
3. Transformations

1

3. Transformations: Translations, Rotations, and Scaling

For people new to computer graphics, understanding how 3D (affine) transformations

operate can be daunting because the standard approach is to explain things in terms of

4 x 4 matrices applied to homogenous coordinates. Simple3D hides this complexity

behind three groups of operations:

1. those that create a new TransformGroup: the "set" methods;

2. those that overwrite an existing TransformGroup: "To" methods;

3. those that incrementally change an existing node: "By" methods;

In particular, the Transform3D object that holds the matrix, nestled inside the

TransformGroup, is hidden. Also, rotations are limited to operating around the x-, y-,

and z- axes, and there's definitely no mention of axis angles or quaternions.

This may seem limiting, especially when multiple transformations need to be

combined, but that difficulty is addressed by utilizing Java 3D's scene graph. As we'll

see, it supports an intuitive way to compose simple transformations to form a

hierarchy of TransformGroup nodes. This approach will be illustrated with several

small examples, and two larger ones – an orbiting 'rocket' and a 'robot arm'. They're

both built from primitive shapes (i.e. Cone, Cylinder), but the manipulation of

Wavefront OBJ models will be the subject of the next chapter.

1. Primitive Shapes

Although the creation of primitive shapes is straightforward, they have a few fiddly

aspects that I'll discuss using StartShapes.java. It contains commented-out code for

creating a colored box, sphere, cone, cylinder, and a 3D "R".

public class StartShapes

{

 public static void main(String[] args)

 {

 Simple3D j3d = new Simple3D("StartShapes", false, true);

 Box shp = new Box(0.5f, 0.5f, 1.0f, Simple3D.color("red"));

 // Sphere shp = new Sphere(0.5f, Simple3D.color("green"));

 // Cone shp = new Cone(0.5f, 1f, Simple3D.color("blue"));

 // Cylinder shp = new Cylinder(0.5f,1f,Simple3D.color("yellow"));

 // BranchGroup shp = Simple3D.text3D("R", "purple");

 // add to the universe

 j3d.rootBG.addChild(Simple3D.createBG(shp));

 } // end of main()

} // end of StartShapes class

3. Transformations

2

The different outputs are shown in Figure 1.

Figure 1. Primitive Shapes and an "R" generated by StartShapes.java.

One tricky thing is that the x-, y-, and z- lengths supplied for the box are half-lengths.

In other words, the box's dimensions are actually 1 x 1 x 2.

Another is that the shapes are centered at the origin, which would mean they'd be

partially hidden if Simple3D's floor grid was rendered (it extends across the XZ plane

at y == 0). This invariably means that the first transformation we need to apply is to

move a shape up the y-axis so it's resting on the floor.

A third issue is that these shapes all display varying levels of symmetry, which makes

it difficult to be sure how various rotations affect them. For that reason, the examples

in the next two sections will use a 3D "R" which conveniently has no symmetries

around its x-, y- and z- axes. In addition, most 3D letters are positioned so the back

edge of their base is centered on the x-axis at the origin; as a consequence, the entire

shape is visible even when the floor grid is drawn.

2. Composing Transforms

RGraph.java renders an "R" after moving it up the y-axis by 0.5 units, rotating it

counter-clockwise around the x-axis, and then moving it up another 0.5 units. This

could be coded as a single matrix operation, but I'd like to persuade you that it's

simpler to define it in small steps, leading to a chain of TransformGroups. Each of

these steps is illustrated below.

The first version of the program draws an "R" at its default position:

 public static void main(String[] args)

3. Transformations

3

 {

 Simple3D j3d = new Simple3D("RGraph", true, true);

 BranchGroup rShape = Simple3D.text3D("R", "purple");

 // "R" located at origin

 // add to the universe

 j3d.rootBG.addChild(rShape);

 } // end of main()

Figure 2. "R" at the origin.

Now a TransformGroup node is added above the rShape BranchGroup to move it up

the y-axis:

 public static void main(String[] args)

 {

 Simple3D j3d = new Simple3D("RGraph", true, true);

 BranchGroup rShape = Simple3D.text3D("R", "purple");

 // "R" located at origin

 TransformGroup pos1TG = Simple3D.setTranslation(0,0.5,0);

 // up the y axis

 pos1TG.addChild(rShape); // pos1TG --> "R"

 // add to the universe

 j3d.rootBG.addChild(Simple3D.createBG(pos1TG));

 } // end of main()

Figure 3 shows the new position of "R":

3. Transformations

4

Figure 3. "R" located at (0, 0.5, 0).

Another TransformGroup is added above the first translation node to rotate the shape

around the x-axis. Crucially, the rotation is relative to the world's origin, not the

letter's 'origin' point (i.e. the center of its base, which is currently at (0, 0.5, 0)).

 public static void main(String[] args)

 {

 Simple3D j3d = new Simple3D("RGraph", true, true);

 BranchGroup rShape = Simple3D.text3D("R", "purple");

 // "R" located at origin

 TransformGroup pos1TG = Simple3D.setTranslation(0,0.5,0);

 // up the y axis

 pos1TG.addChild(rShape); // pos1TG --> "R"

 TransformGroup rot1TG = Simple3D.rotX(-90); // ccw around x-axis

 rot1TG.addChild(pos1TG); // rot1TG --> pos1TG --> "R"

 // add to the universe

 j3d.rootBG.addChild(Simple3D.createBG(rot1TG));

 } // end of main()

3. Transformations

5

Figure 4 shows that the letter is now resting on its back on the XZ plane.

