
7. Interaction

1

7. Interaction

The I/O in most of the examples up to now has consists of reading from and writing to

the command line. Two more graphical approaches are to use the mouse to 'pick' (i.e.

select) objects in a scene, and have models interact when they collide. Both picking

and collision detection are implemented using Java 3D's Behavior class, so if you're

unfamiliar with that class, then you should read chapter 5 first. Collision detection

relies on collision wakeup conditions, while picking uses Java 3D’s

PickMouseBehavior, a subclass of Behavior.

1. Picking

Simple3D includes a PickBehavior class, a subclass of PickMouseBehavior, which

deals with the conversion of a mouse click on the 3D canvas into a pick ray projected

into the scene. The first pickable shape that this hits is examined, and the shape's

name and (possibly) the ray's intersection point with the shape are passed to a pick()

method defined by the PickUpdater interface. These elements are illustrated in Figure

16.

Figure 16. Picking a Shape with the Mouse.

PickBehavior is instantiated in a way a little unlike other Behavior classes because its

PickMouseBehavior superclass requires a reference to the 3D canvas and scene graph:

public class PickBehavior extends PickMouseBehavior

{

 private PickUpdater pu;

 public PickBehavior(PickUpdater pu, Canvas3D canvas,

 BranchGroup sceneBG)

 {

 super(canvas, sceneBG, Simple3D.INFINITE_BOUNDS);

 this.pu = pu;

 setSchedulingBounds(Simple3D.INFINITE_BOUNDS);

 }

7. Interaction

2

 public void updateScene(int xpos, int ypos)

 { ... }

} // end of PickBehavior class

A class that extends PickMouseBehavior must implement updateScene(), which is

passed the coordinates of the mouse click on the 3D canvas. My updateScene() fires a

pick ray through those coordinates into the scene, and the name and intersection point

of the closest shape are retrieved:

 public void updateScene(int xpos, int ypos)

 // in PickBehavior

 {

 pickCanvas.setShapeLocation(xpos, ypos);

 // register mouse pointer location on the screen (canvas)

 Point3d cameraPos = pickCanvas.getStartPosition();

 // get the camera's location

 PickResult pickResult = pickCanvas.pickClosest();

 // get the intersected shape closest to the camera

 if (pickResult != null) { // get the shape's name

 String id = Simple3D.pickID(pickResult);

 // try to get the ray intersect point

 Point3d intercept = null;

 try {

 PickIntersection pi =

 pickResult.getClosestIntersection(cameraPos);

 intercept = pi.getPointCoordinatesVW();

 }

 catch(Exception e) // intersection may fail

 { //System.out.println("No intercept found for " + id);

 }

 pu.picked(id, intercept);

 }

 } // end of updateScene()

Any Shape3D is pickable by default, but only the nodes below the scene graph

supplied to the PickBehavior constructor will be considered. This will typically be a

branch below Simple3D's rootBG, which will mean that Simple3D's floor and axes

won't be examined. Even so, there may be a lot of matches, and so updateScene() only

considers the first shape hit by the pick ray.

Simple3d.pickID() use the pick result to dereference the shape's name, which should

have been set earlier. It utilizes two similar functions, getPrimitiveID() and

7. Interaction

3

getShapeID(), to examine Primitive and Shape3D object respectively.

Simple3D.getPrimitiveID() is coded as:

 private static String getPrimitiveID(PickResult pickResult)

 // extract ID from a Primitive object in pickResult

 {

 Primitive pickedShape =

 (Primitive) pickResult.getNode(PickResult.PRIMITIVE);

 if (pickedShape == null)

 return null;

 else {

 String id = pickedShape.getName();

 if (id == null)

 return "primitive";

 else

 return id;

 }

 } // end of getPrimitiveID()

updateScene() also attempts to get the pick ray's intersection point with the shape,

which is always successful if the shape is a Primitive, but may fail for Shape3Ds,

especially loaded OBJ models.

