester Mark I didn't catch on because being able to fine-tune machine code 

for space efficiency was deemed more important than high-level support for assignment, 

expressions, and conditional statements [Knuth and Trabb Pardo, 1977]. 

 

3.3. Fancier Output 

The Bernoulli program includes an example of the Cabbage print statement: 
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print "B(", 2*n, ") = ", bs[bsVal]; 

The BNF for the print statement is: 

print ( <expr> | <string> ) { "," ( <expr> | <string> ) } ";" 

This requires the addition of two new instructions to the engine: "U" (putchar) and "D" (print a 

double). 

The most important aspect of adding putchar is the conceptually extension of the engine's data 

types once again so that a number in memory can be an encoded character (in addition to a 

number and memory address). 

Babbage was familiar with the notion of encoding text through the electric telegraph [Hyman 

1985] which was being developed and installed widely in the UK throughout the 1840s and 

1850s. William Cooke and Charles Wheatstone built a telegraph in 1841 that printed the letters 

from a wheel of typefaces struck by a hammer, and Babbage examined some of Wheatstone’s 

work at around this time. One of the mysteries of Babbage's work on the engine was why he 

never considered utilizing electromechanical switching instead of solely mechanical techniques. 

The "D" instruction is part of the support for fixed point decimals at the Cabbage level. The 

engine's original print instruction, "P", prints a the number in the mill's output register as an 

integer. The "D" instruction adds a "." before printing the decimal part. 

 

3.4. Adding Subroutines 

The utility of subroutines was well known to Babbage, who envisaged that the engine's attendant 

would insert the necessary cards into a user's deck before the program was run. In modern 

terminology, these would be termed "open subroutines".  

"Closed subroutines" are functions that are linked to the user's program at run time. This linking 

requires that the called subroutine has access to a return address so that when it has finished its 

work, it can jump back to the correct place in the user's program. This return address must be 

supplied by the calling program which means that the program counter (the address of the code 

currently being executed) must be accessible. 

This mechanism was described in von Neumann's draft report for the EDVAC [von Neumann 

1945], but Maurice Wilkes' EDSAC [Campbell-Kelly 1980], completed and running in 1949, 

was the first machine to offer an implementation based around the Wheeler jump, named after 

David Wheeler [Wheeler 1952].  

The first EDSAC subroutines were for division (there was no hardware divider in the machine), 

square root, and the transcendental functions. Later, subroutines for input and output and more 

complex mathematical procedures were added. By the end of 1950, the library contained some 

80 subroutines, some contributed by users.  

 

3.5. A Factorial Example 

The following "boiled" Cabbage program employs a factorial function: 

 

read n; 
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f = call fact(n); 

print n, "! = ", f; 

 

f = call fact(9); 

print "9! = ", f; 

 

 

func fact(n)  

{ 

  prod = 1; 

  i = 1; 

  while (n >= i) { 

    prod = prod * i; 

    i = i + 1; 

  } 

  return prod; 

} 

 

The main program calls the function twice: once with the user's input as the parameter, once to 

calculate 9!. The output is: 

 

  ? 5 

5! = 120 

9! = 362880 

 

The "?" on the first line is generated by the read statement, and the user enters 5. 

 

3.6. Implementing Subroutines 

Calling a function is not only a matter of jumping to the start of its code; various bits of 

housekeeping must be performed as well. Firstly, the location of the function call in the program 

must be recorded, which necessitates access to the program counter. This is retrieved in the 

engine with the "v' instruction, and stored in a variable called "ret_fact" for the example above. 

Parameter passing must also be handled, which is kept simple by having the engine only support 

the passing of numbers, not arrays. This means that all data is passed call by value (i.e. by 

copying), so call by reference, or more esoteric mechanisms, aren’t needed. 

The compiler knows how many arguments are used by a function, and so a series of new 

variables, called <function_name>_0, <function_name>_1, etc. are assigned the function's 

arguments. Completing the set of new variables is "result_<function_name>", which is used to 

hold a function's result so it can be accessed by the calling function.  

These new variable names might clash with the names used by the programmer, but that's 

avoided by renaming the program variables. The variables inside a function are prepended with 

the function's name, and the variables in the main function (e.g. the first five lines of the factorial 

example) have "main_" added. This renaming offers a primitive form of lexical scoping because 

it makes it impossible for a function to employ a variable outside its scope. However, renaming 

isn't performed on array names so these could be used as global variables if necessary. 
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A function ends with another call to the "v" instruction to get the current address. The "ret_fact" 

value is subtracted from this address to get the jump distance back to the calling function, 

employed by the "J" instruction. 

Back in main, the "result_fact" value (the result of the factorial call) is assigned to the "f" 

variable. 

In summary, subroutine functionality can be supported in the engine by the addition of two new 

instructions: "v" to access the program counter, and "J" to jump based on the output of the mill. 

 

3.7. Recursion 

The drawback of this approach is that recursion isn't possible. The problem lies in the use of 

predefined variables to hold subroutine details – the input parameters, the result, and (most 

importantly) the return address. If the factorial function calls itself recursively, then each call 

would overwrite the information stored during the previous call.  