Figure 4. "R" on its back.

A third TransformGroup node is now added, above the other two in the scene graph,

to move the shape up the y-axis again. As with the rotation, the translation is relative

to the world's origin, not the letter's origin (which is now at (0, 0, -0.5))

 public static void main(String[] args)

 {

 Simple3D j3d = new Simple3D("RGraph", true, true);

 BranchGroup rShape = Simple3D.text3D("R", "purple");

 // "R" located at origin

 TransformGroup pos1TG = Simple3D.setTranslation(0,0.5,0);

 // up the y axis

 pos1TG.addChild(rShape); // pos1TG --> "R"

 TransformGroup rot1TG = Simple3D.rotX(-90); // ccw around x-axis

 rot1TG.addChild(pos1TG); // rot1TG --> pos1TG --> "R"

 TransformGroup pos2TG = Simple3D.setTranslation(0,0.5,0);

 // up the y axis

 pos2TG.addChild(rot1TG); // pos2TG --> rot1TG --> pos1TG --> "R"

 // add to the universe

 j3d.rootBG.addChild(Simple3D.createBG(pos2TG));

 } // end of main()

3. Transformations

6

Figure 5 shows that the letter has risen up the y-axis.

Figure 5. The floating "R".

The resulting chain of TransformGroups is nicely summarized by the comment in the

code:

// pos2TG --> rot1TG ---> pos1TG --> "R"

The key to understanding this chain is to read it from right-to-left (or equivalently up

from the leaf node towards the root of the scene graph). Each transformation is

applied in terms of world coordinates, which means relative to (0,0,0). Each

TransformGroup is limited to one transformation, and the necessary complexity is

built up by the addition of nodes.

This gradual application of transformations (as shown in Figures 2-5) is a good way to

write Java 3D code. It forces the programmer to divide the transformation into parts

which can be implemented and tested incrementally.

3. Composition Rules

This chaining together of TransformGroups has a few 'rules' that should be borne in

mind when a chain is being created:

1. A node should perform only one transformation (e.g. a translation, rotation, or

scaling).

2. The ordering of the nodes matters: e.g. a rotation and then a translation is not the

same as the translation then the rotation.

3. Rotations around different axes should be considered to be different

transformations, and so be split across nodes.

4. If a transformation is going to be modified at run time, then you should probably

use one of Simple3D's "By" methods to do it. (This rule is the focus of section 5.)

I'll illustrate these rules by looking at various functions in RTrans.java:

3. Transformations

7

 private static BranchGroup yellowR, redR, blueR;

 public static void main(String[] args)

 {

 Simple3D j3d = new Simple3D("Text 3D", true, true);

 yellowR = Simple3D.text3D("R", "yellow");

 redR = Simple3D.text3D("R", "red");

 blueR = Simple3D.text3D("R", "blue");

 BranchGroup sceneBG = posRot();

 // BranchGroup sceneBG = posScale();

 // BranchGroup sceneBG = rotScale();

 // BranchGroup sceneBG = twoSameAxisRots();

 // BranchGroup sceneBG = twoDiffAxesRots();

 // BranchGroup sceneBG = twoPosTG();

 // BranchGroup sceneBG = twoRotTG();

 // BranchGroup sceneBG = posRot1TG();

 // BranchGroup sceneBG = axisAngles();

 // add everything to the universe

 j3d.rootBG.addChild(sceneBG);

 } // end of main()

The program begins by creating three "R"s, each colored differently and assigned to

global variables. The functions apply various transformations, building a scene graph

beneath sceneBG which is rendered at the end.

3.1. Ordering Matters

The posRot() function applies the same translation and rotation to the red "R" and the

blue "R", but in opposite order. The result, shown in Figure 6, shows that the ordering

of these operations matters.

3. Transformations

8

Figure 6. Translation/Rotation in Different Orders.

posRot() is defined as:

 private static BranchGroup posRot()

 // translations and rotations cannot be swapped usually

 {

 // pos then rot: rot1 --> pos1 --> red R

 TransformGroup pos1 = Simple3D.setTranslation(2, 0, 0);

 pos1.addChild(redR);

 TransformGroup rot1 = Simple3D.rotY(90);

 rot1.addChild(pos1);

 // rot then pos: pos2 --> rot2 --> blue R

 TransformGroup rot2 = Simple3D.rotY(90);

 rot2.addChild(blueR);

 TransformGroup pos2 = Simple3D.setTranslation(2, 0, 0);

 pos2.addChild(rot2);

 // build top-level scene

 BranchGroup sceneBG = new BranchGroup();

 sceneBG.addChild(yellowR);

 sceneBG.addChild(rot1); // red

 sceneBG.addChild(pos2); // blue

 return sceneBG;

 } // end of posRot()

The yellow "R" is left unchanged; the red "R" is translated to (2,0,0) and then rotated

90 degrees counter-clockwise around the y-axis, and the blue "R" is rotated first, and

then translated.