1.1. Picking Some Shapes

PickCubes.java uses PickBehavior to let the user to click on three boxes and a car

model to get the shape's name and intersection point. Figure 17 shows the scene.

Figure 17. Picking Shapes with the Mouse.

Typical output:

green box picked at : (2.012, 0.468, 0.500)

models/car/car.obj picked

red box picked at : (-1.988, 0.644, 0.500)

7. Interaction

4

green box picked at : (1.568, 0.886, 0.500)

The green box was clicked upon twice, but in slightly different places, and the picking

of the car failed to return an intersection point. The shapes' names (e.g. "green box")

were set when the scene was created in the PickCubes constructor.

The main() function creates a PickCubes object and a PickBehavior:

 public static void main(String[] args)

 {

 Simple3D j3d = new Simple3D("Pick Cubes", true, true);

 PickCubes pc = new PickCubes();

 PickBehavior pb = new PickBehavior(pc, j3d.canvas3D,

 pc.getScene());

 // build the scene graph

 BranchGroup bg = Simple3D.createBG();

 bg.addChild(pc.getScene());

 bg.addChild(pb);

 j3d.rootBG.addChild(bg);

 } // end of main()

The PickCubes constructor creates the scene in the normal way, except for the

allocation of names to the shapes:

 // global

 private BranchGroup sceneBG;

 public PickCubes()

 {

 /* sceneBG --> pos1TG --> red box (pickable)

 |

 --> pos2TG --> blue box (pickable)

 |

 --> pos3TG --> green box (pickable)

 |

 --> pos4TG --> car (pickable)

 */

 : // standard code for shape creation ...

 Box greenBox = new Box(0.5f, 0.5f, 0.5f,

 Simple3D.color("green"));

 greenBox.setName("green box");

 TransformGroup pos3TG = Simple3D.setTranslation(2,0.5,0);

 pos3TG.addChild(greenBox);

 BranchGroup modelBG = Simple3D.loadModel("models/car/car.obj");

 TransformGroup pos4TG = Simple3D.setTranslation(0,0,2);

 pos4TG.addChild(modelBG);

7. Interaction

5

 // loadModel() calls setName() with the name of the file

 // build the scene graph

 sceneBG = Simple3D.createBG();

 sceneBG.addChild(pos1TG);

 sceneBG.addChild(pos2TG);

 sceneBG.addChild(pos3TG);

 sceneBG.addChild(pos4TG);

 } // end of PickCubes()

 public BranchGroup getScene()

 { return sceneBG; }

It's not necessary to call setName() for the model since Simple3D.loadModel() does

that, storing the filename.

PickCubes implements PickUpdater which means it must have a definition for the

picked() method called by PickBehavior:

 public void picked(String id, Point3d pt)

 // this method is called by PickBehavior;

 // Note: the intercept may be null, as in the case of the car model

 {

 if (pt == null)

 System.out.println(id + " picked");

 else

 Simple3D.printTuple(id + " picked at ", pt);

 } // end of picked()

1.2. Reacting to Picks

PickActs.java utilizes picking to trigger three different animations: the rotation of a

red cube, and the shrinking/growing of a green sphere (the scene is shown in Figure

18).

7. Interaction

6

Figure 18. Picking an Animation.

The animations are implemented using Simple3D's FireAlpha (which was introduced

back in section 2) and three interpolators. The sphere's scene graph is:

 sceneBG --> posSTG --> sphereTG --> sphere

 |

 ----> shrinking interpolator

 |

 ----> growing interpolator

The corresponding code in the PulseActs constructor is:

 Sphere sphere = new Sphere(1f, Simple3D.color("green"));

 sphere.setName("sphere");

 TransformGroup sphereTG = new TransformGroup();

 sphereTG.addChild(sphere);

 animateSphere(sphereTG); // build both interpolators

 // position the sphere

 TransformGroup posSTG = Simple3D.setTranslation(2,1,-2);

 posSTG.addChild(sphereTG);

 // top-level of the scene graph

 sceneBG = Simple3D.createBG();

 sceneBG.addChild(posSTG);

The sphere is assigned a name, which is used to identify it at pick time.