The solution is to store function details on a stack: a new 'frame' of variables is created at call 

time and pushed onto the stack , then popped off when the function returns. 

Perhaps surprisingly, a stack mechanism for subroutines (called "reversion storage") was 

described before the invention of the Wheeler jump, in the proposal by Alan Turing for his ACE 

computer [Turing 1946]. Amusingly, instead of push and pop he used the terms "bury" and 

"disinter/unbury". Only a much-simplified form of the ACE was finally completed in 1950, the 

Pilot ACE, which didn't include Turing's subroutine technique [Campbell-Kelly 1981]. 

Stanley Gill, one of the developers of the subroutine system in the EDSAC, worked under Turing 

for two years up to October 1949, and a call stack was added to the EDSAC in 1951 (or a bit 

later) [Brooker and Wheeler 1953].  

Recursion was also slow to arrive as a high-level programming feature. Although FORTRAN II 

(1958) offered subroutines and functions (with parameters passed by reference), and the 

COMMON statement for global variables, it didn’t have recursion, mainly because popular IBM 

machine's of the time (e.g. the IBM 1130) had no stack support [Backus 1979]. Also, the way 

that recursion appeared in ALGOL-60, due to the 'machinations' of Adriaan van Wijngaarden 

and Edsger Dijkstra makes for an interesting historical read 

(https://vanemden.wordpress.com/2014/06/18/how-recursion-got-into-programming-a-comedy-

of-errors-3/).  

 

3.8. External Functions 

Another path to follow from this stage in Cabbage's design is the addition of external libraries, 

which would require the introduction of loading and linking techniques, and the notion of code 

with relocatable addresses. Once again, Wilkes' EDSAC was the first with this capability, in its 

"assembly routines" in 1950. 

My solution for using external functions (i.e. ones not implemented in Cabbage), breaks from an 

historical approach and relies on Java's reflection mechanism (although you could argue that it's 

sort of similar to EDVACs code modification).  
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The following program uses an external random() function to implement a Monte Carlo way of 

calculating pi: 

 

nThrows = 0; 

nSuccess = 0; 

 

i = 0; 

while (100000 >= i) { 

  x = ext random();  

  y = ext random(); 

  nThrows = nThrows+1; 

  if (1 >= x*x + y*y) 

    nSuccess = nSuccess+1; 

  i = i+1; 

} 

 

res = 4 * nSuccess / nThrows; 

print "pi = ", res; 

 

The Monte Carlo method was one of the first techniques used by von Neumann on the ENIAC 

[Goldstein 1972], following its modern-day reinvention by Stanislaw Ulam in 1947. Von 

Neumann got round his problem of generating random numbers by implementing a version 

utilizing the middle-square method. 

In my program, a random (x, y) coordinate is generated in the top-right quadrant of the x-y axis, 

between 0 and 1. If the point is within 1 unit of the origin then it is recorded as a success. Over a 

sufficient number of runs, the fraction of successes to the total number of runs will draw close to 

pi/4. 

The output of this program after 100,000 iterations is: 

pi = 3.14360856 

The random() function is defined in a Java Utils class which I added to the engine's classes. It 

holds static functions which can take up to four double arguments and must return a single 

double result. For example: 

 

public class Utils 

{ 

  public static double log(double x) 

  {  return Math.log(x);  } 

 

  public static double random() 

  {  return Math.random();  } 

 

  public static double time() 

  {  return (double) LocalTime.now().toSecondOfDay();  } 

   

  // more public static double functions... 

 

}  // end of Utils class 
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Cabbage stores the details of a call to an "ext" function in seven predefined global variables 

located at the start of memory ("func_Nm", "func_nargs", "func_arg0", "func_arg1", 

"func_arg2", "func_arg3", and "func_result"). The external function can be passed at most four 

double arguments, with the exact number stored in "func_nargs". It returns a single double which 

is stored in "func_result".  

At the engine level, an "X" instruction uses the data stored in the globals to construct a call to the 

Utils class.  

 

 

4. Summary 

I have described a simple imperative language called Cabbage which is compiled into 

instructions for a cut-down version of John Walker's simulator for Babbage's Analytical Engine. 

Cabbage was developed in two stages (known as "raw" and "boiled"): the "raw" version utilizes 

only the emulator's original instruction set, and supports assignment, expressions, and if and 

while statements; the "boiled" version adds arrays, functions, and simple I/O.  

"Raw" Cabbage illustrates in a practical way that Babbage's engine was a Turing machine, and 

the "boiled" version shows that the addition of a handful of new instructions (three for arrays and 

two for subroutines) would have made the engine easily capable of supporting imperative 

languages similar to BASIC.  

Running through my description of Cabbage are references to the history of programming, which 

show that the necessary elements for indexing, subroutines, and recursion were understood from 

the very early days of computing. 

The source code for the Cabbage compiler and the simplified Analytical Engine emulator are 

available at http://fivedots.coe.psu.ac.th/~ad/cabbage/. 
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