The secret to understanding the differences between the red and blue "R"s is to recall

that the TransformGroups are performed right-to-left as per the code comments, and

that the operations are always relative to the world coordinates. In particular, a y-axis

rotation is relative to the line y == 0 running through the origin.

3. Transformations

9

In a classroom situation, it helps to have a cardboard letter "R" which can be used to

animate the operations.

RTrans.java also includes functions called posScale() and rotScale() which illustrate a

similar point about ordering a translation and scaling, and a rotation and scaling.

3.2. Rotations around Different Axes are Different

The importance of ordering translation, rotation, and scaling operations extends to

different kinds of axis rotations. For example, a rotation about the x-axis followed by

a rotation around the z-axis is not generally the same in the opposite order. This is

illustrated by twoDiffAxesRots() in RTrans.java:

 private static BranchGroup twoDiffAxesRots()

 // rotations around different axes cannot usually be swapped

 {

 // rotations: rotZ --> rotX --> red R

 TransformGroup rot1 = Simple3D.rotX(90);

 rot1.addChild(redR);

 TransformGroup rot2 = Simple3D.rotZ(90);

 rot2.addChild(rot1);

/*

 // or

 TransformGroup rot2 = Simple3D.setRotations(90, 0, 90);

 // x-, y-, then z- rotation in world coords;

 // best to avoid this, at least when starting out

 rot2.addChild(redR);

*/

 // opp. rotations: rotX --> rotZ --> blue R

 TransformGroup rot3 = Simple3D.rotZ(90);

 rot3.addChild(blueR);

 TransformGroup rot4 = Simple3D.rotX(90);

 rot4.addChild(rot3);

 // build top-level scene

 BranchGroup sceneBG = new BranchGroup();

 sceneBG.addChild(yellowR);

 sceneBG.addChild(rot2); // red rotations

 sceneBG.addChild(rot4); // blue rotations

 return sceneBG;

 } // end of twoDiffAxesRots()

3. Transformations

10

The difference between the orders is apparent in Figure 7. Note, that I've switched off

the floor grid so that the blue "R" can be seen.

Figure 7. Rotations in Different Orders.

To understand why the blue and red "R"s are where they are, it helps to keep the right

hand rule for rotations in mind, which is summarized by Figure 8.

Figure 8. The Right Hand Rule for Rotations.

A positive rotation follows the direction of the fingers in Figure 8.

The blue "R" is rotated around the z-axis, and then the x-axis, and so ends up face

down just below the XZ plane (recall that a letter starts with the back of its base

resting on the x-axis).

The red "R" is rotated around the x-axis, and then the z-axis, and so ends up facing to

the right, with half of the letter below the XZ plane.

3. Transformations

11

twoDiffAxesRots() contains a few lines of commented-out code which illustrate the

use of Simple3D.setRotations() (note the "s"), which can apply an x-, y-, and then an

z- axis rotation to a single TransformGroup. This operation should be avoided in most

cases since the ordering of the rotations is easy to forget, and the resulting

TransformGroup is harder to modify. In twoDiffAxesRots(), setRotations() achieves

the same effect as the two rotations applied to the red "R".

3.3. Use "By" methods to Incrementally Change a TransformGroup

Especially when an object is being animated, there's a need to incrementally change a

TransformGroup value. If the 'rules' listed at the start of this section are followed, then

each TransformGroup will manage a single translation, rotation, or scaling, and so can

be modified using Simple3D's "By" methods:

public static void moveBy(TransformGroup tg,

 double dx, double dy, double dz);

private static void moveBy(TransformGroup tg, Vector3d offset);

public static void rotXBy(TransformGroup tg, double degrees);

public static void rotYBy(TransformGroup tg, double degrees);

public static void rotZBy(TransformGroup tg, double degrees);

There's no scaleBy() since it seems easiest just to assign a new scale factor to a node

by calling Simple3D.scale().

The use of moveBy() is illustrated in twoPosTG() in RTrans.java, while rotYBy() is

utilized in twoRotTG().

twoPosTG() translates the red "R" and blue "R" to almost the same position by

applying Simple3D.setTranslation() and Simple3D.moveBy() operations to the pos1

and pos2 TransformGroups. The end positions are slightly different so that the two

shapes don't occupy the same space.

 private static BranchGroup twoPosTG()

 // two translations applied to one TG; uses moveBy()

 {

 // pos1 (1,0,3) + (1,0,0) --> red R

 TransformGroup pos1 = Simple3D.setTranslation(1,0,3);

 pos1.addChild(redR);

 Simple3D.moveBy(pos1, 1,0,0);

 // pos2 (1,0.5,3) + (1,0,3) --> blue R

 TransformGroup pos2 = Simple3D.setTranslation(1,0,0);

 pos2.addChild(blueR);

 Simple3D.moveBy(pos2, 1,0.5,3); // up a bit, so visible

 // build top-level scene

 BranchGroup sceneBG = new BranchGroup();

 sceneBG.addChild(yellowR); // yellow

 sceneBG.addChild(pos1); // red

 sceneBG.addChild(pos2); // blue

3. Transformations

12

 return sceneBG;

 } // end of twoPosTG()

The rendering of the "R"s is shown in Figure 9.