The sphere's interpolators and their FireAlpha timers are created in animateSphere():

 // globals for animation

 private FireAlpha shrinkAlpha, growAlpha;

 private void animateSphere(TransformGroup sphereTG)

 /* make the sphere shrink or grow when picked using two

 ScaleInterpolators controlled by FireAlpha objects

 */

 {

 // shrinking animation: radius goes from 1 to 0.5

 shrinkAlpha = new FireAlpha(2000); // 2 sec duration

 ScaleInterpolator shrinking =

 new ScaleInterpolator(shrinkAlpha.getAlpha(), sphereTG,

 new Transform3D(), 1.0f, 0.5f);

 // scaling applied to an identity matrix

 shrinking.setSchedulingBounds(Simple3D.INFINITE_BOUNDS);

 sphereTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 sphereTG.addChild(shrinking);

7. Interaction

7

 // growing animation: radius goes from 0.5 to 1

 growAlpha = new FireAlpha(2000); // 2 sec duration

 ScaleInterpolator growing =

 new ScaleInterpolator(growAlpha.getAlpha(), sphereTG,

 new Transform3D(), 0.5f, 1.0f);

 growing.setSchedulingBounds(Simple3D.INFINITE_BOUNDS);

 sphereTG.addChild(growing);

 } // end of animateSphere()

The main() function creates a PickActs object and links it to PickBehavior in the same

way as the main() function in PickCubes. When the user clicks on a shape, the

behavior calls picked() in PickActs:

 // in PickActs

 // should the sphere shrink or grow?

 private boolean isShrinking = true;

 public void picked(String id, Point3d pt)

 // this method is called by PickBehavior

 {

 if (id == null)

 return;

 if (id.equals("box"))

 boxAlpha.fire(); // rotate the cube

 else if (id.equals("sphere")) {

 // grow or shrink the cube (when previous change has finished)

 if (isShrinking && !growAlpha.isRunning()) {

 shrinkAlpha.fire();

 isShrinking = false; // Next time the sphere should grow

 }

 else if (!isShrinking && !shrinkAlpha.isRunning()) {

 growAlpha.fire();

 isShrinking = true; // Next time the sphere should shrink

 }

 }

 } // end of picked()

A mouse click on the sphere causes the second branch of the second if-statement to be

executed which, depending on the current value of the isShrinking global, will either

call the FireAlpha for shrinking or growing.

Note that FireAlpha.fire() is protected by tests of FireAlpha.isRunning() which ensure

that an interpolator is only started when it's finished an earlier interpolation. This

means that shrinking or growing cannot be interrupted by another animation.

1.3. Picking for Movement

Using picking to move an object around the scene, by dragging it or rotating it with

the mouse, is such a common task that the Java 3D utilities package contains three

7. Interaction

8

Pick behaviors for that purpose – PickTranslateBehavior, PicRotateBehavior, and

PickZoomBehavior. These in turn rely on three built-in mouse behaviors,

MouseTranslate, MouseRotate, and MouseZoom. These behaviors are woken by a

mouse dragging event and then examine the alt and meta keys to decide how to

respond, which can be problematic.

This approach works well on Mac OS and Linux, but fails on Windows 10. The issue

is that that Java maps meta to the windows key on Windows (i.e. the key on the left of

the space bar on most keyboards), and in Windows 10 this key's state is no longer

passed to Java. In other words, any code relying on the pressing/clicking of the meta

key is never going to execute.

The simplest solution for Java 3D mouse behaviors is to alter their code to test for

another key. For example, calls to MouseEvent.isMetaDown() can be replaced by

isShiftDown() or isControlDown(). Incidentally, MouseEvent is a Java class, not a

part of the Java 3D API.