Figure 9. Using Simple3D.moveBy().

The important thing to remember is that moveBy() should only be applied to a

translation-based TransformGroup, and will then have the effect of 'adding' the

moveBy() coordinate to the existing coordinate in the node. If it's applied to a node

containing a rotation or a scaling it will most likely 'work', but the user will need to

think in terms of matrix multiplication to confirm the result. Also, if that node is later

modified by a rotation "By" method, the translation component will also be affected,

which is probably not the intention.

twoRotTG() illustrates incremental rotation, in this case around the y-axis. The red

and blue "R"s are rotated by Simple3D.rotY() and Simple3D.rotYBy() applied to the

rot1 and rot2 TransformGroups. They end up in with almost the same orientation, but

the angles are deliberately a little different so the two shapes don't end up in the same

space.

 private static BranchGroup twoRotTG()

 // two rotations (around the same axis) applied to one TG

 {

 // rot1 40 + 50 --> red R

 TransformGroup rot1 = Simple3D.rotY(40);

 rot1.addChild(redR);

 Simple3D.rotYBy(rot1, 50);

 // rot2 50 + 50 --> blue R

 TransformGroup rot2 = Simple3D.rotY(50);

 rot2.addChild(blueR);

 Simple3D.rotYBy(rot2, 50); // rotate a bit more, so visible

3. Transformations

13

 // build top-level scene

 BranchGroup sceneBG = new BranchGroup();

 sceneBG.addChild(yellowR); // yellow

 sceneBG.addChild(rot1); // red

 sceneBG.addChild(rot2); // blue

 return sceneBG;

 } // end of twoRotTG()

Figure 10 shows the output.

Figure 10. Using Simple3D.rotYBy().

As with moveBy(), this operation may 'work' when applied to TransformGroups

containing translations, scalings, or rotations around other axes, but will be much

harder to understand.

3.4. Breaking the Rules: Rotating and Translating one TransformGroup

There may come a time when the TransformGroup rules that I've outlined are too

limiting, although I think this unfortunate situation won't arise in the simple examples

that I'll be developing in later chapters.

posRot1TG() implements a situation where a rotation and then a translation increment

is applied to the tg1 TransformGroup for the red "R". Meanwhile, the blue "R" is

transformed by the tg2 node with the same operations in the opposite order:

 private static BranchGroup posRot1TG()

 /* translation and rotation applied to one TG;

 Avoid this approach since 'and' is really

 4x4 matrix multiplication. Use a scene graph

 hierarchy instead.

3. Transformations

14

 */

 {

 // tg1 45-rotY '+' (0,0,3) --> red R

 TransformGroup tg1 = Simple3D.rotY(45);

 Simple3D.moveBy(tg1, 0, 0, 3);

 tg1.addChild(redR);

 System.out.println("tg1 45-rotY '+' (0,0,3) --> red R");

 Simple3D.printMatrix(tg1);

 // tg2 (0,0,3) '+' 45-rotY --> blue R

 TransformGroup tg2 = Simple3D.setTranslation(0,0,3);

 Simple3D.rotsBy(tg2, 0, 45, 0);

/*

 // or use setTransforms() to combine into one op.

 TransformGroup tg2 = Simple3D.setTransforms(

 0,0,3, // (x,y,z) translation

 0,45,0, // rotations

 1); // scale

*/

 tg2.addChild(blueR);

 System.out.println("tg2 (0,0,3) '+' 45-rotY --> blue R");

 Simple3D.printMatrix(tg2);

 // build top-level scene

 BranchGroup sceneBG = new BranchGroup();

 sceneBG.addChild(yellowR); // yellow

 sceneBG.addChild(tg1); // red

 sceneBG.addChild(tg2); // blue

 return sceneBG;

 } // end of posRot1TG()

Figure 11 shows that the two "R"s end up in different positions.

3. Transformations

15

Figure 11. Combining Transformations in one TransformGroup.

Although the red and blue "R"s are rotated by what appears to be a similar amount,

they are positioned differently on the XZ plane. I would argue that the only way to

understand why this is so is to peer inside the TransformGroup node, into its

Transform3D object, and examine how its 4x4 matrix is modified.

This nasty task is made somewhat easier by calling Simple3D.printMatrix(), which

reports:

tg1 45-rotY '+' (0,0,3) --> red R

| 0.71 0.00 0.71 2.12 |

| 0.00 1.00 0.00 0.00 |

| -0.71 0.00 0.71 2.12 |

| 0.00 0.00 0.00 1.00 |

tg2 (0,0,3) '+' 45-rotY --> blue R

| 0.71 0.00 0.71 0.00 |

| 0.00 1.00 0.00 0.00 |

| -0.71 0.00 0.71 3.00 |

| 0.00 0.00 0.00 1.00 |

This will mean nothing to a novice 3D programmer unless they understand how

rotations, translations, and scalings are represented inside the matrix. The gory details

are summarized by Figure 12.

Figure 12. Transforms in a 4x4 Matrix.

The unfortunate programmer will also have to know how these transformations are

combined via matrix multiplication, including the ordering of the matrices (since

matrix multiplication isn't commutative).

3. Transformations

16

For the red "R", the tg1 TransformGroup is first assigned a 45 degree y-axis rotation

(a rotY() matrix in Figure 12) and then a translation matrix is multiplied to it as its

right-hand argument. This is represented by Figure 13.

Figure 13. The red "R": A 45 degree rotation which is then translated.

The r represents the cosine and sine values for 45 degrees, and the red numbers are

the resulting position of the "R". 3r is approximately 2.12, and the right hand side of

Figure 13 does indeed correspond to the first matrix printed by

Simple3D.printMatrix().

The t3d and moveT3d labels in Figure 13 refer to the code for Simple3D.moveBy():

 private static void moveBy(TransformGroup tg, Vector3d offset)

 // Move the TransformGroup by the offset amount

 {

 Transform3D t3d = new Transform3D();

 tg.getTransform(t3d);

 Transform3D moveT3d = new Transform3D();

 moveT3d.setTranslation(offset); // only translate

 t3d.mul(moveT3d); // 'add' translation to existing one

 tg.setTransform(t3d);

 } // end of moveBy()

t3d is the Transform3D object inside tg1 which is multiplied by the translation

encoded in moveT3d.

For the blue "R", the tg2 TransformGroup is first translated to (0,0,3) and then a 45

degree y-axis rotation is multiplied to it on the right. The operation is represented by

Figure 14.

Figure 14. The blue "R": A translation is then rotated by 45 degrees around the y-axis.

The t3d and rotT3d labels in Figure 14 refer to the code for Simple3D.rotYBy():

3. Transformations

17

 public static void rotYBy(TransformGroup tg, double degrees)

 // rotate the existing TransformGroup by degrees around the y-axis

 {

 Transform3D t3d = new Transform3D();

 tg.getTransform(t3d);

 Transform3D rotT3d = new Transform3D();

 rotT3d.rotY(Math.toRadians(degrees));

 t3d.mul(rotT3d);

 tg.setTransform(t3d);

 } // end of rotYBy()

The purpose of this section is to illustrate that combining transformations in a single

TransformGroup requires a much lower-level understanding of the way that 3D

transformations are implemented.

Nevertheless, sometimes it is necessary to combine transformations in this way, and

that's supported by Simple3D.setTransforms(), an example of which is commented

out in posRot1TG():

/*

 // or use setTransforms() to combine into one op.

 TransformGroup tg2 = Simple3D.setTransforms(

 0,0,3, // (x,y,z) translation

 0,45,0, // rotations

 1); // scale

*/

The programmer utilizing setTransforms() should remember that the translation is

applied first, followed by the rotations. If there are several rotations then they're

performed in the order x-, y-, then z-. Also, the scaling factor is applied only to the

rotation component of the matrix, which means that the shape changes size but its

position is unaffected.

This behavior matches the actions applied to the blue "R", and so setTransforms()

could be substituted for its translation 'plus' rotation.

4. An Orbiting Rocket

A drawback of the preceding examples is that the transformations have only been

applied to a single shape (the letter "R"). This section shows how to position the

components of a more complex shape (in this case, a rocket), and collect them

together as a single model by using a BranchGroup. This node is packaged inside a

Rocket class, from which Rocket objects can be instantiated.

3. Transformations

18

An object's top-level BranchGroup node can be transformed in the same way as any

simple shape, and this technique is used to rotate and position the rocket so that

Simple3D.orbit() can be employed to have it circle the y-axis. Figure 15 shows the

rocket in orbit.

Figure 15. The Orbiting Rocket.

4.1. Sketching the Rocket

The first stage in rocket design is to draw a sketch which breaks it down into simpler,

built-in primitive shapes, namely boxes, cones, cylinders, and spheres. In this

instance, we'll utilize three cones and a cylinder, as shown in Figure 16.

Figure 16. The Rocket at the Origin.

3. Transformations

19

Aside from Figure 16 listing the various dimensions of the shapes, it also specifies

that the rocket is initially positioned with its base centered at the origin.

4.2. Defining the Rocket's Scene Graph

The scene graph for the rocket must create the primitive shapes and move/rotate them

into the positions specified by the sketch in Figure 16.

Neither the cones or cylinder need to be rotated, but they must be repositioned. A

scene graph drawing of what's required:

 rocketBG --> pos1TG --> cylinder

 |

 ----> pos2TG --> nose cone

 |

 ----> pos3TG ---> left booster

 |

 ----> pos4TG --> right booster

"TG" is short for TransformGroup, and "BG" stands for BranchGroup.

As mentioned above, the BranchGroup will be the node visible to programs that use

rockets. Any TransformGroups to the left of rocketBG (i.e. higher in the scene graph)

will affect all the shapes managed by that group.