However, I gallantly decided to make more drastic changes. My versions of

MouseTranslate and MouseRotate (the cleverly named MyMouseTranslate and

MyMouseRotate) still wake up when the mouse is dragged, but now check whether a

particular button on the mouse has being pressed. The left button causes
MyMouseTranslate to start translating a shape, while the right button triggers rotation

in MyMouseRotate.

MyMouseTranslate and MyMouseRotate are included as part of Simple3D.jar, so I'll

spare you a detailed examination of their code since the source is available inside the

JAR file.

MouseTranslate (and MyMouseTranslate) only translates a shape in the XY plane.

For movement along the z-axis (which Java 3D calls 'zooming') the MouseZoom class

needs to be employed. This also suffers from the meta key problem, but Java 3D

fortunately includes an alternative class called MouseWheelZoom which triggers

movement along the z-axis when the mouse wheel is turned. It pairs nicely with

MyMouseTranslate and MyMouseRotate.

As I mentioned before, Java 3D's PickTranslateBehavior, PicRotateBehavior, and

PickZoomBehavior work closely with MouseTranslate, MouseRotate, and

MouseZoom, so their functionality needs to be recoded. I decided to combine the

three picking behaviors, which are closely related, into a single class called

PickMoverBeh. which will be described in this section.

All these changes are summarized in Figure 19.

7. Interaction

9

Figure 19. The Classes Used by PickMoveCubes.

The classes highlighted in bold are Java 3D utility classes. My classes are shown in

red.

The PickMoveCubes application supports the translation and rotation of the three

cubes shown in Figure 20. The left-hand screenshot shows the cubes' initial

orientation, and the right-hand picture was taken after the cubes were moved around.

Figure 20. The Cubes in PickMoveCubes.

1.3.1. Setting up the Scene

The trick to moving a picked object is to utilize a 'pick' TransformGroup linked to

each shape. When the shape is picked at run time, the associated TransformGroup is

used to translate or rotate the shape below it.

7. Interaction

10

PickMoveCubes creates a scene containing three cubes spaced out along the x-axis.

Each one has its own 'pick' TransformGroup, which means that the scene graph will

look something like:

 sceneBG --> 3 pickable boxes

 |

 | --> posTG1 --> pickTG1 --> red box

 |

 | --> posTG2 --> pickTG2 --> blue box

 |

 | --> posTG3 --> pickTG3 --> green box

 |

 ----> PickMoverBeh

The corresponding code in PickMoveCubes:

 public PickMoveCubes()

 {

 Simple3D j3d = new Simple3D("Select Cubes", true, true);

 /*

 sceneBG --> 3 pickable boxes

 |

 ----> PickMoverBeh

 */

 // build the scene graph

 BranchGroup sceneBG = Simple3D.createBG();

 sceneBG.addChild(makeBox(-2, 0, "red")); //(x,z) pos on floor

 sceneBG.addChild(makeBox(0, 0, "blue"));

 sceneBG.addChild(makeBox(2, 0, "green"));

 j3d.cameraMouseEnable(false);

 // disables mouse effects on the camera

 PickMoverBeh pickMove =

 new PickMoverBeh(j3d.canvas3D, sceneBG, this);

 sceneBG.addChild(pickMove);

 j3d.rootBG.addChild(sceneBG);

 } // end of PickMoveCubes()

Each scene graph branch for a cube is built by a call to makeBox():

 private TransformGroup makeBox(double x, double z, String colorStr)

 /*

 posTG --> pickTG --> box (pickable)

 */

 {

 Box b = new Box(0.5f, 0.5f, 0.5f, Simple3D.color(colorStr));

 b.setName(colorStr + " box"); // ID returned during picking

7. Interaction

11

 // position the box on the XZ plane

 TransformGroup posTG = Simple3D.setTranslation(x,0.5,z);

 // Create a second transform group node

 // which can report its picking changes.