Based on the dimensions in Figure 16 and the scene graph drawing, the constructor

for the Rocket class can be encoded. The completed scene graph is assigned to a

rocketBG global variable:

public class Rocket

{

 private BranchGroup rocketBG = null;

 public Rocket()

 {

 // build the shapes

 Cone noseCone = Simple3D.texCone(0.25f, 0.5f, "images/grid.jpg");

 Cylinder cyl = Simple3D.texCylinder(0.25f, 2f,

 "images/steel1.jpg");

 Cone leftBooster = new Cone(0.25f, 0.5f,

 Simple3D.color("red"));

 Cone rightBooster = new Cone(0.25f, 0.5f,

 Simple3D.color("red"));

 // move the cylinder up the y-axis to rest on floor

 TransformGroup pos1TG = Simple3D.setTranslation(0, 1, 0);

 pos1TG.addChild(cyl);

 // position the top cone up y-axis to rest on cylinder top

 TransformGroup pos2TG = Simple3D.setTranslation(0, 2.25, 0);

 pos2TG.addChild(noseCone);

3. Transformations

20

 // move the left booster left along x-axis and up

 TransformGroup pos3TG = Simple3D.setTranslation(-0.25, 0.24, 0);

 pos3TG.addChild(leftBooster);

 // move the right booster right along x-axis and up

 TransformGroup pos4TG = Simple3D.setTranslation(0.25, 0.24, 0);

 pos4TG.addChild(rightBooster);

 // group the shapes under a BranchGroup

 rocketBG = Simple3D.createBG();

 rocketBG.addChild(pos1TG); // cylinder

 rocketBG.addChild(pos2TG); // top cone

 rocketBG.addChild(pos3TG); // left booster

 rocketBG.addChild(pos4TG); // right booster

 } // end of Rocket()

 public BranchGroup getBG()

 { return rocketBG; }

} // end of Rocket class

The simplicity of the rocket code means that it could have been implemented as a

single function, returning the rocketBG BranchGroup, but it's generally more useful to

utilize a class so that additional state (e.g. the speed and current position of the rocket)

can be stored along with the visualization.

A rocket can be displayed like so:

 public static void main(String[] args)

 {

 Simple3D j3d = new Simple3D("Rocket", 0, 1, 10, true, true);

 Rocket r = new Rocket();

 j3d.rootBG.addChild(r.getBG());

 } // end of main()

4.3. Positioning the Rocket

The rocketBG BranchGroup lets the rocket be manipulated in the same way as

primitive shapes (e.g. as in section 2). A key point to recall is which part of the rocket

is located at the origin, since any translations, rotations, or scalings will be relative to

that point. As the sketch in Figure 16 indicates, the rocket's base is centered at the

origin.

The positioning of the rocket is specified in terms of another scene graph:

posTG --> rotTG --> rocketBG

3. Transformations

21

Note that rocketBG hides the complexity of the underlying shape. The rocket is

rotated clockwise around the z-axis to point right by rotTG, and then moved up and

backwards into the scene via posTG:

 Simple3D j3d = new Simple3D("Rocket", 0, 1, 10, true, true);

 Rocket r = new Rocket();

 // posTG --> rotTG --> rocket

 TransformGroup rotTG = Simple3D.rotZ(-90); // cw around z-axis

 rotTG.addChild(r.getBG());

 // translate so centered at (0,1,-2); up and into the scene

 TransformGroup posTG = Simple3D.setTranslation(-1.25,1,-2);

 posTG.addChild(rotTG);

 j3d.rootBG.addChild(Simple3D.createBG(posTG));

The last step is to employ Simple3D.orbit() to make the rocket orbit clockwise around

the y-axis. This creates another TransformGroup which attaches a rotator interpolator

to the posTG node:

 flyingRocket --> orbitTG --> posTG --> rotTG --> rocketBG

 | ||

 ----> rotator

This extends the code:

 Simple3D j3d = new Simple3D("Rocket", 0, 1, 10, true, true);

 Rocket r = new Rocket();

 TransformGroup rotTG = Simple3D.rotZ(-90); // cw around z-axis

 rotTG.addChild(r.getBG());

 // translate so centered at (0,1,-2); up and into the scene

 TransformGroup posTG = Simple3D.setTranslation(-1.25,1,-2);

 posTG.addChild(rotTG);

 // make the rocket orbit clockwise around y-axis

 TransformGroup orbitTG = Simple3D.orbit(posTG, 4000,

 -Simple3D.Y_AXIS);

 BranchGroup flyingRocket = Simple3D.createBG(orbitTG);

 j3d.rootBG.addChild(flyingRocket);

Perhaps the most important thing to take away from this example is the stepwise

development of the code. First the rocket was created at the origin, then moved to its

orbital starting position, and finally made to rotate.

3. Transformations

22

5. A Controllable Jointed Arm

The jointed arm developed in this section is shown in Figure 17. The user can rotate

its joints located in the red base and the ends of the green and blue cylinders by typing

instructions at the command line.

Figure 17. The Jointed Arm.

The arm is implemented as a class called JointedArm, and a separate program,

UseArm.java, contains the code for reading and processing user commands. The

position of the arm in Figure 17 was achieved by the user typing:

>> l 45

>> u -45

>> b 30

>> b 30

"l' refers to the thin blue cylinder (the 'lower' part of the arm), "u" is the thin green

cylinder (the 'upper' part of the arm), and "b" is the red base. The lower and upper

arms can rotate around the z-axis, while the base turns around the y-axis. The rotation

values are supplied in degrees.

5.1. Sketching the Jointed Arm

The three cylinders are created with their centers located at the origin, as depicted in

Figure 18. Of course, the shapes will overlap, but I've drawn them offset to make

things a little clearer.

3. Transformations

23

Figure 18. The Three Cylinders at the Origin.

These shapes need to be repositioned so they can rotate around their joints – drawn as

circles in Figure 19, and called rotBase, rotUpper, and rotLower. The rotBase and

rotUpper nodes are actually at the same location, but rotBase handles y-axis rotations,

while rotUpper rotates only around the z-axis.

Figure 19. The Three Cylinders Positioned to Form the Arm.

It's best to design the scene graph for such a complicated model in stages. The first

thing to remember is that the shapes (base, upper, and lower) must be leaf nodes,

while the top-level node is usually a BranchGroup (I'll call it armBG).

3. Transformations

24

The three joints (rotBase, rotUpper, and rotLower) will be implemented as

TransformGroups to handle the rotations. Crucially, rotUpper must affect both the

upper and lower cylinders, which implies that they should be grouped in a

BranchGroup below rotUpper. A similar argument applies to rotBase – it should

affect all three cylinders: base, upper and lower, and so they must also be grouped.

These insights allow a preliminary scene graph to be designed, which lacks positional

nodes, as shown in Figure 20.

Figure 20. A Partial Scene Graph for the Jointed Arm.

The dashed triangles in Figure 20 illustrate the influence of rotating a joint on the

nodes further down in the graph.

We can now turn to the distances shown in Figure 19, and decide where they should

be added to the graph in Figure 20.

up2 and up4 are vertical offsets of the center of the upper and lower cylinders from

their joints (rotUpper and rotLower), and so can be inserted just above the upper and

lower nodes in the graph.

up23 represents the distance between the rotUpper and rotLower joints, and so should

go somewhere in the graph between those two nodes.

up1 is the most complicated node to insert since it's used to lift the base up the y-axis

and also the rotBase joint. This suggests that it should be inserted above both of those

nodes in the graph.

3. Transformations

25

The end result is shown in Figure 21.

Figure 21. The Completed Scene Graph.

5.2. Defining the Arm's Scene Graph

Devising the scene graph in Figure 20 is no easy matter, but translating it into Java 3D

code is relatively automatic, using the same techniques as employed for the rocket in

the previous section.

The graph is built in the constructor of a JointedArm class which ends with the

graph's assignment to a global variable called armBG which is accessible via a public

getBG() method.

public class JointedArm

{

 private BranchGroup armBG;

 private TransformGroup rotLower, rotUpper, rotBase;

 // the three arm 'joints'

 public JointedArm()

 {

 // create the shapes

 Cylinder base = new Cylinder(0.15f, 0.3f, Simple3D.color("red"));

 Cylinder upper = new Cylinder(0.05f,1f, Simple3D.color("green"));

 Cylinder lower = new Cylinder(0.05f,1f, Simple3D.color("blue"));

 /*

 bg2 --> up23 --> rotLower --> up4 --> lower cyl

 |

3. Transformations

26

 -----> up2 --> upper cyl

 */

 TransformGroup up4 = Simple3D.setTranslation(0,0.5,0);

 up4.addChild(lower);

 rotLower = Simple3D.createTG();

 rotLower.addChild(up4);

 new TGViewer("rotLower", rotLower, true); // show world coords

 TransformGroup up23 = Simple3D.setTranslation(0,1,0);

 up23.addChild(rotLower);

 TransformGroup up2 = Simple3D.setTranslation(0,0.5,0);

 up2.addChild(upper);

 BranchGroup bg2 = new BranchGroup();

 bg2.addChild(up23);

 bg2.addChild(up2);

 /*

 up1 --> rotBase --> bg1 --> rotUpper --> bg2

 |

 -----> base cyl

 */

 rotUpper = Simple3D.createTG();

 rotUpper.addChild(bg2);

 new TGViewer("rotUpper", rotUpper);

 BranchGroup bg1 = new BranchGroup();

 bg1.addChild(base);

 bg1.addChild(rotUpper);

 rotBase = Simple3D.createTG();

 new TGViewer("rotBase", rotBase);

 rotBase.addChild(bg1);

 TransformGroup up1 = Simple3D.setTranslation(0,0.15,0);

 up1.addChild(rotBase);

 /* complete the arm:

 armBG --> up1

 */

 armBG = Simple3D.createBG(up1);

 // a hand model (not currently used)

 BranchGroup modelBG =

 Simple3D.loadModel("models/hand/hand.obj");

 TransformGroup handTG = Simple3D.setTranslation(2,0.1,0);

 handTG.addChild(modelBG);

 // armBG.addChild(handTG);

 } // end of JointedArm()

 public BranchGroup getBG()

 { return armBG; }

3. Transformations

27

 // more methods, explained below...