 TransformGroup pickTG = Simple3D.createTG();

 pickTG.setCapability(TransformGroup.ENABLE_PICK_REPORTING);

 // build scene graph branch

 pickTG.addChild(b);

 posTG.addChild(pickTG);

 return posTG;

 } // end of makeBox()

The "pos" TransformGroup in each branch is employed to position a cube along the x-

axis. When PickMoverBeh is woken up by a cube being picked, it passes the

associated "pick" TransformGroup to MyMouseTranslate, MouseWheelZoom, or

MyMouseRotate for modification.

Although the changes to the 'pick TransformGroups could be performed without

affecting the top-level application, it's more useful to have some notification

mechanism in place. That's implemented as a chain of callbacks (shown as orange

lines in Figure 19) which send information from the mouse behaviors to

PickMoverBeh and then to PickMoveCubes.

PickMoveCubes implements PickMoverListener which defines transformChanged():

 public void transformChanged(String id, int type, Transform3D t3d)

 // called by PickMoverBeh when there is a move

 {

 if (id != null) {

 if (type != PickMoverListener.NO_PICK) {

 System.out.println(id + ": " + getPickType(type));

 if (t3d != null)

 Simple3D.printMatrix(t3d);

 else

 System.out.println("Transform is null");

 }

 }

 } // end of transformChanged()

PickMoveListener defines four constants (ROTATE, TRANSLATE, ZOOM, and

NO_PICK) which are passed as the value of the type argument. The Transform3D

argument is the transformation just applied to the 'pick' TransformGroup by the

mouse behavior. The id variable contains the name of the affected shape.

A crucial line in the constructor for PickMoveCubes is:

 j3d.cameraMouseEnable(false);

It disables Simple3D's camera mouse controls which would otherwise also be woken

when the user dragged the mouse inside the scene. However, Simple3D also supports

7. Interaction

12

keyboard-based controls for the camera, which are unaffected, so they can still be

employed to navigate through the scene.

1.3.2 The Picking Behavior

PickMoverBeh is a subclass of PickMouseBehavior in the same way as the earlier

PickBehavior example. This means that it must implement updateScene() which is

called when an object is picked. PickMoverBeh then utilizes one of the mouse

behaviors (MyMouseTranslate, MouseWheelZoom, or MyMouseRotate) to modify

the relevant 'pick' TransformGroup node above the picked object.

The mouse behaviors are initialized in the PickMoverBeh() constructor:

 public PickMoverBeh(Canvas3D canvas, BranchGroup root,

 PickMoverListener pml)

 // Initialize mouse behaviors for moving a picked object

 {

 super(canvas, root, Simple3D.INFINITE_BOUNDS);

 pmListener = pml;

 mouseTrans = new MyMouseTranslate(MouseBehavior.MANUAL_WAKEUP);

 // mouseTrans.setControl(true); // use <CTRL> key

 mouseTrans.setTransformGroup(currGrp);

 mouseTrans.setupCallback(this);

 currGrp.addChild(mouseTrans);

 mouseZoom = new MouseWheelZoom(MouseBehavior.MANUAL_WAKEUP);

 mouseZoom.setTransformGroup(currGrp);

 mouseZoom.setupCallback(this);

 currGrp.addChild(mouseZoom);

 mouseRot = new MyMouseRotate(MyMouseRotate.MANUAL_WAKEUP);

 mouseRot.setControl(true); // use <CTRL> key

 mouseRot.setTransformGroup(currGrp);

 mouseRot.setupCallback(this);

 currGrp.addChild(mouseRot);

 mouseTrans.setSchedulingBounds(Simple3D.INFINITE_BOUNDS);

 mouseZoom.setSchedulingBounds(Simple3D.INFINITE_BOUNDS);

 mouseRot.setSchedulingBounds(Simple3D.INFINITE_BOUNDS);

 this.setSchedulingBounds(Simple3D.INFINITE_BOUNDS);

 } // end of PickMoverBeh()

One of the new elements of MyMouseTranslate and MyMouseRotate is a setControl()

method which causes the behaviors to examine if the ctrl key is being pressed when

the mouse is dragged.