} // end of JointedArm class

I didn't code JointedArm() in one attempt, instead breaking it into several stages:

initially restricting myself to positioning the base and upper shapes, and only later

adding the lower cylinder and its joint. The test code I utilized during this was

something like:

 public static void main(String[] args)

 {

 Simple3D j3d = new Simple3D("JointedArm", 0, 1, 7, true, true);

 JointedArm arm = new JointedArm();

 j3d.rootBG.addChild(arm.getBG());

 } // end of main()

JointedArm also has three global TransformGroup variables – rotBase, rotUpper, and

rotLower, which are manipulated by three public methods:

 // methods in JointedArm

 public void rotateBase(double degrees)

 // add degrees to the base's rotation around the y-axis

 { Simple3D.rotYBy(rotBase, degrees); }

 public void rotateUpper(double degrees)

 /* add degrees to the upper's rotation around its z-axis

 at the point where it intersects the base

 */

 { Simple3D.rotZBy(rotUpper, degrees); }

 public void rotateLower(double degrees)

 /* add degrees to the lower's rotation around its z-axis

 at the point where it intersects the upper cylinder

 */

 { Simple3D.rotZBy(rotLower, degrees); }

These use Simple3D "By" methods to incrementally rotate the arm's joints.

5.3. Controlling the Arm

The main() method from above is extended in the UseArm.java program to process 'l',

'u', and 'b' commands entered by the user. A typical session with the arm would be:

3. Transformations

28

> run UseArm

Executing UseArm with Simple3D.jar

Loading JOGL, Java 3D, Simple3D...

Named objects in model:

 default: Shape3D; no. geometries: 1

Possible commands: b | u | l <angle>

 b == base (the red cylinder), which rotates around the y-axis

 u == upper (the thin green cylinder), which rotates around the z-

axis

 l == lower (the thin blue cylinder), which rotates around the z-

axis

Enter command (e.g. quit)

>> l 45

>> u -45

>> b 90

>> b 90

>> q

Simple3D closing down...

Finished.

>

The user's input is highlighted in bold. Figure 22 shows a sequence of screenshots as

the four joint commands are processed.

Figure 22. The Moving Arm.

The details of how the user's input is read aren't that relevant, but eventually the

following code is called to process a command:

 private static void processCmd(String[] toks, JointedArm arm)

 {

3. Transformations

29

 if (toks.length != 2) {

 System.out.println("Wrong no. of args for \"" +toks[0] +"\"");

 return;

 }

 if (toks[0].equals("b"))

 arm.rotateBase(Simple3D.getDouble(toks[1]));

 else if (toks[0].equals("u"))

 arm.rotateUpper(Simple3D.getDouble(toks[1]));

 else if (toks[0].equals("l"))

 arm.rotateLower(Simple3D.getDouble(toks[1]));

 else

 System.out.println("Unrecognized command: " + toks[0]);

 } // end of processCmd()

5.4. Observing the TransformGroups

Although the effects of a command can be observed by looking at how the cylinders

move inside the Java 3D window, it's sometimes useful to get more accurate

information about the current position, rotation and scaling stored in a

TransformGroup. This is possible by creating a TGViewer window, which displays a

TransformGroup's current values.

Three TGViewers are created in JointedArm() to display the data in rotBase,

rotUpper, and rotLower:

// code from JointedArm()

 :

new TGViewer("rotLower", rotLower, true); // show world coords
 :
new TGViewer("rotUpper", rotUpper);
 :

new TGViewer("rotBase", rotBase);

The TGViewer for rotLower includes a boolean argument which means that it also

displays the TransformGroup values mapped to the world coordinate system.

3. Transformations

30

Figure 23 shows the three TGViewer windows after the arm has been moved to the

last position in Figure 22.

Figure 23. TGViewers for the Jointed Arm.

The WPos, WRots, and WScale rows in the rotLower TGViewer give the position,

rotation, and scaling of the TransformGroup in world coordinates. For example, the

WPos value (-0.71, 0.86, 0) corresponds to the joint's current position in the world,

which is at the point where the green and blue cylinders meet.

The rotation information supplied by TGViewer is generally less useful since it can be

difficult to reconcile the reported values with the operations that were carried out.

This is readily apparent in the Rots values reported for rotBase, which states that the

base has rotated 180 degrees around the x-axis and 180 degrees around the z-axis.

However, the two operations applied to rotBase amount to 180 degrees rotation

around the y-axis.

In fact, both values are equivalent, reflecting how there's no unique way to define a

rotation in 3D space based on the x-, y-, and z- axes. The math utilized by

Simple3D.getRotations() to convert the 4x4 matrix in the TransformGroup's

Transform3D object into three Euler angles is described in https://mino-

git.github.io/rtcw-wet-blender-model-tools/publications/EulerToMatrix.pdf.