Normally, MyMouseTranslate treats a mouse drag as a translation across the XY

plane, with the shape's x- and y-axis positions changing at the same time. This can

make it rather hard to place a shape exactly, and so if setControl() is set to true then a

7. Interaction

13

mouse drag only affects the x-axis position. However, if the ctrl key is pressed

during a drag then only the y-axis location is changed.

A similar modification can be applied to MyMouseRotate. Normally, a mouse drag

will affect both the x- and y-axis orientations at the same time. If setControl() is set to

true (as in the code above) then a mouse drag only rotates the shape around the y-axis,

and the ctrl key must be pressed to change that to an x-axis revolution.

PickMoverBeh.updateScene() extracts the picked shape's ID and its 'pick'

TransformGroup, and calls the relevant mouse behavior to modify that

TransformGroup:

 @Override

 public void updateScene(int xpos, int ypos)

 /* Examine the mouse to decide whether to use

 the mouse behavior for translation, zooming, or rotation

 on the picked TransformGroup.

 */

 {

 TransformGroup tg = null;

 pickCanvas.setShapeLocation(xpos, ypos);

 PickResult pr = pickCanvas.pickClosest();

 currID = Simple3D.pickID(pr); // get ID of picked object

 if ((pr != null) &&

 ((tg = (TransformGroup)pr.getNode(

 PickResult.TRANSFORM_GROUP)) != null) &&

 (tg.getCapability(TransformGroup.ALLOW_TRANSFORM_READ)) &&

 (tg.getCapability(TransformGroup.ALLOW_TRANSFORM_WRITE))) {

 // get the pickable TransformGroup of the picked shape

 if ((mevent.getModifiersEx() &

 InputEvent.BUTTON1_DOWN_MASK) != 0) {

 // left button pressed

 mouseTrans.setTransformGroup(tg);

 mouseTrans.wakeup();

 }

 else if ((mevent.getModifiersEx() &

 InputEvent.BUTTON2_DOWN_MASK) != 0) {

 // middle button (the mouse wheel) pressed

 mouseZoom.setTransformGroup(tg);

 mouseZoom.wakeup();

 }

 else if ((mevent.getModifiersEx() &

 InputEvent.BUTTON3_DOWN_MASK) != 0) {

 // right button pressed

 mouseRot.setTransformGroup(tg);

 mouseRot.wakeup();

 }

 }

 else if (pmListener != null)

7. Interaction

14

 pmListener.transformChanged(currID,

 PickingCallback.NO_PICK, null);

 } /* updateScene */

When the mouse behaviors were initialized in PickMoverBeh(), they were configured

to call the two argument transformChanged() in PickMoverBeh after they had

finished a transformation:

 @Override

 public void transformChanged(int type, Transform3D t3d)

 // called by the mouse behaviors;

 // this method calls the 3-arg version of transformChanged()

 { pmListener.transformChanged(currID, type, t3d); }

PickMoverBeh adds the ID of the picked shape, and calls the listener function in

PickMoveCubes.

2. Collision Detection

Collision detection is implemented using a Behavior class that’s triggered by one or

more collision wakeup conditions – WakeupOnCollisionEntry,

WakeupOnCollisionExit, or WakeupOnCollisionMovement (see Figure 10).

The determination of what shapes have collided relies on the examination of a

SceneGraphPath object that's supplied as part of the trigger event. It also helps to

assign names to the shapes, using a similar approach to in picking.

The HitSpheres example involves three colored spheres orbiting the y-axis at the

origin, each at a distance of 3 units, moving at different speeds, and starting from

different points in the orbit. A 'sun' is located at the origin just to make things look

more astronomical; it doesn't play any role in the collision code. The setup is shown

in Figure 21.

Figure 21. Orbiting Spheres on a Collision Course.

7. Interaction

15

A CollisionBeh behavior object is assigned to the red sphere and another to the blue

sphere, which report when their sphere collides with another. Typical output is:

red hit green at (1.036, 0.000, -2.815)

 red left green

red hit blue at (2.159, 0.000, 2.083)

blue hit red at (1.294, 0.000, 2.706)

 blue left red

 red left blue

red hit green at (1.038, 0.000, -2.815)

 red left green

red hit blue at (2.159, 0.000, 2.083)

blue hit red at (1.290, 0.000, 2.708)

 blue left red

 red left blue

Inside HitSpheres.java, the code for the red sphere is:

 // orbiting red sphere

 Sphere redSphere = new Sphere(0.4f, Simple3D.color("red"));

 redSphere.getShape().setName("red"); // collision naming

 TransformGroup pos1TG = Simple3D.setTranslation(0,0,-3);

 pos1TG.addChild(redSphere);

 TransformGroup rot1TG = Simple3D.orbit(pos1TG, 4000);

 // detect when the red sphere collides with something

 CollisionBeh cbRed = new CollisionBeh(redSphere);

The CollisionBeh constructor sets up the collision boundary for its shape, which can

use a BoundarySphere object in this case:

 // globals

 private Sphere sphere;

 private String name; // of this sphere

 public CollisionBeh(Sphere s)

 {

 sphere = s;

 sphere.setCollisionBounds(

 new BoundingSphere(new Point3d(0,0,0),

 sphere.getRadius()));

 name = sphere.getShape().getName();

 // store the name stored in the sphere's Shape3D

 setSchedulingBounds(Simple3D.INFINITE_BOUNDS);

 }

initialize() configures a trigger that wakes up for either a collision entry or an exit:

 // global

7. Interaction

16

 private WakeupCondition wakes;

 public void initialize()

 {

 WakeupCriterion[] crits = new WakeupCriterion[2];

 // collision entry and exit

 crits[0] = new WakeupOnCollisionEntry(sphere);

 crits[1] = new WakeupOnCollisionExit(sphere);

 wakes = new WakeupOr(crits);

 wakeupOn(wakes);

 }

processStimulus() determines which of the two conditions caused it to fire, and

examines the trigger information:

 public void processStimulus(Iterator<WakeupCriterion> wCrits)

 {

 WakeupCriterion wakeUp;

 while(wCrits.hasNext()) {

 wakeUp = wCrits.next();

 if (wakeUp instanceof WakeupOnCollisionEntry) {

 // collision entry

 SceneGraphPath sgp = ((WakeupOnCollisionEntry) wakeUp).

 getTriggeringPath();

 Node hitNode = sgp.getObject();

 if (hitNode.getName() != null) { // ignore unnamed shapes

 Transform3D t3d = sgp.getTransform();

 Vector3d trans = new Vector3d();

 if (t3d != null)

 t3d.get(trans);

 System.out.println(name + " hit " +

 hitNode.getName() +

 " at " + Simple3D.tupleStr(trans));

 }

 }

 else if (wakeUp instanceof WakeupOnCollisionExit) {

 // collision exit

 SceneGraphPath sgp = ((WakeupOnCollisionExit) wakeUp).

 getTriggeringPath();

 Node hitNode = sgp.getObject();

 if (hitNode.getName() != null)

 System.out.println(" " + name + " left " +

 hitNode.getName());

 // coordinates not reported on collision exit

 }

 wakeupOn(wakes);

 }

 } // end of processStimulus()

getTriggeringPath() retrieves a scene graph path for the object that was hit. The

information will vary depending on what object was encountered, and so the simplest

7. Interaction

17

thing is to ensure that every object that might be involved in a collision is assigned a

name. This also means that objects in the scene graph path with no names can be

ignored.

Upon collision entry, processStimulus() prints the names the shapes involved and the

transform associated with the shape (which may be null). If a transform is available

then it will be specified in world coordinates, which can be accessed with a get() call.

